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Heart rate variability (HRV) is a promising marker for evaluating the remaining autonomic

function in people with spinal cord injury (SCI). HRV is commonly assessed by spectral

analysis and detrended fluctuation analysis (DFA). This study aimed to investigate

whether local scale exponent α(t) can reveal new features of HRV that cannot be reflected

by spectral measures and DFA coefficients. We studied 12 participants with SCI and 15

healthy able-bodied controls. ECG signals were continually recorded during 10min sitting

and 10min prone postures. α(t) was calculated for scales between 4 and 60 s. Because

α(t) could be overestimated at small scales, we developed an approach for correcting

α(t) based on previous studies. The simulation results on simulated monofractal time

series with α between 0.5 and 1.3 showed that the proposed method can yield improved

estimation of α(t). We applied the proposed method to raw RR interval series. The

results showed that α(t) in healthy controls monotonically decreased with scale at scales

between 4 and 12 s (0.083–0.25Hz) in both the sitting and prone postures, whereas in

participants with SCI, α(t) slowly decreased at almost all scales. The sharp decreasing

trend in α(t) in controls suggests a more complex dynamics of HRV in controls. α(t) at

scales between 4 (0.25Hz) and around 7 s (0.143Hz) was lower in subjects with SCI than

in controls in the sitting posture; α(t) at a narrow range of scales around 12 s (0.083Hz)

was higher in participants with SCI than in controls in the prone posture. However,

none of normalized low frequency (0.04–0.15Hz) power, the ratio of low frequency

power to high frequency (0.15–0.4Hz) power and long-term (>11 beats) DFA coefficient

showed significant difference between healthy controls and subjects with SCI in the prone

posture. Our results suggest that α(t) can reveal more detailed information in comparison

to spectral measures and the standard DFA parameters.
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Introduction

Spinal cord injury (SCI) disrupts the descending autonomic
pathways, resulting in a variety of dysfunction of the
cardiovascular system related to the level and severity of
injury to these pathways (Alexander et al., 2009). This commonly
manifests as neurogenic shock, orthostatic hypotension,
autonomic dysreflexia, and cardiac rhythm disturbances
(Claydon and Krassioukov, 2006; Krassioukov and Claydon,
2006). To date, the assessment to quantify severity of injury to
autonomic pathways has not been well developed, and there
is still no consensus on this issue (West et al., 2013). The
clinical practice focuses on the assessment of motor and sensory
impairments following SCI according to the International
Standards for the Neurological Classification of SCI, rather than
assessment of severity of injury to autonomic pathways (Claydon
and Krassioukov, 2008; Jan et al., 2013).

Heart rate variability (HRV) represents one of the most
promising markers of autonomic activities (Task Force of
the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, 1996). It has been
widely accepted that fluctuations in heart rate (HR) occurring
at different frequencies reflect the activities of autonomic
neural outflows (West et al., 2013). Previous research has
shown great potential of HRV for evaluating the remaining
autonomic functions of the cardiovascular system in patients
with SCI (Merati et al., 2006; Claydon and Krassioukov, 2008;
Jan et al., 2013). Various methods have been developed to
quantify HRV, including time domain, frequency domain, and
nonlinear methods (Task Force of the European Society of
Cardiology and the North American Society of Pacing and
Electrophysiology, 1996). The power spectra density (PSD) of
HRV reveals two characteristic frequencies: one is defined as
the low frequency (LF, 0.04–0.15Hz) and the other is defined
as the high frequency (HF, 0.15–0.4Hz). HF of HRV reflects
vagal modulation, and LF is considered to be jointly mediated
by sympathetic and vagal nerves (Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology, 1996). The ratio of LF to HF power is
widely used as an index of sympathovagal balance for assessing
cardiovascular regulation. Indeed, time and frequency domain
indexes of HRV have provided prognostic information in many
pathological conditions. However, in addition to autonomic
modulations, HRV can also be influenced by other mechanisms,
e.g., intrinsic variations of pacemaker rate (Ponard et al., 2007) or
fluctuations in circulating neurohumoral factors (Galetta et al.,
2008). These mechanisms may operate at time scales that time
and frequency domain methods cannot capture adequately (Tan
et al., 2009). Hence, scale independent measures have been
introduced to study the integrated control of HR. The use of
such measure is based on the observation that HR fluctuations
exhibit scale-invariant patterns over a wide range of time scales
that breakdown under pathological conditions (Peng et al., 1995;
Goldberger et al., 2002).

