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Hypertrophic cardiomyopathy is the most common monogenic disorder in cardiology.

Despite important advances in understanding disease pathogenesis, it is not clear

how flaws in individual sarcomere components are responsible for the observed

phenotype. The aim of this article is to provide a brief interpretative analysis of some

currently proposed pathophysiological mechanisms of hypertrophic cardiomyopathy,

with a special emphasis on alterations in the cardiac mechanical properties.
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Introduction

Hypertrophic cardiomyopathy (HCM) is a relatively rare inherited cardiovascular disease that
affects approximately 1 in 500 young individuals and that accounts for 35% of sudden cardiac death
cases in young athletes (Maron et al., 1995, 2009). It is characterized by a segmental hypertrophy
of the left ventricle (LV) that mainly affects the interventricular septum, although there are no
factors present that could have induced hypertrophy, such as hypertension or aortic stenosis. This
type of hypertrophy has been termed asymmetrical, in contrast to the symmetrical hypertrophy in
hypertensive patients, in which all LV segments are equally affected. Additional prominent features
include left ventricular outflow tract (LVOT) obstruction, owing to an abnormal anterior motion
of the mitral valve during systole that obstructs blood flow to the aorta, and disorganization of the
myocardial tissue architecture (myocardial disarray). Some patients experience severe symptoms
(dyspnea, palpitations, fainting, and sudden cardiac arrest caused by ventricular tachycardia),
whereas others are asymptomatic. The onset is usually during adolescence but can occur later in
life (Sherrid, 2006; Maron and Maron, 2013).

Regarding its genetic cause, myosin heavy chain beta (MYH7) and myosin binding protein C
(MYBPC3) are the most commonly involved genes, followed by troponin I (TNNI3), troponin
T (TNNT2), essential myosin light chain (MYL3), regulatory myosin light chain (MYL2), alpha
tropomyosin (TPM1), and cardiac actin (ACTC) (Konno et al., 2010). These genes encode proteins
of the sarcomere, which is the subcellular structure responsible for myocyte contraction. This
paper explores how mutations in genes encoding sarcomeric proteins affect heart mechanical
behavior and also focuses on unresolved issues regarding HCM disease pathomechanisms.
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The Sarcomere

Sarcomeres are composed of thick filaments consisting of the
molecular motor myosin and thin filaments that are formed
by actin (Figure 1A). Myosin is a protein complex of two
heavy chains (MYH6 or MYH7), which are the main motor, as
well as two regulatory (MYL2) and two essential light chains
(MYL3) with a structural and regulatory role (Harris et al., 2011).
Myosin exerts force on the thin filaments by ATP hydrolysis.
Because of the action of myosin, the filaments slide over each
other, leading to sarcomere contraction (Fatkin and Graham,
2002). The troponins (T, I, and C) and tropomyosin form a
protein complex attached to the thin filaments, which regulates
contraction in response to Ca2+. Upon excitation and Ca2+

entry into the myocardial cell, Ca2+ binds to troponin and
enables actin-myosin interaction (Fatkin and Graham, 2002).
Finally, myosin binding protein C is attached to the thick
and thin filaments, modulates the myosin kinetics, and is a
substrate of PKA and CAMKII phosphorylation (James and
Robbins, 2011). With the exception of MYBPC, where HCM
mutations lead to low protein levels (frameshift mutations and
deletions), a gain-of-function mutation alters the mechanical
properties of these proteins (ATPase rate, force generating
capacity and sliding velocity for myosin, and Ca2+ affinity for
troponin) (Harris et al., 2011; Moore et al., 2012; Spudich,
2014). Additionally, there are normal local variations in the
function of some of these proteins across different segments of
the normal heart with possible relevance to the pathophysiology
of HCM.

Normal Spatial Patterns in the Left
Ventricle Mechanics

The advent of newer imaging technologies has favored the
detailed exploration of the regional function of the heart
and the quantification of myocardial deformation (myocardial
strain). Myocardial deformation analysis in the form of magnetic
resonance imaging (MRI) has revealed strain dissimilarities
between the endocardial and epicardial layers of the left ventricle
(LV) wall and among different LV segments (Bogaert and
Rademakers, 2001).

