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3,5,3′-Triiodo-L-thyronine (T3) plays a crucial role in regulating metabolic rate and fuel

oxidation; however, the mechanisms by which it affects whole-body energy metabolism

are still not completely understood. Skeletal muscle (SKM) plays a relevant role

in energy metabolism and responds to thyroid state by remodeling the metabolic

characteristics and cytoarchitecture of myocytes. These processes are coordinated with

changes in mitochondrial content, bioenergetics, substrate oxidation rate, and oxidative

phosphorylation efficiency. Recent data indicate that “emerging” iodothyronines have

biological activity. Among these, 3,5-diiodo-L-thyronine (T2) affects energy metabolism,

SKM substrate utilization, and mitochondrial functionality. The effects it exerts on

SKM mitochondria involve more aspects of mitochondrial bioenergetics; among these,

respiratory chain activity, mitochondrial thermogenesis, and lipid-handling are stimulated

rapidly. This mini review focuses on signaling and biochemical pathways activated by

T3 and T2 in SKM that influence the above processes. These novel aspects of thyroid

physiology could reveal new perspectives for understanding the involvement of SKM

mitochondria in hypo- and hyper-thyroidism.

Keywords: mitochondria, lipid metabolism, uncoupling, thyroid hormones, diiodothyronines

Introduction

Skeletal muscle (SKM) is a metabolically active tissue representing about 40% of total body
mass. It significantly affects energy expenditure and plays a significant role in glucose, lipid, and
energy homeostasis. SKM shows a remarkable plasticity in functional adaptation and remodeling
in response to physiological stimuli, such as exercise, fasting, and hormonal signals. Among
the hormones able to influence SKM development, metabolism, and structure, thyroid hormone
(T3) plays a key role (Salvatore et al., 2014). SKM responds to variations in thyroid state by
coordinately remodeling its cytoarchitecture and metabolic characteristics, with mitochondria
playing a significant role. Concerning metabolic adaptations, T3 enhances the use of lipids and
carbohydrates as fuel substrates (de Lange et al., 2008; Lombardi et al., 2012), as well as alteration
of mitochondrial number and functionality.
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Growing evidence indicates 3,5-diiodo-L-thyronine (T2) as
a biologically active thyroid hormone derivative able to affect
energy metabolism (Goglia, 2015 and references within). T2
increases resting metabolic rate, enhances lipid utilization
as a fuel substrate, and prevents the occurrence of diet-
induced obesity and associated diseases, including liver steatosis,
hypertriglyceridemia, hypercholesterolemia (Lanni et al., 2005;
de Lange et al., 2011), and insulin resistance (de Lange et al., 2011;
Moreno et al., 2011). In SKM, T2 ameliorates the tissue’s response
to insulin that is impaired by a high fat diet (Moreno et al., 2011).
Importantly, previous studies have shown that, contrary to T3,
T2 does not induce thyrotoxicity or undesirable side effects at
the cardiovascular level at the doses used (25µg/100 g rat body
weight, Lanni et al., 2005; de Lange et al., 2011).

The present mini review provides an overview of the
involvement of SKM mitochondria in T3 and/or T2 effects
exerted on modulation of SKM metabolism/plasticity. In
particular, it focuses on signaling and biochemical pathways
activated by the two iodothyronines in SKM, promoting
variations in substrate metabolism, lipid handling, and
thermogenesis at the mitochondrial level.

Effect of Thyroid Hormones on SKM
Mitochondrial Biogenesis

T3 influences mitochondrial activity and biogenesis by
modulating, in a coordinate fashion, expression of proteins
encoded by both the nuclear and mitochondrial genome.

Nuclear Events
T3 acts through nuclear receptors (TRs), namely TRα and TRβ,
ligand-dependent transcription factors that are constitutively
bound to thyroid hormone response elements (TREs). The
binding of T3 to TRs leads to stimulation or inhibition of nuclear
gene transcription (Brent, 2012). T3 regulates the transcription
of a series of genes harboring TREs (direct T3 target genes),
some of which serve as intermediate factors (e.g., transcriptional
factors and coactivators) needed to regulate a second series
of genes (indirect T3 target genes). In SKM, T3-modulated
transcription is primarily mediated by the TRα1 isoform and
involves a wide array of genes influencing SKM contractile and
metabolic properties, as well as those coding components of
the tricarboxylic acid cycle and mitochondrial respiratory chain
(Wiesner et al., 1992; Short et al., 2001; Clement et al., 2002). In
SKM, T3 also influences the transcription of genes controlling
mRNA maturation and protein translation. Indeed, T3 up-
regulates transcripts encoding ribunucleoproteins and splicing
factors as well as ribosomal proteins and translation initiation
factors (eIF1A, Clement et al., 2002).