Detrended fluctuation analysis (DFA) (Peng et al., 1995) is
one of the most commonly used scale independent method.
DFA provides a quantitative parameter, the scaling exponent

α, to represent the correlation properties of the data (Peng
et al., 1995). Usually, the properties of HRV data (RR interval
series) are described by two scaling exponents: a short-term (4–
11 beats) exponent α1 and a long-term (>11 beats) exponent
α2 (Beckers et al., 2006). It was demonstrated that α1 of HRV
can reflect changes in autonomic tone induced by exercise,
maneuvers such as passive head-up tilt, cold hand immersion,
cold face immersion (Tulppo et al., 2001, 2005), and aging or
cardiac pathologies (Beckers et al., 2006). A growing number of
studies have suggested that α1 can yield prognostic information
that cannot be provided by conventional measures (Huikuri
et al., 2009). However, the use of a single scaling exponent for
characterizing the HR dynamics has been questioned (Ivanov
et al., 1999; Echeverria et al., 2003; Castiglioni et al., 2009,
2011). It has been recognized that HRV does not always
present a uniform power-law behavior, especially in abnormal
physiological conditions (Echeverria et al., 2003). Ivanov et al.
(1999) suggested that human heartbeat dynamics requires a large
number of exponents to characterize its properties. A recent
study even suggested that the physiological effects of autonomic
outflowmaymask intrinsic fractal behavior of the sinoatrial node
(Tan et al., 2009). Some authors therefore proposed to use a
whole spectrum of local scale exponents α(t) to describe HR
dynamics (Bojorges-Valdez et al., 2007; Castiglioni et al., 2009,
2011), where t is the time scale. Castiglioni et al. (2011) suggested
that α(t) describes the local correlation properties of data. By
using autonomic blocking agents, they showed that both cardiac
sympathetic and vagal outflows affect the spectrum of α(t) but
with opposite effects. However, it is still unclear whether the
spectrum of α(t) reveals new features that are not characterized
by the PSD and DFA coefficients. In addition, α(t) at small scales
can be overestimated (Viswanathan et al., 1997; Kantelhardt et al.,
2001). This problem was not well addressed in the previous
studies (Castiglioni et al., 2009, 2011). This is an important issue
because α(t) at small scales and their mean value (i.e., α1), have
been used to assess HR dynamics due to their sensitivity to
changes in cardiac autonomic tone (Tulppo et al., 2001, 2005).

The purpose of this study was to investigate whether α(t)
reveals new features of HRV in people with SCI that cannot be
reflected by spectral measure andDFA coefficients. This was done
by changing the posture from the sitting to prone posture in
people with SCI, which is known to induce autonomicmodulated
vasodilatory responses. To accurately estimate α(t), we developed
an approach for correcting α(t) at small scales based on a
previous study by Kantelhardt et al. (2001). Our method may be
used to evaluate the local properties of HRV andmay enhance the
current understanding of residual autonomic function in people
with SCI.

Methods

Subjects
Twenty seven participants were recruited in this study, including
12 people with SCI and 15 healthy able-bodied controls. Their
demographic data are shown in Table 1. The SCI group included
five participants with a spinal injury level at C4–T5 [five
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TABLE 1 | Demographic data of the enrolled subjects.

SCI Controls

Number of subjects 12 15

Gender, M/F 9/3 11/4

Age, yr 35.1 ± 11.9 29.4 ± 6.2

Body mass index, kg/m2 25.8 ± 4.9 24.3 ± 2.9

Duration of injury, yr 7 (4, 12) /

Number of C4–T5/T6–T12 5/7

Data are expressed as mean ± standard deviations or median (25th, 75th percentiles).

incomplete, American Spinal Injury Association Impairment
Scale (AIS) B, C, or D] and seven subjects with a spinal injury
level at T6–T12 [four complete (AIS A) and three incomplete
(AIS B, C, or D)]. All participants with SCI were in a stable
clinical condition (the injury event occurred more than 6
months before the time of the study). None of the subjects
had any diagnosed cardiovascular or neurological diseases that
might affect autonomic cardiovascular control. All participants
gave informed consent to participate in this study, which was
approved by the Institutional Review Board of the University of
Oklahoma Health Sciences Center.

