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Nutritional interventions to augment
resistance training-induced skeletal
muscle hypertrophy
Robert W. Morton, Chris McGlory and Stuart M. Phillips *

Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada

Skeletal muscle mass is regulated by a balance between muscle protein synthesis (MPS)

and muscle protein breakdown (MPB). In healthy humans, MPS is more sensitive (varying

4–5 times more than MPB) to changes in protein feeding and loading rendering it the

primary locus determining gains in muscle mass. Performing resistance exercise (RE)

followed by the consumption of protein results in an augmentation of MPS and, over

time, can lead to muscle hypertrophy. The magnitude of the RE-induced increase in

MPS is dictated by a variety of factors including: the dose of protein, source of protein,

and possibly the distribution and timing of post-exercise protein ingestion. In addition,

RE variables such as frequency of sessions, time under tension, volume, and training

status play roles in regulating MPS. This review provides a brief overview of our current

understanding of how RE and protein ingestion can influence gains in skeletal muscle

mass in young, healthy individuals. It is the goal of this review to provide nutritional

recommendations for optimal skeletal muscle adaptation. Specifically, we will focus on

how the manipulation of protein intake during the recovery period following RE augments

the adaptive response.

Keywords: muscle protein synthesis, strength, protein balance, leucine, whey, anabolism

Introduction

Beyond its role in locomotion, skeletal muscle is the largest site of postprandial glucose disposal, a
large site of lipid oxidation, and a substantial contributor to resting metabolic rate (for review see
Wolfe, 2006). As a result, considerable research using stable isotopic tracers has been conducted
that has aimed to understand the biology of muscle protein turnover in response to various stimuli.
What this work has shown us is that the size of human muscle mass is dictated by diurnal changes
in rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB) (Phillips, 2004).
In the rested, fasted state, rates of MPB exceed those of MPS and thus skeletal muscle is in a
state of negative net protein balance (Biolo et al., 1995b). However, in response to amino acid
(AA) or protein feeding, there is a significant but transient increase in rates of MPS and no
significant change in MPB rendering skeletal muscle in a state of positive net protein balance
(Biolo et al., 1997; Phillips, 2004). It is the relative contribution of these fed and fasted periods
to overall net protein balance that dictates skeletal muscle mass homeostasis over time (Phillips,
2004).

In addition to the protein feeding-induced increases in MPS, resistance exercise (RE) also
imparts a positive impact on skeletal muscle size (Chesley et al., 1992; Yarasheski et al., 1993;
Cermak et al., 2012). Indeed, a single bout of RE in the fasted state significantly increases rates
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of MPS, however, this rise in MPS is not enough to promote
a positive net protein balance (Biolo et al., 1995b). Instead,
RE serves to potentiate MPS in response to AA feeding (Biolo
et al., 1997), an effect that may persist for up to 24 h (Burd
et al., 2011). Therefore, repeated bouts of RE and protein
feeding result in skeletal muscle hypertrophy (Cermak et al.,
2012). What remains largely unknown is what the most anabolic
or sensitizing RE protocol is. Moreover, data pertaining to
the optimal dose, timing and quality of protein intake to
optimize post-RE muscle anabolism have only recently enabled
appropriate recommendations to bemade. The aim of this review
is to concisely summarize these data as well as discuss new
evidence with regards to RE prescription for muscle hypertrophy.
We do not provide a comprehensive overview of the cellular and
molecular mechanisms regulating cell size but refer the interested
reader to other reviews on this topic (Adams and Bamman, 2010;
Egan and Zierath, 2013; Blaauw and Reggiani, 2014).

