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Moonlighting proteins are a subset of multifunctional proteins characterized by their

multiple, independent, and unrelated biological functions. We recently set up a

large-scale identification of moonlighting proteins using a protein-protein interaction

(PPI) network approach. We established that 3% of the current human interactome is

composed of predicted moonlighting proteins. We found that disease-related genes are

over-represented among those candidates. Here, by comparingmoonlighting candidates

to non-candidates as groups, we further show that (i) they are significantly involved in

more than one disease, (ii) they contribute to complex rather than monogenic diseases,

(iii) the diseases in which they are involved are phenotypically different according to their

annotations, finally, (iv) they are enriched for diseases pairs showing statistically significant

comorbidity patterns based on Medicare records. Altogether, our results suggest that

some observed comorbidities between phenotypically different diseases could be due

to a shared protein involved in unrelated biological processes.

Keywords: moonlighting proteins, human disease, protein-protein interactions, multifunctional proteins, disease

comorbidity

Introduction

Moonlighting proteins are a special sub-class of multifunctional proteins performing multiple
autonomous, often unrelated functions (Jeffery, 1999; Huberts et al., 2010; Copley, 2012). For
instance, the human aconitase, encoded by the ACO1 gene, is an enzyme of the tricarboxylic
acid cycle (TCA cycle) which turns into a translation regulator upon a conformational change,
when the iron concentration is low (Volz, 2008). Such switch between functions can molecularly
depend on changes in substrates, post-translational modifications, the action of effector molecules,
and other physiochemical factors. They may, in some cases, modify the oligomerization or
conformational status of the protein. Moreover, additional functions may arise from a shift in the
sub-cellular localization, the physicochemical environment or the pathological status of the cell, or
a combination thereof (Jeffery, 2014).

In disease states, the switch of function of a moonlighting protein may occur in different ways.
First, moonlighting proteins can be “neomorphic” (Jeffery, 2011), meaning that the protein does
not play the same role in healthy and disease conditions. Therefore, the secondary function of
the protein is solely revealed during the progression of a pathological state. This is illustrated
by HMMR, a nuclear microtubule-associated protein in normal cells, which is exported to the
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extracellular matrix in certain tumors, where it binds the
CD44 antigen, activates the ERK pathway, and ultimately
promotes metastasis (reviewed in Maxwell et al., 2008; Jiang
et al., 2010). Second, the different functions performed by a
moonlighting protein in a healthy organism can be impaired
by the effect of mutations in the disease state, often leading
to complex phenotypes. For example, the phosphoglucose
isomerase (PGI) is a moonlighting protein in healthy conditions.
It converts Glucose 6-phosphate to Fructose 6-phosphate and
also functions as a neurotrophic factor (Haga et al., 2000).
Mutation leading to the inactivation of both molecular functions
provokes a hemolytic anemia with neurological defects whereas
a mutation impairing only the enzymatic function causes solely
hemolytic anemia (Kugler et al., 1998). This naturally raises
the question of a possible relationship between moonlighting
proteins and the co-occurrence of different diseases within
a single individual, i.e., disease comorbidity. Interestingly,
recent works suggest that disease comorbidity generally occurs
due to the dys-regulation of a common underlying cellular
process through shared genes or protein interactions (Goh
et al., 2007; Park et al., 2009). Hence, in the case of diseases
that share a moonlighting protein, we hypothesize their co-
occurrencemay be caused by the dysregulation of distinct cellular
processes.

As a first step toward the large-scale identification of
moonlighting proteins, we have recently developed a pipeline
that can detect what we have termed “extreme multifunctional
proteins” (EMFs) from a protein-protein interaction (PPI)
network (Chapple et al., 2015). These are proteins whosemultiple
functions are very different to one another. Although, EMFs
will not all necessarily adhere to the strict definition of a
moonlighting protein in term of protein organization, that
is performing several unrelated functions without partitioning
them between different several protein domains, (for further
discussions see Jeffery, 1999; Huberts et al., 2010; Copley,
2012; Chapple et al., 2015), they will be however enriched in
moonlighting candidates. Our analysis showed that 30% of the
human interactome consists of multifunctional proteins, 10% of
which are candidate EMFs. We demonstrated that they form a
distinct sub-group of proteins characterized by specific features,
constituting a signature of extreme multifunctionality (Chapple
et al., 2015).