T3 positively regulates the expression of intermediate factors,
such as nuclear respiratory factors (NRF)-1 and -2, which
enhance the expression of mitochondrial transcription factor-A,
a nuclear-encoded transcription factor essential for replication,
maintenance, and transcription of mitochondrial DNA. T3 also
controls the expression of coactivator of peroxisome proliferator
activated receptor γ (PPARγ) PGC-1α (Weitzel et al., 2001),
a central regulator of mitochondrial gene expression and

biogenesis (Puigserver, 2005). PGC-1α regulates gene expression
through its interactions with DNA-bound transcription factors,
including TR, PPAR, and NRF-1 (Knutti and Kralli, 2001,
Figure 1).

In rats, the effect induced by T3 on mitochondrial content
and activity is amplified in slow oxidative compared to fast
glycolytic muscles (Bahi et al., 2005). This could be explained
by higher expression of TRα1 and PGC1α observed in slow
oxidative muscle (Garnier et al., 2003; Bahi et al., 2005) associated
with opposite regulation of TRα transcription by T3 in the two
distinct muscle types (activation in slow oxidative and reduction
in fast glycolytic muscle). Conversely, in humans, T3 does not
influence NRF-1 or PGC1α levels in SKM (Barbe et al., 2001).
Thus, the effect of T3 on SKMmitochondrial biogenesis seems to
be species-specific and dependent on SKMmetabolism.

In SKM, AMP-activated kinase (AMPK) regulates the
expression of genes related to mitochondrial biogenesis, energy
production, and oxidative protection. AMPK phosphorylates and
activates PGC1α (Jäger et al., 2007; Cantó et al., 2009), and both
chronic and acute administration of T3 to euthyroid (Irrcher
et al., 2008) and hypothyroid rats (Branvold et al., 2008; de Lange
et al., 2008) induces AMPK activation, a putative mediator of the
effect of T3 on SKMmitochondrial biogenesis (Figure 1).

Mitochondrial Events
Mitochondrial gene expression is also directly activated by
T3 through its binding to mitochondrial matrix-localized
specific receptors (p43). p43 is a truncated form of TRα1
and is synthesized by the use of an internal initiation site of
translation (Wrutniak et al., 1995; Wrutniak-Cabello et al.,
2001). The T3–p43 complex binds to TREs of the mitochondrial
genome and induces transcription (Casas et al., 1999) in parallel
to the transcription of nuclear genes involved in oxidative
phosphorylation, thus ensuring complementary signaling
between nuclear and mitochondrial pathways (Figure 1). p43
regulates SKM phenotypes, contractile features, and metabolism.
In mice, p43 deletion leads to muscle hypertrophy and a shift in
the direction of more rapid muscle fiber types coordinated with a
reduction in mitochondrial content (Pessemesse et al., 2012). p43
overexpression leads to muscle wasting with aging (Casas et al.,
2009), suggesting a possible oxidative stress-associated toxic
effect due to prolonged stimulation of mitochondrial activity,
leading to a deficit of new skeletal muscle fiber replacement and
differentiation over time.

P28 is another truncated form of TR-α1 that is localized in
the inner mitochondrial membrane and shows a binding affinity
for T3 higher than nuclear receptors. Despite it has been shown
that p28 regulates mitochondrial functionality in fibroblast, its
specific function has not been elucidated yet (Pessemesse et al.,
2014).

Effect of T2 on Mitochondrial Biogenesis
Studies supporting the possibility of T2’s effects onmitochondrial
biogenesis have been focused on liver and brown adipose tissue
(de Lange et al., 2011; Lombardi et al., 2015). In SKM, it is
possible that activation of AMPK by T2 (Lombardi et al., 2009a)
could trigger transcriptional processes leading to mitochondrial
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FIGURE 1 | Schematic representation of the coordinated events

activated by T3 that take place in both nuclei and

mitochondria, promoting mitochondrial biogenesis. T3 directly

activates the transcription of nuclear- and mitochondrial-genes

coding for component of respiratory chain by binding to its

nuclear TRs and mitochondrial p43. T3 also indirectly activates

respiratory genes transcription by up-regulating the transcription of

intermediate factors (such as NRF-1 and -2 and PGC1a). AMPK

activation also mediates an indirect effect of T3 on mitochondrial

biogenesis.

biogenesis (see above). Direct evidence regarding the ability of T2
to influencemitochondrial biogenesis in SKM is currently lacking
and this aspect needs further investigation.