Data Collection
All experiments were performed in a university laboratory. Room
temperature was maintained at about 23◦C. Each subject was
asked to stay in the laboratory for at least 30min to acclimate
to the room temperature. When a subject sat in the wheelchair,
the electrocardiography (ECG) electrodes of a three-lead Biopac
ECG monitor (ECG100C, Biopac Systems; Goleta, California)
were placed on the right ventral wrist, right medial ankle, and
left medial ankle. The ECG signals were recorded for 10min with
a sampling rate of 1000Hz. Then the subject was transferred
to a mat table in a prone position for 10min recording. Able-
bodied controls followed the same procedures but changed from
the sitting posture to the prone posture without assistance. By
using the AcqKnowledge software (Biopac Systems), the ECG
signal was edited to remove artifacts and then filtered with a
bandpass filter of 0.5–32Hz. After RR peak detection and visual
inspection by the operator, the consecutive RR intervals (RRIs)
were exported for later processing.

Linear Analysis
Mean and standard deviation (SD) of RRI series were calculated
in the time domain. Then the RRI series was resampled at 2Hz
using a cubic spline approximation (Aubert et al., 1999). The PSD
of HRV was calculated using an autoregressive model with afixed
order of 16 (Boardman et al., 2002). Three parameters of PSD
were calculated according to the published guideline (Task Force
of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, 1996): normalized low
frequency power [% LF = 100×LF power/(total power-VLF
power)], high frequency power, and LF to HF ratio (LF power/HF
power), where total power was defined as the variance of the data
series and VLF was the very low frequency range (<0.04Hz).

Detrended Fluctuation Analysis (DFA)
The DFA method applied to RRI series has been described
elsewhere (Peng et al., 1995). We have briefly described the
methods used in this study here. Given a series of N RRIs,
{x (i) , i = 1, . . . ,N}, it was first integrated after mean
subtraction

y
(

k
)

=
∑k

i= 1
(x (i) − 〈RR〉), (1)

where 〈RR〉 was the mean of the series. Next, the integrated series
y
(

k
)

was divided into boxes of n RRIs. In each box, the local
trend, yn(k), was estimated by a least-square fit of y

(

k
)

using a
polynomial function (a linear function was used throughout this
work). The root-mean square fluctuation

F (n) =

√

1

N

∑N

k=1
((y(k)− yn

(

k
)

)2) (2)

was calculated for box sizes n ≥ 4. A power-law between
F (n) and n indicated the presence of scaling: F(n) ∼ nα .
The parameter α, called scaling exponent, was estimated by the
slope of the log[F(n)]–log(n) plot. α represents the correlation
properties of the signal. For examples, α = 0.5 indicates
white noise, α = 1 represents the behavior of a 1/f process
having persistent long range correlations, and α = 1.5 indicates
Brownian noise. For HRV data, standard DFA typically includes
a short-term (4–11 beats) scaling exponent α1 and a long-term
(>11 beats) scaling exponent α2 (Beckers et al., 2006).

Local Scale Exponent
A local scale exponent was defined as the derivative of log [F (n)]
with respect to log(n)

α(nk) =
log

[

F(nk+1)
]

− log[F(nk−1)]

log(nk+1)− log(nk−1)
, (3)

where {nk} was a set of box sizes spaced evenly on a log scale. An
intrinsic problem was that the log[F (n)] − log(n) plot deviates
from scaling at small scales, resulting in over-estimations of scale
exponents at small scales (Viswanathan et al., 1997; Kantelhardt
et al., 2001; Echeverria et al., 2003). To address this problem,
Kantelhardt et al. (2001) introduced a correction function

Kα(n) =
〈[F(n)]2〉1/2/nα

〈[F(n
′
)]2〉1/2/n

′α
, (4)

where 〈·〉 denotes the average over different configurations, and

n
′
is a specific box size. Because Kα(n) depends only weakly on α,

Kα(n) for uncorrelated data, i.e., K1/2(n), can be used in all cases.
K1/2(n) can be obtained by analyzing the corresponding shuffled
data, where all long-range correlations are destroyed by shuffling.