Here, we further investigate their involvement in human
disorders and their possible role in disease comorbidities.
Indeed, we found that EMF candidates appear to be involved
in more than one disease, to contribute to complex rather
than monogenic diseases, and to be involved in diseases
leading to different phenotypes according to their annotations,
when they are compared to other non-candidates proteins.
Finally, they are implicated in diseases showing statistically
significant comorbidity patterns based on MediCare records
(Park et al., 2009). Overall, these results suggest that a protein
involved in unrelated cellular processes can be implicated
in phenotypically different diseases, therefore providing a
possible molecular explanation for some known comorbidities
between diseases observed at the level of individuals and
populations.

Materials and Methods

A Dataset of EMF Proteins
A dataset of 412 EMF candidates (Chapple et al., 2015)
have been identified from a human protein-protein interaction
network containing 74388 interactions between 12865 proteins,
constructed by gathering interaction data from several databases
through the PSICQUIC query interface (Aranda et al., 2011)
(February 2013). Overlapping clusters have been extracted from
the network using OCG (Becker et al., 2012), and annotated
with Gene Ontology terms (Biological Process) using a majority
rule. The EMF candidates are selected as proteins belonging to
clusters annotated to dissimilar GO terms. GO term dissimilarity
was assessed using two metrics of GO term co-occurrence,
one based on the frequency of two terms annotating the same
protein and the other on the frequency of interactions between
proteins annotated to one term and those annotated to the
other. These metrics allow the identification of functions that
are very rarely performed by (i) a single protein and (ii)
by interacting proteins, two proxies we consider indicators of
unrelated functions (Chapple et al., 2015).

Disease Annotations
OMIM (Amberger et al., 2009) disease-protein associations and
non-synonymous mutations were obtained from the UniprotKB
database (Magrane and Consortium, 2011). OMIM disease
phenotypes were mapped to Human Phenotype (Köhler et al.,
2014) (HPO, “organ abnormality” branch) and Disease Ontology
(Osborne et al., 2009) (DO) terms using their respective OBO
ontology files. The broadHPOphenotype categories were defined
using SimCT, a tool for ontology clustering (Herrmann et al.,
2009).

Phenotypic Similarity Measures
For each disease pair a-b associated with every protein of interest,
we computed the phenotypic similarity of their HPO annotations
using the Sørensen–Dice coefficient defined as:

PhenoSimS−D =
2(A ∩ B)

A ∪ B

and the Jaccard index defined as:

PhenoSimj =
A ∩ B

A ∪ B

whereA is the list of HPO terms associated to disease a, and B the
list of HPO terms associated to disease b.

Disease Semantic Similarity
We used the DOSE package for R (Yu et al., 2015) for
computing semantic similarities among Disease Ontology (DO)
terms associated with every disease pair by applying both Lin’s
information content-based method and Wang’s graph-based
method (for a review, see Gan et al., 2013).

Comorbidity Data
The list of disease pairs with statistically significant comorbidity
patterns and linked by gene sharing was taken from Park et al.
(2009).
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Pfam Domain Detection
We used the Pfamscan tool to identify Pfam domains (version
26.0) (Punta et al., 2012). We kept only Pfam-A matches with
an E < 10−5.