This lack of uniformity in contractility is also reflected on
the molecular level. More specifically, the contraction capacity
of the myosin heavy chain can be either fast (MYH6) or
slow (MYH7). There are certain developmental, environmental,
epigenetic and hormonal factors (e.g., thyroid hormones) that
regulate the expression of MYH6 and MYH7, which are encoded
by a gene cluster on chromosome 14 (Gupta, 2007). MYH7
is the predominant motor in the human ventricle. MYH7
has the same force-generating capacity as MYH6 but a lower
ATPase rate (reduced energy cost). Moreover, MYH6 seems to
be the predominant motor in cases in which fast kinetics are
required, such as in the human atrium, the contraction time
of which is shorter than that of the ventricles, or in mouse
ventricles, where the heart rate is as fast as 500 beats per
second (Gupta, 2007). Cardiac hypertrophy and heart failure
causes MYH6 downregulation (Gupta, 2007). The importance

of MYH6, despite the low level of MYH6 expression in
human ventricles, is also highlighted in other studies that have
observed an increase in MYH6 expression in heart failure
patients who improved after cardiac resynchronization therapy
or medical treatment (Lowes et al., 2002; Vanderheyden et al.,
2008).

Several studies have examined the mechanical properties of
the epicardial and endocardial layers (Cazorla et al., 2000, 2005).
For example, Stelzer et al. report that there is a transmural
gradient across the porcine left ventricular wall with epicardial
myocytes comprising 13% MYH6 and endocardial myocytes 3%
(Figure 1D) (Stelzer et al., 2008). Another study found that the
presence of MYH6, even at low levels (10%), speeds up the
onset of mechanical contraction (Locher et al., 2011).Thus, subtle
differences in mechanical properties exist between endocardial
and epicardial layers.

In addition to the transmural heterogeneity, there is also an
MYL2 phosphorylation gradient toward the apex in the murine
heart (Figure 1D) (Davis et al., 2001). This post-translational
modification, which increases the force and speed of contraction,
favors contractility in the LV apex relating to the base (Bogaert
and Rademakers, 2001; Toepfer et al., 2013). On the contrary,
in the papillary muscles and the adjacent endocardial layer,
there is an MYL2 hypophosphorylation (Figure 1D), leading to
increased amplitude and rate of onset of the stretch-activation
response (Figure 1B). In fact, the stretch activation response was
shown to be critical for papillary muscle function (Vemuri et al.,
1999).

Mechanical Flaws in HCM Patients

The spatial patterns and control mechanisms described above are
compromised in HCM patients.

Myosin Properties
Normally, a myocardial cell has two options: to express either
the slow MYH7 or the fast MYH6. The HCM mutations in
the MYH7 gene generally increase the myosin velocity and
ATPase rate (Moore et al., 2012; Spudich, 2014). Therefore, in
the presence of a dominant MYH7 mutation, the cell produces
a combination of wild type slow MYH7 (normal allele) and a
fast mutated MYH7. Eventually, it becomes difficult for the cell
to determine the operational characteristics of the myosin that
it produces. This defect may prevent the heart from utilizing
certain molecular strategies to fine-tune its regional mechanical
properties (e.g., transmural MYH6 gradients), thus leading
to the altered pattern of ventricular contraction (ventricular
dyssynchrony) that is detected in HCM patients (Chen et al.,
2012). Furthermore, the increased ATPase activity in conjunction
with the increased volume of the hypertrophied cell (low
surface to volume ratio, increased anabolic needs) push the
energy production system of the cell to its limits (Moore
et al., 2012). For instance, Crilley et al. conducted a magnetic
resonance spectroscopy study in which they found that even
the mutation carriers that did not present any hypertrophy had
a reduced phosphocreatine to ATP ratio (Crilley et al., 2003).
In fact, this reduction in energy reserves was not confined to
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FIGURE 1 | Normal cardiac mechanics. (A) Graphical

representation of the sarcomere (B) length-dependent activation:

when a myocardial fiber is subjected to stretch there is an initial

passive tension (brown curve) followed, with a time delay (blue

arrow), by active force development (green curve). (C) Ca2+-force

curve modulation by shifting the curve along the x axis (changing

myofilament affinity to Ca2+, black and blue curve), by changing

its steepness (more graded response to Ca2+, red curve) and by

changing maximal force (green curve) (D) MYH6 expression and

MYL2 phosphorylation.

only the MYH7 mutation carriers (Witjas-Paalberends et al.,
2014).

Stretch Activation Response and Calcium
Another important control mechanism that closely relates to the
Frank-Starling law and is defective in HCM patients is length-
dependent activation, which manifests as an increased force
generation after myocardial stretching caused by an alteration in
myofilament sensitivity to calcium (Figure 1B) (Campbell and
Chandra, 2006; de Tombe et al., 2010; Sequeira et al., 2013).
Myocardial cells collected from patients subjected to surgical
myectomy had a defective response to stretch in vitro irrespective
of the mutated gene (Sequeira et al., 2013). During exercise,
HCM patients failed to increase stroke volume in part due to
this defect (Critoph et al., 2014). An MYL3 HCM mutation in
a mouse study affected the frequency range at which the heart
can operate efficiently due to alteration of the stretch-activation
response (Vemuri et al., 1999).

