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Inorganic nitrate is present at high levels in beetroot and celery, and in green leafy

vegetables such as spinach and lettuce. Though long believed inert, nitrate can be

reduced to nitrite in the human mouth and, further, under hypoxia and/or low pH, to

nitric oxide. Dietary nitrate has thus been associated favorably with nitric-oxide-regulated

processes including blood flow and energy metabolism. Indeed, the therapeutic potential

of dietary nitrate in cardiovascular disease and metabolic syndrome—both aging-related

medical disorders—has attracted considerable recent research interest. We and others

have shown that dietary nitrate supplementation lowers the oxygen cost of human

exercise, as less respiratory activity appears to be required for a set rate of skeletal muscle

work. This striking observation predicts that nitrate benefits the energy metabolism of

human muscle, increasing the efficiency of either mitochondrial ATP synthesis and/or of

cellular ATP-consuming processes. In this mini-review, we evaluate experimental support

for the dietary nitrate effects on muscle bioenergetics and we critically discuss the

likelihood of nitric oxide as the molecular mediator of such effects.

Keywords: dietary nitrate, nitrite, nitric oxide, oxygen cost of human exercise, cellular bioenergetics, skeletal

muscle mitochondria, coupling efficiency of oxidative phosphorylation, ATP turnover

Introduction

Inorganic nitrate (NO−

3 ) has long been considered an undesirable food component and
pollutant of drinking water as nitrosation of secondary amines may produce carcinogenic
N-nitrosamines (Magee and Barnes, 1956). However, the evidence that NO−

3 causes human
cancers is weak and dietary NO−

3 , as e.g. found in beetroot and spinach, has instead been
linked to many physiological benefits (Gilchrist et al., 2010). Humans do not only get NO−

3
from their diet as it is also generated endogenously (Tannenbaum et al., 1978) by oxidation
of nitric oxide (NO) formed canonically via the L-arginine/NO synthase pathway (Moncada
and Higgs, 1993). Importantly, inorganic NO−

3 can be reduced to nitrite (NO−

2 ) and then
NO, which offers an additional path of mammalian NO production that, unlike the canonical
route, is independent of oxygen (O2) (Lundberg et al., 2008). NO is widely believed to
mediate the benefits of NO−

3 (Lundberg et al., 2009) including protection against cardiovascular

Abbreviations: AMPK, AMP-activated kinase; PCr, phosphocreatine; PKA, protein kinase A; PO2, partial oxygen tension;

RNS, reactive nitrogen species; V̇O2 , pulmonary oxygen uptake.
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disease (Omar and Webb, 2014) and the metabolic syndrome
(Carlström et al., 2010). It has recently been found that dietary
NO−

3 lowers the O2 cost of human exercise as less respiratory
activity is required for a set rate of skeletal muscle work (Larsen
et al., 2007, 2010; Bailey et al., 2009, 2010). This finding is
interesting as it challenges exercise physiology dogma that the
steady-state O2 consumption for any individual is immutable at
a given sub-maximal workload irrespective of age, fitness, diet,
or pharmacological intervention (Poole and Richardson, 1997).
This mini-review aims to evaluate themechanistic understanding
of NO−

3 effects on skeletal muscle function.

O2 Cost of Human Exercise

In a seminal publication, Larsen and colleagues reported that
a 3-day supplementation with 0.1mmol·kg−1 NaNO3· day−1

lowered pulmonary O2 uptake (V̇O2) by ∼3–5% in humans
completing sub-maximal cycling exercise (Larsen et al., 2007).
Bailey and co-workers subsequently observed a 5% lower V̇O2

during low-intensity cycling exercise and a 16% improvement in
the tolerable duration of high-intensity exercise over days 3–6
of a 6-day supplementation period with 5.6mmol NO−

