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Contribution of synergistic muscles toward specific movements over multi joint systems

may change with varying position of distal or proximal joints. Purpose of this study is

to reveal the relationship of muscular coordination of brachioradialis and biceps brachii

during elbow flexion with respect to hand position and biomechanical advantages and

disadvantages of biceps brachii. A group of 16 healthy subjects has been advised to

perform 20 repetitions of single elbow flexion movements in different hand positions

(pronated, neutral, and supinated). With a speed of 20◦/s, simultaneously sEMG of

biceps brachii and brachioradialis and kinematics of the movement were recorded in

a motion analysis laboratory. Normalized to MVC the sEMG amplitudes of both muscles

contributing to elbow flexion movements were compared in pronated, supinated, and

neutral hand position over elbow joint angle. Significant differences in the contribution of

brachioradialis were found in pronated hand position compared to supinated and neutral

hand position while themuscular activity of biceps brachii shows no significant changes in

any hand position. In conclusion, a statistical significant dependency of the inter-muscular

coordination between biceps brachii and brachioradialis during elbow flexion with respect

to hand position has been observed depending on a biomechanical disadvantage of

biceps brachii.
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Introduction

Inter-muscular coordination of synergistic and antagonistic muscles can be regarded as the
basis to explain the generation of voluntary and target-oriented movement. Biomechanics and
muscular features contributing to human movement patterns are thereby combined to control
inter-muscular coordination and optimally recruit the responsible muscles. Moreover, insights into
neural commands and a better understanding of motor control and muscular coordination can
contribute to improve diagnosis and treatment of both, neuromuscular dysfunction and resulting
orthopedic conditions, or vice versa.

The elbow joint is a highly complex joint assembled by three different single joints (Amis
and Miller, 1982). As a connection between upper arm and forearm a special focus has to
be set on the forearm complex which consists of two bony parts, radius and ulna. This joint
complex offers the possibility to move in two degrees of freedom, flexion and extension as
well as pronation and supination. During elbow flexion the forearm is moved toward the
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upper arm rotating around the elbow joint center. Pronation
and supination are performed by radius and ulna crossing each
other and so rotating forearm and hand to a maximum of
90◦ from neutral hand position. There are different muscles
involved in elbow flexion which are superficially biceps brachii
and brachioradialis as well as deeper brachialis. Both superficial
flexors are also involved in other functions and movements
of connecting joints e.g., biceps brachii is also supinator
and shoulder flexor, brachioradialis is responsible for both,
supination as well as pronation to move the forearm back in
neutral position (Deetjen and Speckmann, 1999).

The function of brachioradialis and its contribution to elbow
flexion as well as pronation and supination has been and is still
discussed with diverging results (Jackson, 1925; Sullivan et al.,
1950; de Sousa et al., 1961; Pauly et al., 1967; An et al., 1981; Funk
et al., 1987; van Bolhuis and Gielen, 1997; Naito, 2004; Boland
et al., 2008). One hypothesis of Jackson is, that brachioradialis
changes its contribution to elbow flexion with hand position
which has been proved through experiments (Jackson, 1925;
Praagman et al., 2010). Boland et al. published no differences in
contribution of brachioradialis during elbow flexion in different
hand position and varying external forces and so concluded that
it is mainly stabilizing the elbow joint, which directly stands
in contrast to earlier studies (Stokes and Gardner-Morse, 2000;
Boland et al., 2008). Nakazawa et al. investigated the contribution
of brachioradialis during concentric and eccentric elbow flexion
resulting in significant differences of the muscular activation
pattern to finally consider brachioradialis primary as an elbow
flexor especially in lower joint angles supporting the point of
view of Jackson and Boland (Howard et al., 1986; Nakazawa
et al., 1993). Additionally, a speed dependent activation of
brachioradialis with higher contribution in elbow flexion in
higher velocity is stated (de Sousa et al., 1961).