Whether or not the effects of T2 are mediated by TRs is
still under investigation. A recent study in mice showed that
T2 evokes TR-mediated effects only when administered at very
high doses (250µg/100 g bw administered daily for 4 week, Jonas
et al., 2015). When used at high doses an interaction of T2 with
TRs could take place despite the much lower affinity of T2 for
TRs when compared to T3 (Ball et al., 1997; Cioffi et al., 2010;
de Lange et al., 2011; Mendoza et al., 2013). Interestingly, in a
teleost fish species (Tilapia) T2 interacts with a TRβ receptor
isoform and activates gene transcription ex vivo in a cell- and
promoter-specific manner (Mendoza et al., 2013). Thus, further
experiments are needed to elucidate whether and how T2 can
modulate gene transcription.

Thyroid Hormones Influence SKM
Mitochondrial Functionality and
Thermogenesis

Mitochondrial functionality is profoundly affected by thyroid
state. In SKM, in the transition between hypo- and hyper-
thyroidism, a progressive increase in mitochondrial substrate
oxidation is detected regardless of substrate [i.e., glycolytic-

(Venditti et al., 2003, 2007) or lipid-associated substrates
(Silvestri et al., 2005; Lombardi et al., 2012)].

Mitochondrial Uncoupling
Mitochondrial respiration is not fully coupled to ATP synthesis
since part of the energy contained in the reduced substrate
is lost as heat. Most of the uncoupling is due to a leak of
protons across themitochondrial innermembrane (proton-leak);
a failure in proton pumping during electron transport (redox
slip) also induces mitochondrial uncoupling. In SKM, proton-
leak accounts for a significant portion of the cellular metabolic
rate, either when muscle is at rest (Rolfe and Brand, 1996) or
in the contracting state (Rolfe et al., 1999). Proton-leak is the
sum of two processes: basal and inducible proton-leak (Brand
and Esteves, 2005). Basal proton-leak is not acutely regulated. It
depends on the fatty-acyl composition of themitochondrial inner
membrane and on the presence of adenine nucleotide translocase
(ANT). Inducible proton-leak is acutely controlled by activation
of specific proteins, with uncoupling protein (UCP3 in SKM)
and ANT (ANT1 in SKM) playing a crucial role (Divakaruni and
Brand, 2011).

T3 Induces SKM Mitochondrial Uncoupling
SKMmitochondrial uncoupling induced by T3 has been reported
in vivo (Lebon et al., 2001) and ex vivo (Lanni et al., 1999; de
Lange et al., 2001; Lombardi et al., 2002, 2012). Interestingly,
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despite uncoupling activation by T3, no variation or increase
in SKM ATP levels takes place (Jucker et al., 2000; Lebon
et al., 2001; Short et al., 2001). The uncoupling associated with
T3-induced mitochondrial biogenesis could counteract possible
ATP variations. In addition, an increase in the ability of SKM
mitochondria to produce ATP could also take place, as already
observed in liver (Harper and Brand, 1993; Nogueira et al., 2002).

The existence of a positive correlation between T3 and
SKM mitochondrial proton-leak is also evident during aging.
In fact, aging is associated with a decrease in circulating T3
that is evident in 24 month-old rats (Iossa et al., 2002; Silvestri
et al., 2008; Valle et al., 2008); therefore, aging represents a
condition of physiological hypothyroidism. Concomitantly, SKM
mitochondria from old rats exhibited a significant decrease in
proton-leak (Lombardi et al., 2009a; Crescenzo et al., 2014),
suggesting that with increasing age, the efficiency of oxidative
phosphorylation increases in SKM mitochondria. Similar results
have been obtained in vivo in aged rat SKM, where a trend of
higher coupling efficiency was found (Gouspillou et al., 2014).
When mitochondria are more efficient, fewer substrates are
oxidized to obtain ATP. Therefore, increased mitochondrial
coupling in SKM could contribute to the decreased energy
expenditure that characterizes the progression of aging and
hypothyroidism since SKM energy metabolism accounts for
about 30% of whole-body energy expenditure under resting
conditions (Rolfe and Brown, 1997).