Results

A Dataset of EMF Candidates in the Human
Interactome
EMFs, including moonlighting proteins, are expected to perform
their independent functions through different interaction
partners. In a recent work (Chapple et al., 2015), we have
identified EMF protein candidates from the human interactome
using OCG (Becker et al., 2012), an algorithm that identifies
overlapping protein clusters in an interaction network. The
cellular functions in which protein clusters are involved have
been defined with regards to the Gene Ontology Biological
Process annotations of their constituent proteins. Then, EMF
candidates are proteins found at the intersection of clusters
involved in very dissimilar cellular functions (see Methods
section for details). Using this approach, we have identified two
distinct categories of multifunctional proteins in the human
interactome: 412 EMF candidates (MF-CAN) and 3434 non-
EMF multifunctional proteins (MCNC for multi-clustered non-
candidate). A third category consists of the remaining 9019
proteins in the interactome, which belong to only one cluster
(MONO for mono-clustered). The proteins belonging to the
three categories are listed in Supplementary Data Sheet 1. We
have shown that the EMF candidates form a distinct sub-group
of proteins displaying specific features distinguishing them from
non-candidates proteins and constituting a signature of extreme
multifunctionality. Among the striking features, EMF candidates
are more connected in the network, enriched in short linear
motifs (SLiMs) and in disease-related proteins compared to non-
candidates, and are less intrinsically disordered than network
hubs (Chapple et al., 2015).

EMF Candidates Are Enriched in Proteins
Involved in more than One Disease
Using OMIM disease annotations, we found that the
multifunctional proteins of the human interactome (i.e., proteins
belonging to more than one network cluster, corresponding to
MF-CAN and MCNC taken together) are enriched in proteins
involved in diseases (1.33-fold, P < 2.2 × 10−16, Fisher’s
exact test, two-sided). We still observed this enrichment when
considering MF-CAN and MCNC separately (Table 1). In
addition, MF-CAN and MCNC are both significantly enriched
in proteins involved in more than two diseases, with MF-CAN
showing a higher proportion of such proteins compared to
MCNC (2.04-fold and 1.25-fold, respectively). On the other
hand, the MONO category is significantly depleted in disease
proteins (Table 1). Given these results, we decided to focus
our attention on those proteins of the three categories that are
involved in more than two diseases. Interestingly, MF-CAN
proteins are associated with a higher number of diseases
compared to the other categories (3.6 compared to 3 and 2.9, on
average, for MCNC andMONO respectively, P = 2.6×10−3 and

TABLE 1 | Proteins in the human interactome involved in OMIM diseases.

Set Total At least one disease At least two diseases

number

MULTI 3846 830 (1.33, P < 2.2× 10−16) 298 (1.34, P = 3.8× 10−7)

MF-CAN 412 113 (1.84, P = 8.2× 10−8) 52 (2.04, P = 1.8× 10−4)

MCNC 3434 717 (1.28, P = 9.1× 10−12) 246 (1.25, P = 6.8× 10−4)

MONO 9019 1365 (0.87, P < 2.2× 10−16) 349 (0.82, P = 3.8× 10−7)

Enrichment ratios (ER) and P-values for over- (ER > 1) and under-representation (ER < 1)

are reported between parentheses (Fisher’s Exact test, two-sided, alpha = 0.05). See

main text for details.

FIGURE 1 | Number of diseases associated with each protein category.

MF-CAN proteins involved in at least two diseases are associated with more

diseases compared to MCNC (P = 2.6× 10−3, Mann-Whitney U test,

one-sided) and MONO proteins (P = 1.3× 10−4, Mann-Whitney U test,

one-sided). Mean values are depicted by red dots.

P = 1.3 × 10−4, Mann-Whitney U test, one-sided) (Figure 1).
This suggests that MF-CAN proteins are particularly associated
to multiple diseases.

EMF Protein Candidates Contribute to Complex
Diseases
We next sought to verify whether MF-CAN, MCNC, and
MONO proteins are associated with the same diseases.
Figure 2A shows that most of the diseases (89%) in
which the MF-CAN are involved, are also associated
with at least one protein belonging to one of the other
categories (compared to only 34% and 26% for MCNC
and MONO, respectively). On the other hand, 86% of
the disease pairs associated with MF-CAN are specific
to this category (compared to ∼68% for the other two
categories) (Figure 2B). This, therefore, suggests that our
EMF candidates are mainly involved in specific combinations
of diseases. Moreover, the fact that diseases associated to
MF-CAN are associated with several other genes/proteins
as well (Figure 2A) suggests that EMF candidates are
implicated in combinations of complex diseases rather than
monogenic ones.
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FIGURE 2 | Shared disease phenotypes and pairs among MF-CAN, MCNC, and MONO proteins. (A) Most of the MF-CAN proteins are annotated with OMIM

disease annotations also present in the other categories, whereas (B) they are associated with specific combination of diseases.