3 · day
−1,

administered as 500mL NO−

3 -rich beetroot juice· day−1 (Bailey
et al., 2009). Importantly, NO−

3 -depleted beetroot juice does
not improve exercise economy and performance (Lansley et al.,
2011) eliminating antioxidants and polyphenols (Wootton-Beard
and Ryan, 2011) as exclusive “active ingredients”. NO−

3 -induced
improvements have been observed in humans completing
walking, running, cycling, rowing and kayaking exercise, and
positive responses arise both acutely, i.e., 1–3 h after NO−

3
ingestion, and after prolonged NO−

3 supplementation over
3–15 days (Table 1). Acute (2.5 h post-ingestion) lowering of

TABLE 1 | Dietary nitrate improves the economy and/or performance of

human locomotion.

Exercise Referencesa Exposure period

1–3h 3–15d

Cycling Larsen et al., 2007—1st study

reporting dietary NO−

3 benefit

X

Larsen et al., 2010 X

Larsen et al., 2011 X

Bailey et al., 2009—1st study using

beetroot juice as NO−

3 source

X

Vanhatalo et al., 2010 X X

Cermak et al., 2012 X

Wylie et al., 2013—Study reports

dose-dependency of NO−

3

X

Running Lansley et al., 2011—1st study using

NO−

3 -depleted beetroot juice as

placebo

X

Porcelli et al., 2014 X

Kayaking Muggeridge et al., 2013 X

Peeling et al., 2014 X

Walking Lansley et al., 2011 X

Rowing Bond et al., 2012 X

a These studies are cited as examples—the list is not a comprehensive account of all

available literature.

V̇O2 during low-intensity exercise is progressively greater at
4.2, 8.4, and 16.8mmol NO−

3 , whereas high-intensity exercise
tolerance is unaffected by 4.2mmol NO−

3 , but acutely improved
to a similar extent by 8.4 and 16.8mmol (Wylie et al., 2013).
Therefore, short-term supplementation (≥3 days) with at least
5mmol NO−

3 · day
−1, or acute ingestion of at least 8.4mmol

NO−

3 , might represent an effective dietary intervention to
improve the economy and performance of human locomotion, at
least in healthy, moderately fit adults (Porcelli et al., 2014). Since
effects on resting V̇O2 are equivocal (Bailey et al., 2010; Kelly
et al., 2013b; Larsen et al., 2014), NO−

3 benefits may be exclusive
to contracting skeletal muscles.

Physiological NO−

3 effects appear muscle-fiber-type-specific
as evidenced by improved perfusion (Ferguson et al., 2014)
and calcium handling (Hernández et al., 2012) of murine fast-
twitch type II but not slow-twitch type I muscle. Consistent with
this, NO−

3 benefit on V̇O2 adjustment following the onset of
exercise and on tolerance to high-intensity exercise is relatively
large when the contribution of type II muscle fibers to force
production is increased in human skeletal muscle (Breese et al.,
2013; Bailey et al., 2015). These preferential physiological effects
may relate to the comparably low microvascular PO2 in resting
and contracting type II muscle (McDonough et al., 2005).
Indeed, NO−

3 improves exercise economy and performance in
hypoxia (Masschelein et al., 2012; Muggeridge et al., 2014) more
markedly than in normoxia (Kelly et al., 2014). Importantly,
NO−

3 attenuates the degree of exercise intolerance and the
slowing of PCr recovery kinetics in hypoxia to the levels seen in
normoxia (Vanhatalo et al., 2011). It thus appears that exercise
economy and performance benefit most from NO−

3 when muscle
O2 availability is low.