Additionally, several in vitro studies showed that in HCM
there was a calcium ionmishandling due to reduced sarcoplasmic
reticulum Ca2+ ATPase, alteration in Na+/Ca2+ cotransporter
function, t tubule reduction, increased Ca2+ in the sarcoplasmic
reticulum, and possibly low energy reserves, given that Ca2+

pumping is a process that consumes a large amount of ATP
(Coppini et al., 2013; Lan et al., 2013). In addition, mutations in
MYH7, MYBPC3, TNNI3, and TPM1 increased the myofilament
calcium affinity and reduced the calcium-force curve steepness
(Figure 1C) (i.e., a more graded response to calcium input) (van
Dijk et al., 2012; Sequeira et al., 2013; Ramirez-Correa et al.,
2014). A slower rate of tension development in response to a
calcium influx reduces the energy efficiency because, for the

same force, an increase in Ca2+ concentration is needed and
consequently an increase in ATP consumption for Ca2+ recycling
(Sun and Irving, 2010).

Epicardial-endocardial Synergy and
Disease-specific Features
The orientation and the sequence of activation of myocardial
fibers are of paramount importance for the mechanical function
of the heart. The fiber orientation across the LV wall changes
from 60◦ to −60◦ from the endocardium to the epicardium
(Figure 2A). During the initial phase of ventricular systole and
before aortic valve opening (isovolumetric contraction), there is
an activation of mainly endocardial fibers. The contraction of
the endocardial fibers stretches the epicardial fibers, which is an
important step for the subsequent mechanical activation of the
epicardial fibers during the ejection phase (Ashikaga et al., 2009).
As described above, the defect in the stretch activation response
may compromise the epicardial fiber contraction, thus posing
an extra mechanical load on the endocardial fibers, leading
to their hypertrophy. Further evidence from an MRI study
of the hypertrophy distribution shows that that hypertrophy
typically starts in the anteroseptal region and spirals in a
counterclockwise manner toward the apex (Figure 2B) (Florian
et al., 2012). According to the Torrent Guasp myocardial band
model, the hypertrophied segment corresponds to the so-called
descending helix (endocardial fibers) (Buckberg et al., 2008;
Sengupta and Narula, 2012). Likewise, a myocardial deformation
analysis, in which MRI was used, revealed that the endocardial
fibers were contracting properly, whereas the epicardium was
hypocontractile with non-contracting or even stretched segments
(Aletras et al., 2011). Whether the hypokinesis of the epicardial
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FIGURE 2 | LV mechanics in HCM. (A) Endocardial fibers (red) and

epicardial fibers (orange) orientation (B) distribution of hypertrophied areas in

the left ventricle (LV) wall (spiral pattern) (C) left ventricular outflow tract

(LVOT) obstruction due to systolic anterior motion of the mitral valve (D)

reduced LV twist in the base and midventricular part in HCM as compared to

normal subjects (red arrow).

fibers in patients may facilitate the emergence of myocardial
disarray in this area, much like the disarray observed in detached
papillary muscles after mitral valve replacement surgery, needs
to be explored (Pirolo et al., 1982). Indeed, a human MRI study
showed myocardial disarray in hypokinetic areas (Tseng et al.,
2006). Conversely, in an HCMmouse model (MyBPC knockout),
the MRI revealed an increased disarray in the endocardial side,
although this finding was not histologically confirmed (Wang
et al., 2010).

There is increasing evidence that this abnormal coordination
between the epicardial and the endocardial fibers may relate
to LVOT obstruction. The heart orchestrates the contraction
of different segments to achieve decreased flow turbulence and
handle energy losses (Sengupta et al., 2012). Furthermore, the
coordinated movements of the epicardial and endocardial fibers
during isovolumetric contraction and relaxation are crucial for
the proper flow redirection between the outflow and the inflow
tract (Sengupta et al., 2007). For example, when alterations occur
in the heart contraction pattern, because of the epicardial pacing
from the left ventricle base, there are also observable effects
on the intracavitary flow pattern (Goetz et al., 2005; Sengupta
et al., 2007). In patients with LVOT obstruction, there was a
misdirection of flow toward the outflow tract during ejection.
In particular, the flow affected the posterior aspect of the mitral
valve, causing its anterior displacement, thus obstructing the
outflow tract (Figure 2C) (Ro et al., 2014). In HCM, the left
ventricle adopted an abnormal contraction pattern, characterized
by an increased deformation in the circumferential direction
and a decreased deformation in the longitudinal (base to apex)
direction. Additionally, the increased circumferential strain in

obstructive vs. non-obstructive HCM may contribute to LVOT
obstruction (Carasso et al., 2008; Ntelios et al., 2015). Concerning
the alleviation of the LVOT obstruction in some patients after
implantation of a pacemaker, pacing from the right ventricle apex
may alter the LV contraction pattern and redirect flow in an
advantageous way (Sherrid, 2006). Another factor that facilitates
LVOT obstruction is the elongation of the mitral valve leaflets
(Ro et al., 2014). This defect may be secondary to the abnormal
intracavitary flow pattern because the hydrodynamic conditions
are of paramount importance for proper valve formation during
the developmental stages (Kalogirou et al., 2014).