Kantelhardt et al. (2001) suggested that n
′
has to be large (n

′
>

50) but must remain significantly smaller than the record length

N and they suggested n
′
≈ N/20 to be a reasonable number. The

modified fluctuation function is given by Kantelhardt et al. (2001)

Fmod (n) = F(n)/K1/2(n). (5)
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However, we found that for short time series, this method could
result in underestimated α (nk) at small scales even for using a
linear function yn

(

k
)

when calculating the fluctuation function
F(n) (Figure 1). Furthermore, it seems that a larger value of
α leads to more prominent bias. The reason is that a larger
value of α leads to more prominent differences between Kα(n)
(Equation 4) and K1/2(n) at small scales (see Figure 2). Thus, the
underestimation bias in α(n) can be corrected as

α (n) = αK(n) · K
α(n)/K

1
2 (n), (6)

where αK(n) denotes local scale exponents obtained by using the
method by Kantelhardt et al.

To verify whether the proposed method improves the
estimation of α(n), we considered simulated monofractal time
series with α between 0.5 and 1.3, which were generated by
inverse Fourier transform of the power spectrum S(f ) ∝ f−β with
β = 2α − 1. In Figure 3, the values of α(n) obtained by using
Equation (6) are compared to those obtained by using Equation
(5). Obviously, the suggested method substantially improves
estimations of α(n) at small scales. Since for RRI series, the mean
value of α(n) at n < 11 beats, i.e., the short-term DFA coefficient
α1, is generally larger than 1 (Beckers et al., 2006), we argue that
the proposed method can yield improved results.

For a RR interval series, the procedure of the proposed
correction method is as follows. (1) Calculation of the short-term
DFA coefficient α1 of the RR interval series. In general, the scales
for calculating α1 range between four beats and a specific scale
around 11 beats. (2) Estimation of the actual scaling exponentα
from α1. Figure 4 shows the relationship between the actual
exponent α and α1 for monofractal time series with α between

FIGURE 1 | Local scale exponents α(n) for monofractal time series with

α between 0.5 and 1.3. The monofractal time series were generated by

inverse Fourier transform of the power spectrum S(f ) ∝ f−β with β = 2α − 1.

When calculating α(n), linear trends were removed. The results were obtained

by averaging over 50 series having a length of 750 data points. The circles

represent the values without correction and the stars represent the values

corrected using the method proposed by Kantelhardt et al. (2001). The error

bars represent the standard deviations.

0.5 and 1.5, where the monofractal time series of the same length
of the RR interval series can be generated by inverse Fourier
transform. According to this relationship, i.e., the fitting curve
(in red color), it is easy to estimate α from α1. (3) Calculation of
local scale exponents using the method proposed by Kantelhardt
et al. (4) Calculation of local scale exponent using Equation (6).

Application to HRV Data
Because the time duration of a box size depends on the mean
RRI, if two series have different values of mean RRI, the same
box size actually represents different time scales. This is the
case in many studies under different experimental conditions.

FIGURE 2 | The correction function Kα (n) for α = 0.5,0.7,and1.3. A

larger value of α leads to more prominent deviation between Kα (n)

(Equation 4) and K1/2(n). The error bars represent the standard deviations.

FIGURE 3 | Local scale exponent α(n) for monofractal time series

obtained by using the method proposed by Kantelhardt et al.

(Kantelhardt correction) and by the proposed method. In these

calculations, linear trends were removed. The results were obtained by

averaging over 50 series having a length of 750 data points. The error bars

represent the standard deviations.
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In this study, mean RRI was generally shorter in the sitting
posture compared to the prone posture, especially in able-bodied
controls. In order to compare scale exponent spectrum of HRV
between the sitting and prone postures and among different
subjects, we converted the box sizes {nk} to time scales {tk} by
Castiglioni et al. (2009)

tk = nk × 〈RR〉 . (7)

Then the spectrum α (tk) was linearly interpolated to obtain a
new spectrum α (ti) with {ti} evenly distributed between 4 and
60 s on a log scale.