EMF Candidates Are Involved in Phenotypically
Dissimilar Diseases
Different OMIM diseases caused by the dysregulation of a same
gene can affect the same body organs or have similar phenotypic
manifestations (Goh et al., 2007), or not. We therefore tested
this on the disease pairs associated with MF-CAN, MCNC, and
MONO proteins.

To do so, we mapped OMIM diseases to the Human
Phenotype Ontology (HPO) (Köhler et al., 2014). For each
disease, HPO provides a list of annotation terms describing
the phenotypes associated to the disease. We clustered them
in 19 broad classes of organ abnormalities. We found that
proteins belonging to MF-CAN, MCNC, and MONO are over-
represented in almost all of the HPO broad classes (Figure 3).
Particularly, MF-CAN proteins are over-represented in all
HPO classes except “abnormality of prenatal development or
birth” (Figure 3A), MCNC proteins are under-represented in
the “abnormality of metabolism/homeostasis” class (Figure 3B)
whereas MONO proteins are under-represented in three HPO
classes: “abnormality of the breast,” “abnormality of the blood
and blood-forming tissue,” and “abnormality of head and neck”
(Figure 3C). More interestingly, we observed a significantly
higher fraction of shared MF-CAN proteins, 32% on average,
between HPO classes compared to MCNC (21%, P = 2.3 ×

10−13, Mann-Whitney U test, one-sided) and MONO (19%,
P < 2.2 × 10−16). This result shows that MF-CAN proteins
are involved in disease affecting distinct body parts. Therefore,
this led us to evaluate the phenotypic similarity between disease
pairs by computing the Sorensen-Dice distance based on their
HPO annotation terms (see Methods for details). For each
pair of diseases in which a same gene is involved, we have
compared their phenotypic descriptions to assess their similarity
aiming at grasping possible differences. We indeed found that
those pairs associated with MF-CAN are significantly different
(Figure 4, Supplementary Figure 1) compared to the other
categories (P = 4.7 × 10−5 and P = 1.3 × 10−11 for MCNC
and MONO, respectively, Mann-Whitney U test, one-sided).
We obtained similar results using semantic similarity measures
(Supplementary Figure 2) based on DO annotations (Schriml
et al., 2012). Indeed, MONO disease pairs are significantly more
similar than MF-CAN and MCNC pairs (P = 2.7 × 10−3 and
1.5×10−5, respectively, Mann-Whitney U test, one-sided). These

results could be due to the fact that multifunctional candidates
(MF-CAN and MCNC) are acting in several biological processes,
and are therefore involved in different diseases and phenotypes.

Diseases leading to different phenotypes could be due to
mutations located in different protein regions. Given the strict
definition applied tomoonlighting protein which should perform
their multiple functions without partitioning these into multiple
domains (Jeffery, 1999), we sought to verify whether mutations
causing different diseases are located within the same functional
domains. For this, we compared the phenotypic similarities of
disease pairs whose mutations are either found in the same
Pfam domains or outside. Interestingly, MF-CAN proteins show
a lower phenotypic similarity than MCNC and MONO in both
situations (Supplementary Figure 3). Therefore, diseases in which
MF-CAN are involved, display different phenotypes irrespective
to the location of the corresponding mutations.

Overall, these results show that MF-CAN are involved in
diseases leading to different phenotypes and affecting different
organs.