Factors Involved in T3 Induced- SKM
Mitochondrial Uncoupling
T3 affects both basal (Lombardi et al., 2012) and inducible SKM
proton-leak (Lanni et al., 1999; Silvestri et al., 2005; Lombardi
et al., 2012), with UCP3 and ANT being involved in the effects
on free fatty acid (FA)-inducible proton-leak (Figure 2). In the
transition between hypo- and hyper-thyroidism, the contribution
of ANT to FA-induced uncoupling becomes progressively more
relevant despite there being no variation in ANT-1 mRNA levels
detected (Dümmler et al., 1996; Lombardi et al., 2002). This could
be attributed to the gradual increase in mitochondrial SKM FA
levels (Lombardi et al., 2002), known activators of ANT-mediated
uncoupling (Skulachev, 1991). Concerning UCP3, T3 increases
its transcription (Lanni et al., 1999; Barbe et al., 2001), the effect
being observed within 8 h of T3 administration to hypothyroid
rats (de Lange et al., 2001, 2007). The mechanism of UCP3
promoter stimulation by T3 seems to be species-specific since it
involves FA and their target receptors (PPARδ) in humans and
rats but not mice (de Lange et al., 2007).

Besides regulating UCP3 expression, T3 also promotes UCP3-
mediated uncoupling by synergistically stimulating biochemical
pathways underlying activation of this protein (Silvestri et al.,
2005). Indeed, T3 enhances reactive oxygen species formation
(Venditti et al., 2003, 2007; Silvestri et al., 2005) and
mitochondrial FA availability (Lombardi et al., 2002; Silvestri
et al., 2005) that have been shown to act in combination
to induce UCP3-mediated uncoupling (Echtay et al., 2002;
Lombardi et al., 2008, 2010). A single administration of
T3 to hypothyroid rats induces parallel increases in (i)
whole animal resting metabolic rate, (ii) SKM mitochondrial
UCP3 content, and (iii) SKM mitochondrial uncoupling, thus

indicating the importance of UCP3 in the regulation of rat
resting metabolic rate by T3 (de Lange et al., 2001; Flandin
et al., 2009). UCP3 is also involved in mitigation of reactive
oxygen species production (Brand and Esteves, 2005) and
counteracting lipotoxicity induced by accumulation of FA and
lipid hydroperoxides in the mitochondrial matrix (Goglia and
Skulachev, 2005; Schrauwen et al., 2006; Lombardi et al.,
2010). Thus, the upregulation of UCP3 by T3 would alleviate
mitochondrial damage resulting from chronic mitochondrial
activation associated with hyperthyroidism.

3,5-T2 Affects Mitochondrial Oxidative
Phosphorylation in SKM
The administration of T2 to hypothyroid rats rapidly enhances
both coupled and uncoupled respiration with mechanisms
that are independent of de novo transcription and translation
(Lombardi et al., 2007). Indeed, T2 promotes activation of the
kinetics of the reactions involved in the oxidation of substrates
(among these respiratory chain), while not primarily influencing
reactions involved in the synthesis and export of ATP (Lombardi
et al., 2007, Figure 2).

The mechanism by which T2 affects uncoupled mitochondrial
respiration mainly involves proton leak, since T2 does not affect
redox slip nor induce any significant change in the overall
respiratory chain H+/O ratio (Lombardi et al., 2007). Contrary to
what is observed for T3, T2 does not activate basal proton-leak,
rather its effect is totally dependent on FA presence (Lombardi
et al., 2009a, 2012). Although, it is clear that T2 promotes FA-
inducible proton-leak, the molecular component involved have
not been individuated yet (Figure 2).

Thyroid Hormones Influence SKM
Mitochondrial Lipid Handling

Alterations in thyroid state are associated with changes in energy
demand, with SKM adapting its metabolism by modulating
substrate utilization. In the hypothyroid state, SKM enhances FA
import into myocytes, a process associated with a decrease in
the ability of mitochondria to use FA as fuel and enhancement
of oxidative phosphorylation efficiency. Thus, the imbalance
between FA supply and oxidation leads to accumulation of intra-
myocyte triglycerides (Lombardi et al., 2012). On the other hand,
in the hyperthyroid condition, an increase in FA uptake into
myocytes is associated with a rise in FA oxidation, which becomes
less efficient because of proton-leak activation. Consequently,
FAs are not deposited as triglycerides (Lombardi et al., 2012,
Figure 2).

T3 Affects Mitochondrial Fatty Acid Oxidation
More processes are crucial for SKMmitochondrial FA oxidation,
which include FA availability to mitochondria, import of acyl-
CoA into the mitochondrion, mitochondrial oxidative capacity,
and feedback inhibition by intermediates present in the FA
oxidation pathway. T3 influences all the cited processes. Indeed,
it promotes mitochondrial localization of FAT/CD36 (Lombardi
et al., 2012), known to increase FA supply to the mitochondria
(Holloway et al., 2009). This event is coordinated with the import
of acyl-CoA into the mitochondria, obtained by activation of
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FIGURE 2 | Schematic representation of signaling and biochemical