Owing to the geometrical configuration of the epicardial and
endocardial fibers, during systole, the left ventricle performs
a wringing motion (Figure 2D). This motion is quantitatively
assessed as a “ventricular twist” (the difference of rotation
between the base and the apex). The physiological role of
this ventricular twist is to homogenize the wall stress across
the ventricular wall, thus increasing the involvement of the
epicardial fibers during contraction (Sengupta et al., 2008).
Carasso et al. observed that in HCM patients the net ventricular
twist did not differ from the control group (Carasso et al., 2008).
Nonetheless, the rotation of the midventricular part, relating to
the left ventricle base, was minimal, and the apical part was
the main contributor to the total angle of rotation (Figure 2D)
(Carasso et al., 2008). Therefore, this locally reduced twist in
the base and midventricular part may be an additional factor
increasing the mechanical load of the endocardial fibers, leading
to their hypertrophy. In fact, HCM patients failed to increase
the ventricular twist during exercise (Soullier et al., 2012).
Another important consideration is that the ventricular twist
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depends on geometrical factors, such as the ventricular length
and diameter (Young and Cowan, 2012), which can be modified
in a hypertrophied heart.

Apical Hypertrophy
In some cases, hypertrophy predominately involves the LV
apex (Chen et al., 2011). Some studies have shown that
HCM patients present a blunted base to apex gradient in
contractility and have reduced apical rotation and stretched
apical segments (Reddy et al., 2008; Chang et al., 2010). These
characteristics highlight the reduced systolic function of the
apex in these patients. Theoretically, defects in the MYL2 and
other unrecognized mechanisms that enhance apical contraction
might lead to compensatory apical hypertrophy. Additionally,
aneurysm formation is an anticipated complication given the
increased apical wall stress (Guccione et al., 1995; Chen et al.,
2011). Furthermore, mutations in the MYL2 and MYL3 genes
are connected to the midcavitary hypertrophy variant (Poetter
et al., 1996). In this HCM subtype, there is hypertrophy of the
midventricular part of the LV wall and papillary muscles possibly
because MYL3 and MYL2 can modulate the amplitude and rate
of onset of the stretch-activation response, thus compromising
papillary muscle function (Poetter et al., 1996; Vemuri et al.,
1999; Arad et al., 2005; Stelzer et al., 2006). Another important
clinical observation is that patients with the same mutation
present an apical or a more classical asymmetrical hypertrophy
pattern (Arad et al., 2005). Additionally, 10% of HCM patients
present apical hypertrophy with concurrent septal hypertrophy
(Florian et al., 2012). Thus, the different phenotypes in these
patients may simply reflect the variable extent of hypertrophy
toward the base.

Treatment Options in HCM

The treatment of HCM has so far largely focused on treating
the symptoms of the disease using beta adrenergic receptor
blockers. B-blockers slow the heart rate and reduce myocardial
oxygen consumption and LVOT obstruction. Disopyramide
and the calcium channel blocker verapamil are also helpful.
In cases of drug-refractory symptoms, alleviation of outflow
tract obstruction by either surgical septal myectomy or
percutaneous infusion of alcohol in the septal branch of the
left coronary artery is the current practice. A drug-based
approach targeting length-dependent activation, myofilament
Ca2+ affinity and myosin properties is very promising. Another
important issue in the management of these patients is risk
stratification for sudden cardiac death (SCD). In general terms,
patients with unexplained syncope, documented ventricular
tachycardia or aborted SCD, positive family history for SCD,
maximal LV wall thickness >30mm and abnormal drop in
blood pressure during exercise, treated with an implantable
defibrillator (Maron and Maron, 2013; Efthimiadis et al.,
2014).

Conclusion

Hypertrophic cardiomyopathy exhibits significant heterogeneity
(i.e., numerous mutations and a variable clinical course). The
mechanisms analyzed in this paper shed some light on the
relation of mutations to disease phenotype, although they may
not necessarily apply to all patients. A better understanding of
the pathophysiological mechanisms leading to hypertrophy will
contribute to the further improvement of treatment and to risk
stratification for sudden cardiac death.
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