Purpose of this study is to reveal the relationship of inter-
muscular coordination of biceps brachii and brachioradialis
during elbow flexion movements with respect to hand position.
A special focus is set on biomechanical advantages and
disadvantages of biceps brachii influencing an optimized
recruitment strategy of both muscles. Based on the results
of Boland et al. there are no changes in the contribution of
brachioradialis in elbow flexion depending on hand position. But
there may be a reasonable explanation of an occurring difference
due to the biomechanical disadvantage of biceps brachii in
pronated hand position.

Material and Methods

Subjects
A sample of data of 16 healthy subjects [4 female and 12male, age
24.8 (±9.2) years; height 179.4 (±9.9) cm; body mass 79.1 (±8.8)
kg] took part in the study. No subject had any known symptoms
of neuromuscular disorders or orthopedic surgery or affections in
the upper extremity. Subjects avoided strenuous exercises in the
day prior to the measurement. 14 out of 16 subjects were right
handed and all subjects were in a comparable training state. The
study was performed according to the Declaration of Helsinki
and approved by the RWTHAachen University ethic committee.
All subjects were informed about the experimental protocol and

the potential risks of the study and gave written consent before
their participation.

Study Protocol
The measurements took place as non-clinical basic science study
in a motion analysis laboratory. Single trials of dynamic elbow
flexion movements were performed fluently in a constant speed
of 20◦/s guided by a visual feedback of the joint angle. The
elbow flexion movement was repeated 20 times for each hand
position separately in single trials from full extension (approx.
0◦) to maximal flexion (approx. 130◦). There was a resting time
of 120 s after each trial to avoid fatigue. Subjects were measured
in standing position with shoulder neither flexed nor abducted.
The different hand positions were measured in neutral and each
subject’s maximum of pronation and supination.

Kinematics and sEMG Data Acquisition
A specific marker setup presented in Schmidt et al. (1999) was
used to record kinematics during movement via VICON R© MX
motion analysis system. Elbow joint angles were determined
by a biomechanical model using the marker setup described
above (Williams et al., 2006). Infrared light reflecting markers
(9mm diameter) were placed on six anatomical landmarks of
the upper extremity (acromion, olecranon, radial styloid process,
ulnar styloid process, epicondyle lateral, epicondyle medial).
Markers were attached using double-sided adhesive tape. Joint
centers of elbow and wrist are estimated as the midpoint between
both epicondyles and styloid processes, respectively. Three rigid
linked markers, called triplets, were placed on the upper body
segments (thorax, upper arm, forearm, hand). Through the
exact position of recorded segment marker triplets relative to
computed elbow joint center, determined on static calibration
trials, all joint angle positions are synchronously measured to
the sEMG recordings of biceps brachii and brachioradialis (Rau
et al., 2000). Through the recording of the whole kinematic chain
compensatory movements in the shoulder joint an wrist which
may also influence the sEMG amplitude (e.g., shoulder flexion,
changes in hand position) can be excluded (Schmidt et al., 1999;
Williams et al., 2006).

Bipolar sEMG signals of biceps brachii and brachioradialis
muscle are recorded and processed according to standard
protocols developed with the SENIAM recommendations
(Hermens et al., 2000). Single-use Ambu R© Blue Sensor N
electrodes (effective electrode diameter of 3mm) were placed in
a distance of 2 cm on the muscle belly directly connected to a
pre-amplifier (blue LED). The full marker setup and electrode
placement is shown in Figure 1.

Processing steps of the recorded sEMG signals after 3 kHz
sampling include pre-filtering (lower cut-off frequency 2Hz,
upper 500Hz), full-wave rectification and smoothing (RootMean
Square, window length 100ms).