Protein Dose

The first study to examine a protein dose-response relationship
with MPS following RE was conducted by Moore et al. (2009).
Moore et al. (2009) fed whole-egg proteins after a bout of
RE to healthy young men with a wide range of resistance-
training experience (4 months to 8 years). The authors found
that after a bout of unilateral lower-body RE the MPS response
plateaued with ingestion of 20 g of protein such that there was
no statistically significant benefit toward MPS with the ingestion
of 40 g (Moore et al., 2009). Alternatively phrased, ingestion
of 20 g of protein resulted in 89% of the response conferred
by ingestion of 40 g. In young, resistance-trained (≥6 months
previous weight-lifting experience) men 20 g of whey protein
following unilateral RE was also shown to sufficiently stimulate
post-absorptive MPS with no further increase ingesting 40 g
(Witard et al., 2014a). It appears that 20 g of whey protein
(or ∼0.25 g protein/kg) is an ample amount of protein to ingest
for healthy young men both at rest (Cuthbertson et al., 2005) and
after exercise (Moore et al., 2009) regardless of training status
(Witard et al., 2014a). Similar results have also been found at
rest using whole food (90% lean ground beef) in young men and
women where a moderate (∼30 g protein) amount was just as
effective as a high (∼90 g protein) amount at stimulating MPS
(Symons et al., 2009). Altogether, these results suggest that 20 g is
the maximally effective protein dose per meal in healthy, young
individuals. Protein consumed beyond this level is oxidized at a
higher rate (Moore et al., 2009; Witard et al., 2014a) and results
in urea production (Witard et al., 2014a) indicating there is a
limit of AAs that can be used for MPS. The theory behind why,
with increasing protein doses, there is a ceiling on MPS has
been termed the “muscle full effect” (Atherton et al., 2010). It is
important to acknowledge that these dose-response studies have
been limited to lower limb RE and thus it remains unknown as
to whether the absolute dose of protein required to maximally
stimulate rates of MPS following whole-body RE is >20 g.

In this respect, we have refined the estimates for protein to
a dose that is expressed per kilogram of body mass or even
lean body mass (Moore et al., 2015). Using a two-phase linear

regression model we reported that the dose of protein beyond
which there was no further increase in MPS in young men was
0.25 g/kg/meal (90% confidence interval 0.18–0.3 g/kg/meal). To
account for inter-individual variability we propose the addition
of two standard deviations to our estimate, yielding a dose
of protein that would optimally stimulate MPS at intake of
0.4 g/kg/meal. In our view, ingestion of protein beyond this dose
would result in no further stimulation of MPS. The effects of
AA ingestion beyond that needed to maximally stimulate MPS
may include metabolic feedback regulation (Layman et al., 2015),
satiety (Leidy et al., 2015), and thermogenesis (Acheson et al.,
2011). Nonetheless, it needs to be appreciated that AA availability
at levels beyond the rate at which they can be used for protein
synthesis or other AA-requiring processes means that the amino
nitrogen will be used for ureagenesis (Price et al., 1994; Witard
et al., 2014a).

Changes in MPS are much greater (4–5 times) in response
to stimuli such as contraction and feeding than MPB in healthy
humans (Phillips et al., 1997, 2009; Rennie et al., 2004). It has
been theorized that defining the protein dose that optimally
stimulates MPS is insufficient to accurately characterize the true
“anabolic potential” of protein-containing meals (Deutz and
Wolfe, 2013). Citing data from whole-body protein turnover
Deutz and Wolfe made the case that larger doses of protein
can still be more anabolic than smaller doses due to a marked
suppression of protein breakdown (Deutz and Wolfe, 2013).
The problem in translating these findings to skeletal muscle
is that non-muscle tissues dominate whole-body measures of
protein turnover, with muscle accounting for only 25–30% of
whole body protein turnover (Nair et al., 1988). Thus, even if
there is increasingly positive whole-body protein balance with
protein doses higher than what we are recommending here we
propose that those would be predominantly due to suppression
of proteolysis in non-muscle tissues. Even if 25–30% of the
suppression of whole-body proteolysis with larger protein doses
(Deutz and Wolfe, 2013) were from skeletal MPB such potential
gains would be, in our estimation, unlikely to impart a marked
benefit in terms of stimulating muscular hypertrophy. While
such a conclusion awaits experimental confirmation we propose
that marked suppression of proteolysis may not be an optimal
strategy to pursue for those engaging in RE. In our opinion, given
the multiple mechanisms damaging muscle during exercise, a
higher rate of protein turnover (and not persistently suppressing
proteolysis) would provide a more efficient mechanism for the
removal of damaged proteins.