Although the majority of studies in healthy adults observe
NO−

3 -improved exercise economy and/or performance, the
effects are attenuated in well-trained endurance athletes (Bescós
et al., 2012; Peacock et al., 2012; Christensen et al., 2013;
Boorsma et al., 2014; Hoon et al., 2014; Lane et al., 2014),
inconsistent in diseased populations (Berry et al., 2014; Kerley
et al., 2015; Leong et al., 2015; Shepherd et al., 2015; Zamani
et al., 2015), and possibly different in aging humans (Kelly
et al., 2013b). More generally, there is evidence of distinct
NO−

3 responders and non-responders in many studies. The
relative efficacy of dietary NO−

3 effects on skeletal muscle
thus appears variable, which underscores the need for detailed
mechanistic understanding. To aid such understanding, it is
important to ascertain how the human body processes dietary
NO−

3 .

Molecular Fate of Dietary NO−

3

When humans eat NO−

3 -rich food, NO−

3 is converted to NO−

2
by nitrate reductases in commensal bacteria that reside in the
posterior part of the tongue (Duncan et al., 1995). Salivary NO−

2
is rapidly protonated in the acidic environment of the stomach
resulting in the formation of NO and other reactive nitrogen
species (RNS) including nitrogen dioxide (NO2), nitrous acid
(HNO2), and dinitrogen trioxide (N2O3) (Benjamin et al., 1994;
Lundberg et al., 1994; Lundberg and Weitzberg, 2013). NO−

3
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ingestion increases plasma NO−

2 levels in human subjects (e.g.,
Lundberg and Govoni, 2004; Webb et al., 2008; Bailey et al., 2009;
Vanhatalo et al., 2010; Kelly et al., 2013a). Possibly catalyzed
by xanthine oxidase (Zhang et al., 1998; Li et al., 2003) and/or
deoxyhaemoglobin (Cosby et al., 2003; Gladwin et al., 2004;
Gladwin and Kim-Shapiro, 2008), NO−

2 is reduced to NO under
conditions of low oxygen tension (Figure 1). Other sites of NO−

2
reductase activity include cytochrome c (Basu et al., 2008) and
mitochondrial respiratory complexes III (Kozlov et al., 1999)
and IV (Castello et al., 2006). However, mammalian NO−

2
reductase activity has only been shown in vitro and in animal
models (Feelisch et al., 2008; Jansson et al., 2008), and under
low PO2 (Li et al., 2001; Feelisch et al., 2008) and low pH
(Modin et al., 2001). Generally, the low pKa of NO−

2 (3.34,
Oxtoby and Nachtrieb, 1996) limits its physiological reduction,
which is an inefficient process per se (Li et al., 2008) and
thus requires high NO−

2 concentrations. Indeed, at physiological
NO−

2 levels (see below), even hypoxic red blood cells do not
liberate significant NO (Bryan et al., 2004). O2 competitively
inhibits NO−

2 reduction by xanthine oxidase (Li et al., 2004) and
oxygenated haem effectively scavenges free NO (Feelisch et al.,
2008). NO may be converted to N2O3 that in turn may react
with free thiols to generate S-nitrosothiols (Hess et al., 2005) via
an S-nitrosation reaction (Figure 1). NO is also able to modify
proteins through nitrosylation, e.g., via reaction with the haem of
myoglobin (Ignarro, 1991). NO furthermore binds, in a reversible
and O2-competitive manner, to the haem of cytochrome c

oxidase, and in an O2-independent way, to the enzyme’s active
site copper (Giulivi et al., 2006; Brown and Borutaite, 2007;
Cooper and Giulivi, 2007). Peroxynitrite (ONOO−) arising from
the reaction of NO with the superoxide anion radical may
undergo a nitration reaction with tyrosine residues to form
3-nitrotyrosine (Figure 1—Radi, 2004). Importantly, tyrosine-
containing proteins are also nitrated in a myeloperoxidase-
catalyzed reaction using NO−

2 and hydrogen peroxide (Marquez
and Dunford, 1995).