Normalization via MVC
For a proper comparison of activation levels of both
muscles intra-individually special focus must be set on the
standardization of the sEMG signals (Burden, 2010). To put
the activation levels of both muscles in relation to each other,
reference values of both flexors were recorded during 5 s
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FIGURE 1 | Full marker setup for kinematic analysis of upper extremity

including joint marker of acromion (a), elbow joint (b) and wrist (c) as

well as marker triplets on the segments thorax (d), upper arm (e),

forearm (f), and hand (g). Bipolar sEMG electrode placement including

pre-amplifier with blue LEDs of biceps brachii (h) and brachioradialis (i).

maximum voluntary isometric contraction measurements. Since
sEMG amplitudes vary for different elbow angles, sEMG signals
are standardized with the maximal amplitude in 90 degrees
elbow flexion. Out of five MVC trials the mean of the best
three with a minimum standard deviation and no significant
differences in the maximal amplitude were chosen. MVC was
determined separately for every hand position and all signals
were normalized to the according maximal value to account the
contribution of muscle to hand position.

Statistical Analyses
Statistical significance was determined by One-Way analysis
of variance (ANOVA) with a significance level of p < 0.05.
Main effects for each independent variable were investigated,
and test statements were used to specify error terms. A Tukey
HSD Post-hoc and Students t-Test were additionally used to
specify the results. Statistical results were interpreted relative to
biomechanical and biological significance.

Results

The acquired and processed sEMG data of biceps brachii and
brachioradialis were assigned over measured elbow joint angles
and analyzed in the range between 0 and 120◦ during concentric
elbow flexion. The mean (solid lines) and standard deviation
(dashed lines) of all subjects were calculated for both muscles
in different hand positions, shown in Figure 2. Examining
the muscular activity normalized to MVC, there are obvious
differences in muscular coordination pattern during pronated
elbow flexion in comparison to supinated and neutral hand
position. As in pronated, the muscular activity of brachioradialis
is constantly higher than in supinated and neutral hand position

FIGURE 2 | Mean (solid lines) and standard deviation (dashed lines) of

the muscular activity of biceps brachii and brachioradialis from all

subjects during elbow flexion in (A) neutral, (B) pronated, and (C)

supinated hand position.

whereas the percentage activity of biceps brachii is nearly the
same in all hand positions. The muscular activity of both muscles
is constantly on the same level and slightly increasing with elbow
joint angle in supinated and neutral hand position.

Statistical analysis shows significant differences (∗) in
muscular activation pattern of brachioradialis during elbow
flexion with respect to hand position (p < 0.05). The Post-hoc
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FIGURE 3 | Stepwise mean normalized sEMG amplitude of

brachioradialis in three different hand positions in intervals of 25◦ of

elbow flexion joint angle showing statistical significant differences in

pronated hand position in comparison to neutral and supinated hand

position.

Tukey Test shows not only a general difference between the
activation patterns of both elbow flexors with respect to hand
position but additionally a significantly higher difference in
pronated than in supinated and neutral hand position while the
activity of biceps brachii remains constant. Between supinated
and neutral hand position there were no significantly differences
in muscular coordination pattern of both muscles (biceps p =

0.75, brachioradialis p = 0.67). In biceps brachii there are no
significant differences (p = 0.63) in any hand position. Figure 3
shows the mean value of the activation level of brachioradialis
in steps of 25◦ of elbow joint angle in all three different
hand positions. Significant differences are found in pronated
in comparison to supinated and neutral hand position in all
considered intervals.

Discussion

Purpose of this study was the investigation of differing muscular
contribution of biceps brachii and brachioradialis during elbow
flexion with respect to hand position finding a reasonable
explanation in a biomechanical disadvantaged role of biceps
brachii as an elbow flexor in pronated hand position. The
function of brachioradialis has been discussed in literature with
diverging results (de Sousa et al., 1961; Nakazawa et al., 1993;
Boland et al., 2008). The presented results agree with most
of the authors in the fact that brachioradialis is an active
flexor of the elbow with increasing contribution in pronated
hand position (Jackson, 1925; de Sousa et al., 1961; Howard
et al., 1986; Nakazawa et al., 1993; Praagman et al., 2010).
Hereby it is important to consider that there may be an
influence in brachioradialis’ recruitment strategy depending
on the biomechanical disadvantaged role of biceps brachii in
pronation. Therefore only an observation of themuscular activity
of both muscles may lead to a useful interpretation.