Timing of Protein Ingestion

We have known for some time that RE alone results in a long-
lasting elevation in MPS for at least 48 h and MPB for 24 h
(Phillips et al., 1997); thus, even in the basal fasted state there is a
subsequent increase in the turnover of muscle proteins. RE alone
elevating basal MPS will “prime” the muscle to be responsive,
in terms of an increased sensitivity of MPS, to aminoacidemia.
The duration of this sensitivity is at least 24 h (Burd et al.,
2011) and, based on the similar protein dose thresholds (Moore
et al., 2009; Witard et al., 2014a), we predict no difference in
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sensitivity between untrained and trained individuals. Given the
sensitizing effect of RE, we conclude it is most advantageous to
ingest protein and generate hyeraminoacidemia in the post-RE
period.

Some have postulated that pre-exercise protein ingestion
may also “prime” the system and offer some advantage over
a post-exercise supplementation strategy. However, ingesting
20 g of whey protein either before or 1 h after 10 sets of
leg extension resulted in similar rates of AA uptake (Tipton
et al., 2007). In other studies there was no benefit shown
with pre-exercise AA feeding (Fujita et al., 2009; Burke et al.,
2012a). Considering the synergistic response of aminoacidemia
following RE (Biolo et al., 1997; Burd et al., 2011), we see
it as being optimal to ingest protein immediately following
RE. Moreover, we speculate pre-exercise aminoacidemia may
blunt the subsequent post-RE MPS response to AAs due to an
overlap in the aminoacidemic responses and a muscle full effect
(Atherton et al., 2010).

There is only one study to date that has supplemented with
protein during exercise and examined the MPS response (Beelen
et al., 2008). Beelen and colleagues supplemented young men
during an extended RE workout. The supplements were taken
before and every 15min during exercise providing 0.15 g/kg/h
carbohydrate with or without 0.15 g/kg/h casein hydrolysate.
There was a greater MPS response with carbohydrate plus
protein ingestion, which was most likely due to the protein;
however, the extra total energy cannot be discounted as a factor
(Beelen et al., 2008). Evidence suggests that during-exercise
consumption of protein may be beneficial though once again we
counsel caution on this practice as the additional post-exercise
hyperaminoacidemia may be less effective due to the muscle full
effect.

A recent meta-analysis examining protein timing and
hypertrophy concluded that the ingestion of a post-exercise
supplement in closer temporal proximity to RE positively
influenced hypertrophy (Schoenfeld et al., 2013); however,
after adjustment for all covariates, the authors concluded
that total protein intake was the strongest predictor of
muscular hypertrophy and that protein timing did not influence
hypertrophy. Nonetheless, practical advice would dictate that
the post-exercise period is a time when rehydration, refueling
(carbohydrate), and repair (3R) of damaged tissues should occur.
We propose that it is still a pragmatic message to tell athletes to
ingest fluid, carbohydrates, and protein to accomplish the goals
defined by the 3R.