Physiological NO−

2 levels range from 50 to 500 nM in human
plasma (Bryan et al., 2004; Dejam et al., 2005; Feelisch et al., 2008)
and amean concentration of 12µMhas beenmeasured in human
skin (Mowbray et al., 2009). In rodents, NO−

2 concentration
varies substantially between tissues, from below quantifiable limit
in the liver, heart and lung to as high as 2µM in kidney and
3.7µM in lymph nodes; NO−

3 varies from 1µM in the kidney
to 50µM in the aorta (Garcia-Saura et al., 2010). In humans,
the ingestion of 10mg NaNO3·kg

−1 has been shown to increase
mean plasma NO−

3 within 90min from 30 to 432µM and
mean plasma NO−

2 from 123 to 392 nM (Lundberg and Govoni,
2004). Similarly, 500mL beetroot juice containing 45mM NO−

3
on average raises mean plasma NO−

3 to 380µM and NO−

2 to
600 nM within 30min and 3 h of ingestion, respectively (Webb
et al., 2008). Plasma NO−

3 and NO−

2 reach peak concentrations,
respectively, 1–2 and 2–3 h post-ingestion, and NO−

3 gradually
returns to its base level after about 24 h (Ender et al., 1964;
McKnight et al., 1997; Webb et al., 2008; Wylie et al., 2013).

FIGURE 1 | Putative mechanism by which dietary NO−

3
may

lower the O2 cost of human exercise. Dietary NO−

3 increases

plasma NO−

3 and NO−

2 levels thus improving efficiency of skeletal

muscle ATP supply by oxidative phosphorylation and/or of ATP

turnover. Effects on the bioenergetics of skeletal muscle cells

may be direct or indirect through formation of NO. Shown

reactions are examples of RNS-induced protein modifications (see

text for details).
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Mammalian tissue NO−

2 and NO−

3 both have in vivo half-lives of
tens of minutes (Bryan et al., 2005). The half-life of NO−

2 in whole
human blood is only about 110 sec (Kelm, 1999) as it is rapidly
oxidized to NO−

3 ; the half-life of NO
−

3 in blood is 5–8 h (Wagner
et al., 1983; McKnight et al., 1997). About 60% of ingested NO−

3 is
excreted by the kidneys (Green et al., 1981; Wagner et al., 1983).

The reliability of commonly reported NO−

3 and NO−

2
values very much depends on the assays used to measure
these inorganic anions. The modified Griess reaction using
sulfanilamide and N-1-napthylethylenediamine dihydrochloride
is a frequently used assay for measuring NO−

2 (Tsikas, 2007).
Plasma NO−

3 concentrations are readily determined using this
spectrophotometric assay following NO−

3 reduction to NO−

2 by
cadmium (Green et al., 1982) or vanadium salts (Miranda et al.,
2001). However, the Griess test lacks the sensitivity to probe the
nanomolar NO−

2 levels present in human plasma. Ozone-based
chemiluminescence is a preferred method of detection, which
often involves deproteinisation of plasma samples by zinc sulfate
precipitation before analysis (Higuchi and Motomizu, 1999).
NO−

2 measurement by chemiluminescence usually involves
acetic acid/sodium iodide-mediated reduction to NO, which
then reacts with ozone to produce a chemiluminescence signal
(Bateman et al., 2002). NO−

3 can also be measured this way by
reduction to NO via reflux of the sample in vanadium chloride
at 95◦C. Confounding the NO−

3 /NO
−

2 literature, in some assays
NO−

3 is reduced to NO−

2 by bacterial nitrate reductases (Sun
et al., 2003) whose activity varies from batch to batch. Confusing
matters further, mere “NOx” values are reported to denote the
sum of NO−

2 and NO−

3 levels. A last analytical note concerns the
use of NO−

3 -depleted beetroot juice as placebo control in in vivo
studies (see Section O2 Cost of Human Exercise). It is important
for experiments involving human participants to use a placebo
juice that looks, tastes, and smells the same as the “real thing”.
A placebo that meets these criteria can be prepared by passing
beetroot juice through a Purolite a520e anion exchange column,
which effectively and selectively removes NO−

3 (Gilchrist et al.,
2013).