The results show clearly the function of brachioradialis as
elbow flexor with a significant increased contribution in pronated
hand position. This can be concluded from the presented sEMG
measurement in pronated hand position compared to neutral
and supinated hand position, whereas the activation level of
biceps brachii remains constant in all three hand position. From a
biomechanical view brachioradialis has a longer anatomical lever
arm than biceps brachii. Consequently less muscular force than
in biceps brachii is required to hold an external weight. However
because of the longer lever arm brachioradialis demands a
stronger contraction to flex the elbow and so a biomechanical
disadvantage takes place. So brachioradialis function is mainly
lifting or holding an external weight, including the weight of
the forearm like stated in Frisch (2000) and de Sousa et al.
(1961). But in pronated hand position the biceps tendon is
wrapped by its insertion in tuberosida radii (Howard et al., 1986;
Deetjen and Speckmann, 1999). Considering this fact, there is a
biomechanical disadvantage of biceps brachii in pronated hand
position to flex the elbow and the biomechanically advantaged
brachioradialis takes over a higher contribution in elbow flexion
because less muscle force can be generated by biceps brachii
due to the disadvantaged lever arm at a constant activity.
These circumstances result in a significantly higher activity of
brachioradialis to compensate the lower torque produced by
biceps brachii although the activation level of biceps brachii is
the same like in supinated and neutral hand position.

It should also be considered that there is neural inhabitation of
biceps brachii and brachioradialis as stated in Naito et al. (1996).
This may explain the similar activation level of both muscles in
supinated and neutral hand position.

The often discussed contribution of brachioradialis to
pronation and supination cannot be proved by this study. It
should be mentioned that because of the normalization of
the sEMG amplitudes to the specific MVC in every hand
position, the contribution of biceps brachii and brachioradialis
to pronation and supination movements are canceled in the
processed normalized signals. So neither biceps as a supinator nor
brachioradialis as a pronator/supinator can be examined here.

Conclusion

There is a strong influence of hand position on the inter-
muscular coordination of biceps brachii and brachioradialis in
elbow flexion. This has been shown by a significant increased
muscular activity of brachioradialis during elbow flexion in
pronated compared to supinated and neutral hand position
whereas activity of biceps brachii remains constant. This
change in contribution of brachioradialis can be reasonable
explained by the biomechanical disadvantaged role of biceps
brachii in pronation resulting in brachioradialis taking a higher
contribution in elbow flexion.

Acknowledgments

This work is financially supported by the German Research
School for Simulation Sciences, Jülich, Germany.

Frontiers in Physiology | www.frontiersin.org 4 August 2015 | Volume 6 | Article 215

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Kleiber et al. Muscular coordination in elbow flexion

References

Amis, A. A., and Miller, J. H. (1982). The elbow. Clin. Rheum. Dis. 8, 571–593

An, K. N., Hui, F. C., Morrey, B. F., Linscheid, R. L., and Chao, E. Y. (1981).

Muscles across the elbow joint: a biomechanical analysis. J. Biomech. 14,

659–669. doi: 10.1016/0021-9290(81)90048-8

Boland,M. R., Spigelman, T., andUhl, T. L. (2008). The function of brachioradialis.

J. Hand Surg. Am. 33, 1853–1859. doi: 10.1016/j.jhsa.2008.07.019

Burden, A. (2010). How should we normalize electromyograms obtained from

healthy subjects? What we have learned from over 25 years of research. J.

Electromyogr. Kinesiol. 6, 1023–1035. doi: 10.1016/j.jelekin.2010.07.004

Deetjen, P., and Speckmann, E. (1999). Physiologie. Munich: Urban and Fischer

Verlag.

de Sousa, O., deMoares, J., and Vieria, F. L. (1961). Electromyographic study of the

brachioradialis muscle. Anat. Rec. 139, 125–131. doi: 10.1002/ar.1091390204

Frisch, H. (2000). Programmierte Therapie am Bewegungsapparat. Berlin;

Heidelberg; New York: Springer Verlag.