How protein should be consumed throughout the day is
matter of debate. In an acute study, an “intermediate” pattern
of whey protein ingestion (4 × 20 g every 3 h) throughout a
12 h recovery period post-RE was found to be more effective
than ingestion of large boluses (2 × 40 g every 6 h) or a pulse
(8 × 10 g every 1.5 h) protocol at stimulating MPS (Areta et al.,
2013). These results are in agreement with the muscle full effect
where, when AA delivery is sufficient (∼20 g), AAs are no longer
used for MPS and are targeted for oxidation (Moore et al., 2009;
Atherton et al., 2010; Witard et al., 2014a). However, many
studies examining the impact of protein feeding on MPS either
infuse AAs or provide protein in a bolus form. Though these

are an efficient and direct way to provide protein in a laboratory
setting, it is not how protein is consumed in the applied
setting (i.e., a mixed macronutrient meal). The macronutrient
composition and form of meal intake may influence both the
meal-induced rise in hyperaminoacidemia and protein synthesis
(Burke et al., 2012b). It is also important to, when considering
the distribution of protein throughout the day, acknowledge that
the recommended dietary allowance for the United States and
Canada is 0.8 g/kg/day, which, for an 80 kg individual, would
equate to only 64 g of protein per day. Future studies should
focus onmixedmacronutrients meals and rates of muscle protein
turnover over a longer period of time.

Pre-sleep feeding is a time when protein provision may
provide a marked benefit to remodel muscle proteins. Ingestion
of 40 g of casein protein before bed stimulates MPS and improves
net protein balance overnight in healthy young men (Res
et al., 2012). Recently, a 12 week progressive RE training study
showed that a pre-sleep casein beverage (27.5 g protein, 15 g
carbohydrate, 0.1 g fat) in comparison with a placebo beverage
augmented muscle mass, muscle fiber area, and strength gains
(Snijders et al., 2015). However, the control group in this study
did not receive a protein supplement resulting in a 0.6 g/kg
difference in total protein intakes (1.3 vs. 1.9 g/kg/d), which some
would argue would confer an advantage to the supplemented
group regardless of when the protein was consumed. This may be
the case and we acknowledge that 1.3 g/kg/d does not fall within
even our recommendations for a protein intake that appears to
be optimal for hypertrophy (Phillips, 2014a). Nonetheless, it is
interesting to note that in a meta-analysis done by Cermak et al.
(2012) only 3 of the 16 studies she analyzed showed statistically
significant gains in lean mass with protein supplementation in
young persons. While there were a further 4–5 studies that
approached statistical significance, the fact that only 3 (19%)
of the studies [one of which was in women in a hypoenergetic
state (Josse et al., 2011)] independently reported augmented
hypertrophy with protein supplementation shows that protein’s
effect on hypertrophy is small compared to the stimulus of the
exercise itself. The point we make here is that the magnitude
of the effects seen by Snijders et al. (2015) are impressive even
considering the extra protein ingested and so we propose that
the pre-sleep timing of the protein supplement was as, if not
more, important as the higher protein intake of the supplemented
group.

Altogether, we propose that the timing of protein intake is
an important variable to consider in optimizing skeletal muscle
recovery and hypertrophy. It appears optimal to ingest protein
in the post-exercise period though the purported “anabolic
window” for protein ingestion lasts at least 24 h (Burd et al.,
2011) and does not have as drastic an effect on outcomes
as has been believed (Schoenfeld et al., 2013). It is also
important to ingest protein in sufficient doses (∼0.4 g/kg/meal)
distributed throughout the day (Areta et al., 2013). Lastly,
ingesting AAs in larger doses of protein (40 g casein or up
to 0.6 g/kg/meal) pre-sleep appears to augment both acute
overnight MPS (Res et al., 2012) and chronic skeletal muscle
adaptations (Snijders et al., 2015). We wish to emphasize,
however, that the magnitude of gains that are attributable to
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protein supplementation compared to the overall gains made as
a result of the RE training program itself appear to be relatively
small.