Skeletal Muscle Bioenergetics

Dietary NO−

3 benefits on the O2 cost of exercise likely arise
from increased efficiency of ATP synthesis and/or of skeletal
muscle work (Figure 1). Indeed, NO−

3 increases the rate of
human skeletal muscle PCr recovery after exercise in hypoxia
suggesting an augmented maximum rate of oxidative ATP
synthesis (Vanhatalo et al., 2011), and lowers the ATP cost
of contractile force production (Bailey et al., 2010). These in
vivo studies confirm that NO−

3 indeed affects skeletal muscle
bioenergetics, but they do not disclose the underlying molecular
mechanism. In vitro experiments with C2C12 myocytes show
that beetroot juice provokes mitochondrial biogenesis and
modestly increases basal cellular respiration without affecting
respiratory capacity and proton leak (Vaughan et al., 2014).
These observations indicate improved mitochondrial coupling
efficiency as beetroot juice has increased the proportion of total
O2 consumption coupled to ATP synthesis. Although the C2C12
experiments lack an appropriate NO−

3 -depleted beetroot juice

control (see above), increased coupling efficiency of oxidative
phosphorylation agrees with data reported by Larsen et al.
(2011), who show that skeletal muscle mitochondria isolated
from NO−

3 -supplemented subjects exhibit higher respiratory
control and P/O ratios (defined in Brand and Nicholls, 2011)
than mitochondria from non-supplemented controls, and that
increases in P/O ratio correlate with NO−

3 -induced decreases in
whole-body O2 uptake during exercise. This increased efficiency
of ATP synthesis in isolated mitochondria, however, emerges
from decreased respiration linked to mitochondrial proton leak,
not from stimulated O2 uptake coupled to phosphorylation
(Larsen et al., 2011). NO−

3 -lowered proton leak coincides with
decreases in adenine nucleotide translocase protein and, to a
lesser extent, uncoupling protein-3 (Larsen et al., 2011). It
should be emphasized that these mitochondrial carriers do
not necessarily contribute to proton leak (Nedergaard and
Cannon, 2003; Vozza et al., 2014) and that leak is expected to
account for little skeletal muscle respiration at low protonmotive
force (Affourtit and Brand, 2006), i.e., the bioenergetic state
attained during exercise. Dietary NO−

3 also lowers the apparent
affinity of mitochondrial respiration for O2, an effect that is
reproduced in vitro—acutely and pH-dependently—by NO−

2
(Larsen et al., 2011). Lowered affinity is attributed to an NO-
induced rise in the apparent Km of cytochrome c oxidase for
O2 (Larsen et al., 2011) but, inconsistently, NO−

2 does not
affect mitochondrial respiration or efficiency (Larsen et al., 2011)
like NO is expected to (Brown and Borutaite, 2007). Apparent
mitochondrial respiratory affinity for O2 depends strongly on the
extent to which respiration is controlled by the enzyme reacting
with O2 (Affourtit et al., 2001)—control of cytochrome c oxidase
over O2 consumption may well have been affected by NO−

2 and
pH, and also by dietary NO−

3 -induced mitochondrial changes.
It remains to be demonstrated convincingly whether or

not dietary NO−

3 effects in skeletal muscle are mediated by
NO. Nitrite reductase activity requires high NO−

2 levels and
exceptionally low PO2 and pH (see Section Molecular Fate of
Dietary NO−

3 ) that may indeed manifest in the ischaemic heart
(Brown and Borutaite, 2007; Hendgen-Cotta et al., 2010), but are
unlikely in healthy muscle. In contracting muscle, myoglobin O2

saturation remains as high as 50% (Takakura et al., 2015) and
although globins indeed exhibit nitrite reductase activity at this
saturation (Huang et al., 2005), cytoplasmic NO will likely be
scavenged by oxymyoglobin (Hendgen-Cotta et al., 2010). Even if
O2 were sufficiently low for NO−