EMF Candidates are Involved in Comorbid
Diseases
In order to estimate whether moonlighting candidates could
explain some comorbidity patterns, we used the list of comorbid
diseases established by Park et al. (2009), based on Medicare
records. We found (Table 2, Supplementary Data Sheet 2) that
EMF candidates are enriched in proteins involved in at least one
disease pair showing statistically significant comorbidity patterns
(P = 3.5× 10−6, Fisher’s exact test, two-sided), whereas MONO
are significantly depleted in such pairs (P = 1.1× 10−5).

Our results therefore indicate that EMF proteins involved in
several diseases can contribute to comorbidity, probably through
the unrelated biological processes in which they participate.

An Example of EMF Candidate Involved in a Pair
of Comorbid Diseases
Androgen receptor (AR) is one of the MF-CAN proteins
associated to a disease pair showing a comorbidity pattern
(Supplementary Data Sheet 2): prostate cancer (PC) and spinal
and bulbar muscular atrophy (SBMA, ICD-9: 335.1), an illness
leading to progressive muscle weakness and atrophy, known also
as Kennedy’s disease. SBMA is a late-onset neurodegenerative

Frontiers in Physiology | www.frontiersin.org 4 June 2015 | Volume 6 | Article 171

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Zanzoni et al. Moonlighting and disease

FIGURE 3 | Network representation of Human Phenotype Ontology

(HPO) classes associated with MF-CAN (A), MCNC (B), and

MONO (C) proteins. Each node corresponds to a HPO broad

phenotype class (organ abnormalities branch), the size of the nodes is

proportional to the over-representation of proteins of the three

categories among the proteins annotated to the node’s phenotype.

Nodes whose name is in gray and italic had no significant

overrepresentation (p ≥ 0.05). The numbers in parentheses are the

number of proteins of each category found annotated to each HPO

class. Edges between nodes indicate proteins that are annotated to

both HPO classes. The width and different color shade of the edge is

proportional to the number of proteins shared by both HPO classes.

disease, caused by an extreme expansion of trinucleotide CAG
repeats in the AR gene first exon, which encodes for a
stretch of glutamines (polyQ) in the N-terminal transactivation
domain of the AR protein (Kumar et al., 2011). Interestingly,
in vivo studies on mice harboring humanized AR alleles
showed that long polyQ may be involved in late-onset PC
and influence hormone sensitivity (Albertelli et al., 2008;
Simanainen et al., 2011). Recently, a case of SBMA and PC
comorbidity has been reported in the literature (Kosaka et al.,
2012). Altogether, these observations are consistent with the
comorbidity reported in Medicare, since it collects hospital visit
reports of elderly patients (age equal or above 65). Interestingly,
polyQ stretches induce the formation of AR aggregates within
neuronal cells, thus impairing AR interaction ability. We can
therefore speculate that AR aggregates in prostate cell can have
a similar effect, probably by perturbing a different set of AR
interactions.

Discussion

Network approaches recently suggested that the co-occurrence
of different diseases within the same individual, i.e., comorbidity,
correlates with the sharing or the interactions of their underlying

molecular components in cellular networks (Park et al., 2009;
Zhou et al., 2014). Nevertheless, these molecular components

can also be involved in distinct cellular processes. Since
moonlighting, and by extension EMF, proteins are implicated

in unrelated cellular processes (Jeffery, 1999; Copley, 2012),

often taking places in different subcellular localizations, we
postulate that disease comorbidities could be due not only to the
dysregulation of shared underlying sub-networks as previously
proposed, but also to the dysregulation of different ones in
which a shared protein, able to moonlight, is taking part. To
test this hypothesis, we investigated the potential involvement
of a particular group of proteins, the EMF candidates, in
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FIGURE 4 | Disease pairs phenotypic similarity based on Human

Phenotype Ontology annotations. Distributions of phenotypic similarity,

measured using the Sorensen-Dice coefficient, for MF-CAN, MCNC, and

MONO proteins. Mean values are depicted by red dots.

TABLE 2 | Number of proteins associated with at least one disease pair

showing comorbidity patterns.