The rationales for choosing the time scale interval are as
follows. In DFA of RRI series, the smallest box size is usually
chosen as four beats (Beckers et al., 2006). For most of our
data sets, mean RRI ranges between 0.6 and 1 s. Thus, the time
scale corresponding to the smallest box size of four RRIs ranges
between 2.4 and 4 s. We therefore chose 4 s as the smallest
time scale. In the previous studies by Castiglioni et al. (2009,
2011), the smallest time scale was also chosen as 4 s. On the
other hand, the largest time scale depends on the length of data
series (10min). Kantelhardt (2009) suggested that the largest
scale can be N/4. Castiglioni et al. (2011) reported that α(n) can
be estimated without substantial bias up to scales equal to N/7.
In their study, the largest time scale for 15–20min record was
chosen as 100 s. However, our simulation results on monofractal
time series indicated that, when scales exceed N/20, α(n) may
become unstable and deviate from the expected values (Figures 1,
3). Thus, we speculate that for RRI series derived from 10min
ECG signals, the reliability of estimations of α(n) decreases when
time scale exceeds 30 s. The time scale range 4–30 s corresponds
to the frequency interval 0.033–0.25Hz. It has been well known
that in spectral analysis of HRV, the low frequency (LF) and
high frequency (HF) bands are defined as 0.04–0.15Hz and
0.15–0.4Hz, respectively. According to the published guidelines

FIGURE 4 | Relationship between actual scaling exponent α and DFA

coefficient at scales between 4 and 11. The circles represent the mean

values of DFA coefficients of 50 simulated monofractal signals with a length of

750 points. The lengths of the error bars represent the standard deviations.

The fitting curve (red line) was computed in a least-squares sense.

(Task Force of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology, 1996),
for short-term recordings (∼5min), assessment of very low
frequency, i.e.,<0.04Hz, should be avoided. In this study, we also
presented α at scales between 30 and 60 s just for reference.

Statistical Analysis
The Wilcoxon signed-ranked test was used to examine the
differences of linear measures of HRV, scaling exponents α1and
α2, and local scaling exponent α(t) between sitting and prone
postures (within-subjects test). The Wilcoxon rank-sum test
was used to examine the differences in these measures between
patients with SCI and able-bodied controls (between-subjects
test).

Results

Linear Parameters
Figure 5 shows typical examples of changes in RRI and PSD
of HRV in response to the postural change in a healthy
able-bodied control (Figures 5A,B,E) and a person with SCI
(Figures 5C,D,F). In the control, RRI showed a distinctive
increase after the change from the sitting to prone posture
(Figures 5A,B). However, RRI in the person with SCI showed
only a slight increase after the postural change (Figures 5C,B).
The PSD of HRV in the control revealed a decrease in LF power
and an increase in HF power (Figure 5E), whereas the PSD
of HRV in the person with SCI showed only slight changes
(Figure 5F).

Table 2 compares the linear parameters between healthy able-
bodied controls and subjects with SCI. Mean RRI was lower
in the sitting position in both groups. In controls, %LF was
significantly higher, HF power was significantly lower, and thus

FIGURE 5 | Typical examples of changes in RRI and PSD of HRV in

response to the postural change in an able-bodied control (A,B,E) and

a patient with SCI (C,D,F).
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LF/HF was significantly higher in the sitting posture, whereas
in subjects with SCI, these parameters did not show significant
change after the postural change. Compared to controls, %LF was
significantly lower, HF power was significantly higher, and LF/HF
was significantly lower in subjects with SCI in the sitting position.
No significant difference was observed between two groups in the
prone position.

DFA Coefficients
The short-term scaling exponent α1was significantly higher in the
sitting posture than in the prone posture in healthy able-bodied
controls (p < 0.05) but not in subjects with SCI (Figure 6). In
the sitting posture, α1 was significantly higher in controls than in
subjects with SCI (Figure 6A). Unlike α1, the long-term scaling
exponent α2 showed only slight changes after the postural change
in either control or SCI group (Figure 6B) and no significant
differences were observed between two groups (in the sitting
posture, p = 0.12; in the prone posture, p = 0.10).

Local Scale Exponent
Figure 7 presents the local scale exponents α(t) over healthy able-
bodied control and SCI groups as means±SE. In controls in both
the sitting and prone postures, α(t) monotonically decreased
with scale at the scales between 4 and 12 s and then showed a
plateau (Figure 7A). At the scales shorter than 10 s, α(t) was
significantly higher in the sitting posture than in the prone
posture (Figure 7A), while at the scales larger than 15 s, α(t)
remained at lower values for both postures. In subjects with SCI,
α(t) slowly decreased at almost all scales. No differences were
observed between two postures (Figure 7B). When comparing
controls and subjects with SCI, in the sitting posture, α(t) in
subjects with SCI was significantly lower at scales shorter than
8 s and tended to be higher at larger scales (Figure 7C). In the
prone posture, α(t) at a narrow range of scales around 12 s
was significantly higher in subjects with SCI than in controls
(Figure 7D).