pathways activated by T3 and/or T2 in skeletal muscle that

promote variations in substrate metabolism, lipid handling, and

thermogenesis at the mitochondrial level. If not accompanied by T3

or T2, the symbol + indicates that the pathway is stimulated by both

iodothyronines. T3 and T2 activate processes leading to the import of

FFA and their oxidation at the mitochondrial level, with FAT/CD36

playing a role. Through activation of AMPK-ACC signaling pathway, T2

and T3 relieves the inhibition of CPT1 by malonyl-CoA, and thus

promote the entrance of fatty acids into mitochondria and their

oxidation. The rise in MTE activity, would contribute to maintain a high

level of fatty acid oxidation rate. The box represents processes,

occurring at the level of mitochondrial inner membrane, underlying

coupled and uncoupled respiration affected by T3 and T2.

the carnitine-palmitoyl-transferase (CPT) complex (considered
a rate-limiting step for FA uptake into mitochondrion). T3
modulates transcription of CPT complex components (e.g.,
CPT-1 and -2, Silvestri et al., 2005). In addition, in SKM, T3
promotes AMPK activation and inhibition of its downstream
target, acetyl-CoA carboxylase (ACC, Branvold et al., 2008; de
Lange et al., 2008; Irrcher et al., 2008). ACC inhibition leads to
a reduction in malonyl-CoA levels that inhibits CPT-1 activity.
Thus, the activation of AMPK-ACC-malonyl-CoA signaling
leads to sequential enhancement of CPT-1 activity, mitochondrial
acyl-CoA uptake, and oxidation (de Lange et al., 2008,
Figure 2).

Mitochondrial Lipid Handling and Uncoupling:
Interrelated Role in Mediating the Effect of T3 on
SKM Mitochondria
Inside mitochondria, a rise in NADH/NAD+ and CoA-
SH/acetyl-CoA ratios, as well as accumulation of β-oxidation

intermediate metabolites, can cause feedback inhibition of
the β-oxidation pathway (Koves et al., 2008). The T3-
induced uncoupling effect contributes to maintaining the
above ratios at low levels and thus, functioning to sustain
an elevated mitochondrial FA oxidation rate. Furthermore,
the activation of SKM intra-mitochondrial thioesterase (MTE;
catalyzes cleavage of acyl-CoA to CoA and free FA) by
T3 (Silvestri et al., 2005) contributes to sustaining a high
FA oxidation rate, since it maintains a high CoA/acetyl-
CoA ratio and supplies CoA, whose pool is limited, for β-
oxidation. Intra-mitochondrial production of FA, catalyzed
by MTE, could play a role in FA-induced proton leak
activated by T3. Thus, an interlink between lipid-handling and
mitochondrial uncoupling coexists: the activation of uncoupling
could facilitate the FA oxidation rate and, at the same time,
the increase availability of FA to mitochondria, associated
with lipid handling, would promote FA-induced mitochondrial
uncoupling.
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T2 Affects SKM Fatty Acid Oxidation
The rapid stimulatory effect of T2 on mitochondrial respiration
seems to be specific to FA metabolism, since T2 does not
influence mitochondrial ability to use pyruvate as a substrate
(Lombardi et al., 2009a). T2 has an effect similar to that induced
by T3 in increasing SKM FA uptake and channeling FAs to
mitochondria and increasing their oxidation. Indeed, T2 and
T3 activate translocation of FAT/CD36 from cellular depots
to the sarcolemma and mitochondria, each in a very rapid
fashion. In this aspect, the two iodothyronines seem to mimic the
effect of physical exercise, which influences FAT/CD36-mediated
transport of lipids across the sarcolemmal membrane and into
the mitochondria (Holloway et al., 2009).

Although both T2 and T3 increase the SKM mitochondrial
FA oxidation rate in hypothyroid rats, the onset of CPT and
mitochondrial respiratory pathway activation differ since the two
processes were already activated 1 h after T2 administration,

whereas T3 was ineffective at that time point (Lombardi et al.,
2012). Within 1 h, T2 rapidly activated the AMPK-CPT-malonyl-
CoA signaling pathway that leads to enhancement of FA uptake
in mitochondria via increased CPT-1 activity (Figure 2). Rapid
activation of MTE-1 and proton-leak by T2 would contribute to
maintaining high FA oxidation rates (Lombardi et al., 2009b).

Conclusions

SKM mitochondrial physiology is profoundly affected by the
thyroid state and underlies a significant part of the metabolic
effects induced by T3. The recent discovery of T2 as a
metabolically active thyroid hormone derivatives indicates
that thyroid physiology is continually evolving. These novel
aspects of thyroid physiology could reveal new perspectives
for understanding the contribution of SKM mitochondria to
different thyroid states.
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