Funk, D. A., An, K. N., Morrey, B. F., and Daube, J. R. (1987). Electromyographic

analysis of muscles across the elbow joint. J. Orthop. Res. 5, 529–538. doi:

10.1002/jor.1100050408

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., and Rau, G. (2000). Development

of recommendations for SEMG sensors and sensor placement procedures.

J. Electromyogr. Kinesiol. 10, 361–374. doi: 10.1016/S1050-6411(00)00027-4

Howard, J. D., Hoit, J. D., Enoka, R. M., and Hasan, Z. (1986). Relative

activation of two human elbow flexors under isometric conditions: a cautionary

note concerning flexor equivalence. Exp. Brain Res. 62, 199–202. doi:

10.1007/BF00237416

Jackson, C. M. (1925). Human anatomy. Philadelphia, PA: P. Blakiston’s Son and

Company.

Naito, A. (2004). Electrophysiological studies of muscles in the human upper

limb: the biceps brachii. Anat. Sci. Int. 79, 11–20. doi: 10.1111/j.1447-

073x.2004.00064.x

Naito, A., Shindo, M., Miyasaka, T., Sun, Y. J., and Morita, H. (1996). Inhibitory

projection from brachioradialis to biceps brachii motoneurones in human. Exp.

Brain Res. 111, 483–486. doi: 10.1007/BF00228739

Nakazawa, K., Kawakami, Y., Fukunaga, T., Yano, H., and Miyasshita, M. (1993).

Differences in activation patterns in elbow flexor muscles during isometric,

concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 66,

214–220. doi: 10.1007/BF00235096

Pauly, J. E., Rushing, J. L., and Scheving, L. E. (1967). An electromyographic

study of some muscles crossing the elbow joint. Anat. Rec. 159, 47–53. doi:

10.1002/ar.1091590108

Praagman, M., Chadwick, E. K., van der Helm, F. C, and Veeger, H. E. (2010). The

effect of elbow angle and external moment on load sharing of elbow muscles.

J. Electromyogr. Kinesiol. 20, 912–922. doi: 10.1016/j.jelekin.2010.04.003

Rau, G., Disselhorst-Klug, C., and Schmid, R. (2000). Movement biomechanics

goes upwards: from the leg to the arm. J. Biomech. 33, 1207–1216. doi:

10.1016/S0021-9290(00)00062-2

Schmidt, R., Disselhorst-Klug, C., Silny, J., and Rau, G. (1999). A marker-

based measurement procedure for unconstrained wrist and elbow motions. J.

Biomech. 32, 615–621. doi: 10.1016/S0021-9290(99)00036-6

Stokes, I. A., and Gardner-Morse, M. G. (2000). Strategies used to stabilize the

elbow joint challenged by inverted pendulum loading. J. Biomech. 33, 737–743.

doi: 10.1016/S0021-9290(00)00016-6

Sullivan, W. E., Mortenson, O. A., Miles, M., and Greene, L. S. (1950).

Electromyographic studies of m. biceps brachii during normal voluntary

movement at the elbow. Anat. Rec. 107, 243–251. doi: 10.1002/ar.1091070304

van Bolhuis, B. M., and Gielen, C. C. (1997). The relative activation of elbow-flexor

muscles in isometric flexion and in flexion/extension movements. J. Biomech.

30, 803–811. doi: 10.1016/S0021-9290(97)00027-4

Williams, S., Schmidt, R., Disselhorst-Klug, C., and Rau, G. (2006). An upper

body model for the kinematical analysis of the joint chain of the human arm.

J. Biomech. 39, 2419–2429. doi: 10.1016/j.jbiomech.2005.07.023

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Kleiber, Kunz and Disselhorst-Klug. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 5 August 2015 | Volume 6 | Article 215

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Muscular coordination of biceps brachii and brachioradialis in elbow flexion with respect to hand position
	Introduction
	Material and Methods
	Subjects
	Study Protocol
	Kinematics and sEMG Data Acquisition
	Normalization via MVC
	Statistical Analyses

	Results
	Discussion
	Conclusion
	Acknowledgments
	References