Discussion

The main findings of this study are: (1) local scale exponent α(t)
in healthy able-bodied controls rapidly decreased with scale at
small scales in both the sitting and prone postures but slowly
decreased in subjects with SCI (Figures 7A,B); (2) in the sitting
posture, α(t) at small scales was lower in subjects with SCI
than in controls (Figure 7C); and (3) in the prone posture,

α(t) at moderate scales was higher in subjects with SCI than
in controls. However, normalized low frequency (0.04–0.15Hz)
power, the ratio of low frequency power to high frequency (0.15–
0.4Hz) power and long-term (>11 beats) DFA coefficient α2

did not show significant difference between healthy controls and
subjects with SCI in the prone posture (Table 2, Figure 6). Our
findings support our hypothesis that α(t) can reveal important
features of HRV in patients with SCI that are not reflected by
the sympathovagal balance and DFA coefficients. This approach
may be used to investigate the effects of SCI-induced autonomic
damage on cardiovascular dysfunction.

Spectral analysis of HRV is considered to be a useful
tool for evaluating cardiovascular autonomic control after SCI
(Claydon and Krassioukov, 2008; Jan et al., 2013). In the
present study, sympathovagal balance in controls increased
in the sitting posture and decreased in the prone posture,
whereas in patients with SCI, it showed only small changes
(Table 2). These results were consistent with the previous studies
(Claydon and Krassioukov, 2008; Jan et al., 2013). Increased
sympathovagal balance in the sitting posture is associated with
withdraw of vagal activity and enhanced sympathetic outflow to
the heart (Wecht et al., 2006; Claydon and Krassioukov, 2008).

FIGURE 6 | DFA coefficients α1 (short-term) and α2 (long-term) in

able-bodied controls and subjects with SCI. Values are means ± SE.

*p < 0.05 for within-subjects test; +p < 0.05 for between-subjects test. (A) α1

in control and SCI groups. (B) α2 in control and SCI groups.

TABLE 2 | Linear parameters of HRV in healthy able-bodied controls and subjects with SCI.

Position Mean RRI (ms) SD of RRI (ms) % LF HF power (ms2) LF/HF

ABLE-BODIED CONTROLS

Sitting 799.7± 39.3* 70.1± 7.7 71.3± 3.8* 638± 200* 3.3± 0.8*

Prone 916.2± 46.0 83.6± 13.9 42.0± 4.9 1193± 157 0.8± 0.2

SCI

Sitting 770.9± 26.0* 62.7± 19.5 53.5± 5.2+++ 359± 109+ 1.6± 0.4+++

Prone 826.1± 26.6 71.4± 23.5 49.2± 4.7 720± 216 1.3± 0.2

Values are means ± SE. *p < 0.05 vs. prone; +p < 0.05 vs. healthy able-bodied controls; +++p < 0.001 vs. healthy able-bodied controls.
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FIGURE 7 | Local scale exponents αt in healthy able-bodied controls

and subjects with SCI. Values are presented as means ± SE. *p < 0.05 for

within-subjects test; +p < 0.05 for between-subjects test. (A) Comparisons of

α(t) in control group between two postures. (B) Comparisons of α(t) in SCI

group between two postures. (C) Comparison of α(t) in the sitting position

between two groups. (D) Comparisons of α(t) in the prone position between

two groups.

In subjects with SCI, the increase in sympathovagal balance was
attenuated, probably reflecting limited ability of vagal withdrawal
to influence HR and reduced sympathetic cardiac modulation
(Wecht et al., 2006). On the other hand, in the sitting posture, the
short-term DFA coefficient α1 significantly increased in controls
but not in subjects with SCI (Figure 6). These results were similar
to those reported by Tulppo et al. (2001) and Merati et al. (2006).
Our results suggested that the LF to HF because it has been
demonstrated that ratio and DFA coefficients provide similar
characterizations of HRV. This is not surprising, DFA coefficients
can be obtained from the PSD (Willson et al., 2002). Willson et al.
(2002) suggested that α1 is related to 2/[1 + (HF/LF)] and α2

is related to 2/[1 + (LF/VLF)] with VLF representing the power
in the very low frequency region below 0.04Hz. Platisa and Gal
(2006) observed an approximated linear relationship between
α1 and ln(LF/HF). Thus, it seems that α1 reflects the balance
between the LF and HF oscillations and α2 reflects the balance
between the LF and VLF oscillations.