2 reduction in exercising muscle,
we stress that dietary NO−

3 intake remodels skeletal muscle
bioenergetics in the hours to days before exercise (see Section
O2 Cost of Human Exercise), i.e., when the muscles are at rest.
Importantly, NO−

2 also modulates cell signaling independently of
NO in hypoxia and normoxia (Bryan et al., 2005). NO−

2 activates
AMPK in rat aortic smooth muscle cells thus stimulating
mitochondrial biogenesis, and increasing coupling efficiency and
cellular respiratory control (Mo et al., 2012). NO−

2 activates PKA
in cultured cardiomyocytes, stimulating mitochondrial fusion
and again increasing cellular respiratory control (Pride et al.,
2013). In both systems, NO−

2 improves efficiency of oxidative
ATP synthesis without apparent effect on proton leak, which
agrees with the beetroot juice effects on C2C12 respiration
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(Vaughan et al., 2014). NO−

2 also activates PKA in cultured
adipocytes, increasing mitochondrial fusion, and stimulating
glucose uptake (Khoo et al., 2014). Moreover, NO−

2 increases
proliferation of muscle (Totzeck et al., 2014) and epithelial cells
(Wang et al., 2012).

RNS can modify proteins (see Section Molecular fate of
dietary NO−

3 ) and may thus improve mitochondrial coupling
efficiency in various ways, e.g., by increasing proton translocation
to electron transfer stoichiometries of respiratory complexes
(cf. Clerc et al., 2007). By definition (Brand and Nicholls,
2011), coupling efficiency benefits from decreased proton leak
and increased phosphorylation-linked respiration, as indeed
reported by (Larsen et al., 2011) and (Vaughan et al., 2014),
respectively. System-kinetic modeling furthermore suggests that
substrate oxidation capacity, which is dependent on fuel and
O2 availability, correlates positively with coupling efficiency
(Affourtit and Brand, 2009). Dietary NO−

3 may thus improve
efficiency of muscle ATP synthesis, at least in part, by increasing
expression of glucose transporters (Jiang et al., 2014) and/or by
raising insulin availability (Nyström et al., 2012).

Dietary NO−

3 increases the contractile force of fast-twitch
mouse muscle by improving calcium handling (Hernández et al.,
2012) suggesting the efficiency of ATP-demanding contraction
may have increased. To our knowledge, no other data are
available on the mechanism by which dietary NO−

3 affects
ATP turnover. However, NO−

3 supplementation may also alter
efficiency of other ATP-consumers and, importantly, the relative
importance of dietary NO−

3 effects on skeletal muscle ATP supply
and ATP turnover remains unclear. A systems-level functional
analysis of cellular energy metabolism (cf. Brand, 1998) may
shed light on these issues. Using myocytes isolated from human
muscle biopsies (Nisr and Affourtit, 2014) the relative effects
of RNS on ATP-generating and ATP-consuming fluxes—linked
through the cell’s phosphorylation potential (Figure 1)—may be
identified and quantified in an unbiased manner. A challenge of
such in vitro analysis will be the approximation of physiologically
meaningful conditions, in particular the O2 tensions and energy

demands that prevail during the development of dietary NO−

3
benefits.

Conclusion

The striking benefit of dietary NO−

3 on the O2 cost of exercise
is of obvious interest to athletes (Jones, 2014), but may also
well impact on the quality of life of aging people suffering from
muscle weakness and exercise intolerance. To rationally evaluate
translational potential, our mechanistic understanding of dietary
NO−

3 benefits on human skeletal muscle needs to be improved. By
integrating biochemistry and physiology, and studying subjects at
different age, it will be important to demonstrate which reactive
nitrogen species mediate dietary NO−

3 effects at the cellular
level, disclose all effects of nitrogen species on myocellular
bioenergetics, confirm if they are direct or indirect via action on
other tissues, and quantify the relative importance of these effects.
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