Set Total number Disease comorbidity

MF-CAN 52 27 (1.95, P = 3.5× 10−6)

MCNC 246 67 (1.25, P = 0.0858)

MONO 349 58 (0.52, P = 1.1× 10−5)

Enrichment ratios (ER) and P-values for over- (ER > 1) and under-representation (ER < 1)

are reported between parentheses (Fisher’s Exact test, two-sided, alpha = 0.05).

diseases. We show that EMF candidates are involved in multiple
diseases that are phenotypically dissimilar and affect distinct
organs.

Moreover, we found that a significant fraction of these
EMF candidates represents a possible molecular link
between comorbid diseases. Nevertheless, although a
gene/protein may be involved in different diseases, these
diseases are not necessarily co-occurring within a single
individual. Our finding that comorbid diseases identified
from Medicare records are enriched among EMF candidates
therefore reinforces (i) the fact that diseases in which an
EMF is involved can occur in a same individual and
(ii) our hypothesis that comorbidity can be due their
involvement.

Diseases associated to EMF proteins display different
phenotypes according to HPO, independently of the location of
the mutations in the protein sequence, within or outside known
protein domains. This raises several possibilities. First, these
mutations may occur in existing domains not yet discovered.
Indeed, current tools may not have detected some domains, since
they are below the detection thresholds, or differing from the
model used by the prediction tools. Second, this lack of difference

may also be explained by the fact that disease mutations occur in
SLiMs, short stretches of amino acids sequences that represent
potential regulatory sites and are located mostly in intrinsically
disordered regions (van Roey et al., 2013). As (i) we previously
showed that EMFs are enriched in SLiMs compared to MCNC
(Chapple et al., 2015) and (ii) a recent report showed that
disease mutations occur more likely within SLiMs than neutral
missense mutations in intrinsically disordered regions (Uyar
et al., 2014), the second hypothesis mentioned above is thus
supported.

In an early study on co-occurring metabolic diseases,
Barabasi and colleagues (Lee et al., 2008) proposed that
the lack of observed comorbidities between 69% of the
metabolic disease pairs they investigated, could be due to
moonlighting enzymes involved in non-metabolic functions.
Indeed, the corresponding subnetworks were missing from
the metabolic network they were investigating. Interestingly,
for 95% of the EMF, one of the functions is related to
various metabolic processes whereas the other is non-metabolic,
such as signaling, transport, or localization (Table 1 in
Chapple et al., 2015). Therefore, given the link between
EMFs and moonlighting explained in the Introduction, our
results support the hypothesis that moonlighting proteins could
indeed provide the missing connections between metabolic
diseases and the rest of the disease network (Goh et al.,
2007).

It should be noted that our observations cross and link
several integrated functional levels (Brun et al., 2004;
Barabási, 2007). First, the disease pairs in which EMF
candidates play a role are the most dissimilar in terms of
phenotype. Since candidates have been selected as involved
in unrelated cellular functions, this observation directly
links cellular processes to disease phenotypes, based on
the analysis of independent annotations (Gene Ontology
and Human Phenotype Ontology). It thus appears that for
these proteins, noticeable differences are observed from the
molecular level (mutations) to the cellular level (unrelated
processes) up to the tissular/organismal level (phenotypes), thus
emphasizing the complexity of the link between genotype and
phenotype.

Finally, grounded on our computational identification of
moonlighting candidates, this work represents, to our knowledge,
the first effort toward the elucidation of the convoluted
relationships between moonlighting protein functions, disease
phenotypes and comorbidities. Overall, although much remains
to be learned, our analysis underlined the necessity of
identifying moonlighting proteins and to better understand
their role in human diseases, particularly in the context of
drug development to avoid side effects. Indeed, knowing that
the different diseases in which a protein is involved, are
due to the dysregulation of different processes may help
choosing specific interactions to inhibit in order to act on
one disease and not the other. In addition, a drug inhibiting
an unsuspected moonlighting protein may cause side effects
if it also impairs the secondary function of the protein.
Therefore, the identification of candidate moonlighting proteins
can be useful to gain a deeper understanding of disease
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molecular details and to design more effective therapeutic
strategies.
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