Unlike DFA coefficients, local scale exponent reflects local
properties of HRV. Castiglioni et al. (2011) suggested that local
scale exponent reflects the local correlation properties of the
data. By using autonomic blocking agents, they showed that the
vagal outflow contributes with white-noise components to HRV
while the cardiac sympathetic outflow adds Brownian motion
components at short scales and contributes to a plateau between
40 and 80 s. In the present study, in able-bodied controls, α(t) at t
between 4 and 12 s was significantly higher in the sitting posture
than in the prone posture (Figure 7A). These scales correspond

to frequencies between 0.083 and 0.25Hz, which spread across
the LF and HF bands. Supposing that the mean RRI is 0.8 s (see
Table 2), the scales between 4 and 12 s correspond to 5–15 beats
(Eq. 7). This range of beat number may spread across the ranges
of observation window sizes over which α1 and α2 are calculated.
As shown in Figure 6, α2 in controls in the sitting posture tended
to be higher than in the prone posture but the differences did
not reach a significant level. The reason might be that α2 was
calculated over a wide range of observation window sizes, while
in major parts of the range, α(t) exhibited similar behavior under
two conditions (Figure 7A).

In the sitting posture, α(t) at t < 8 s was significantly lower in
subjects with SCI than in controls (Figure 7C). The lower values
of α(t) are compatible with lower values of α1 (Figure 6A) and
lower values of sympathovagal balance (Table 2). At t between
6 and 15 s, roughly corresponding to 0.07–0.16Hz, α(t) showed
different curve configurations between two groups: it sharply
decreased with t in controls but slowly decreased in subjects with
SCI. The sharp decreasing trend in α(t) in controls suggests a
more complex dynamics of HRV in controls. In contrast, the
relative constant values of α(t) in subjects with SCI might reflect
an attenuation of HRV. These features were not reflected by
sympathovagal balance quantified by the spectral analysis and
DFA coefficients.

In the prone posture, α(t) at t around 12 s was significantly
higher in subjects with SCI than in controls (Figure 7D). The
higher values of α(t) are compatible with the higher values of
α2 in subjects with SCI although the differences in α2 between
two groups did not reach the significant level (Figure 6B). The
reasons for the higher values of α(t) and α2 in subjects with
SCI are not clear. A possible explanation is the various levels
and severities of SCI. It is well known that the mechanisms of
HR regulation after SCI depend on the level and severity of
injury (Claydon and Krassioukov, 2008). For example, it was
reported that in the supine position, sympathovagal balance
in controls was higher than in subjects with high-level lesions
but lower than in those with low-level lesions (Merati et al.,
2006; Claydon and Krassioukov, 2008). Accordingly, it was
suggested that at rest, reduced sympathetic outflow are not
balanced by reduced vagal outflow in subjects with cervical SCI
and mechanisms underlying reduced vagal tone in subjects with
thoracic SCI subjects are uncertain (Claydon and Krassioukov,
2008). Nevertheless, a striking phenomenon was that α(t)
maintained relatively constant in subjects with SCI, whereas it
monotonically decreased with scale in controls (Figure 7D). This
might suggest that HRV in subjects with SCI was less complex
compared to controls.

This study has several limitations. First, we only recruited 12
subjects with SCI into this study. However, our results confirmed
our hypothesis that the spectrum of α(t) reveals important
features of HRV in subjects with SCI that are not reflected by the
spectral analysis (LF to HF ratio) and DFA coefficients. Second,
we did not investigate the influences of injury level on α(t),
because the C4–T5 group mainly consisted of incomplete spinal
injury, while the T6–T12 group mainly consisted of complete
spinal injury. Further studies may be required to determine the
influences of injury level and completeness on α(t). Third, the
SCI group was older compared to the control group. The age
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issue may affect the validity of our results. However, the age effect
is a minor confounding variable when compared to postural
changes (Jan et al., 2013). Further studies should consider using
an age-matched research design.
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