Protein Quality

There are inherent differences in quality between the three most
commonly consumed isolated protein sources: soy, casein, and
whey. Proteins such as whey and soy are digested relatively
rapidly, resulting in rapid aminoacidemia, and induce a larger
but more transient rise in MPS than casein (Tang et al.,
2009; Reitelseder et al., 2011). Whole-body protein synthesis is
stimulated more with whey protein whereas whole-body protein
breakdown is suppressed with ingestion of casein (Boirie et al.,
1997). After ingestion of isolated casein, soy and whey protein
(all providing 10 g EAA) the acute (3 h) rise in MPS was found
to be greatest with whey protein both at rest and following
exercise (Tang et al., 2009). Interestingly, soy protein had higher
MPS than casein at both rest and after exercise as well (Tang
et al., 2009). It appears that at least up to 3 h post-RE the most
effective protein source is whey (Tang et al., 2009). Even for
those considering weight loss, after 2 week of being hypocaloric,
habitual daily consumption of whey (54 g) is more effective than
soy at offsetting the decline in the postprandial MPS response
(Hector et al., 2015).

In an effort to elucidate the attenuated anabolic response with
casein supplementation, we evaluated the rates of MPS after a
bout of RE with either a single bolus (25 g) or small pulses every
20min (2.5 g) of whey protein (West et al., 2011). The 25 g bolus
of whey protein lead to higher MPS between both 1–3 and 3–
5 h post-exercise (West et al., 2011). The rapid and immediate
bolus may be increasing EAA delivery to the muscle, specifically
leucine, to a certain threshold that is triggering a MPS and the
associated anabolic pathways. Indeed, blends of protein (1:2:1,
whey:casein:soy) were later shown, when leucine content was
matched, to be as effective as whey in stimulating MPS (Reidy
et al., 2013). Furthermore, participants given 25 g of whey protein
or 6.25 g whey with 5 g leucine added showed an increased MPS
at rest and after RE to a similar extent despite a four-fold lower
protein dose (Churchward-Venne et al., 2014). It appears that the
leucinemia (and quite possibly the ensuing intramuscular leucine
concentration) is the driver of the MPS response and thus the
recovery process. The addition of isoleucine and valine (the other
branched-chain AAs) does not improve MPS (Churchward-
Venne et al., 2014). This response is an underappreciated result
considering many supplements contain combinations of the
branched-chain AAs, which, based on our data, would not be
advantageous to consume co-temporally because they share the
same transporter (Hyde et al., 2003). Thus, as we speculated
(Churchward-Venne et al., 2014), consumption of crystalline
BCAA resulted in competitive antagonism for uptake from the
gut and into themuscle andwas actually not as effective as leucine
alone in stimulating MPS. Despite the popularity of BCAA
supplements we find shockingly little evidence for their efficacy
in promoting MPS or lean mass gains and would advise the use
of intact proteins as opposed to a purified combination of BCAA
that appear to antagonize each other in terms of transport both

into circulation and likely in to the muscle (Churchward-Venne
et al., 2014).

It appears that post-exercise MPS, measured within 3 h, is
optimized by protein ingestion that contains a high leucine
content where proteins are rapidly digested (i.e., whey) (Tang
et al., 2009). The slower and more protracted aminoacidemia
accompanying the ingestion of casein protein (Pennings et al.,
2011), shown in pre-sleep protein ingestion studies (Res et al.,
2012; Snijders et al., 2015), may be more effective at sustaining
MPS and possibly at attenuating negative net protein balance
(although all data to date on this mechanism are at the whole-
body level) over longer periods of time. We propose the
differences between protein sources in their ability to stimulate
MPS are a combination of both the delivery (digestion) and
AA composition of the protein, in particular leucine content.
The AA composition in whey is superior to that of soy likely
due to an increased leucine content (Tang et al., 2009). Lastly,
there appears to be a leucine “threshold” for stimulation of MPS
that is around ∼3 g of leucine per meal (Churchward-Venne
et al., 2014), which may be determining the per meal protein
recommendation of∼0.4 g protein/kg.

Protein and Carbohydrate Co-ingestion

The purpose of carbohydrate (CHO) co-ingestion with protein is
to stimulate insulin release beyond that seen with AA ingestion
alone with the idea that insulin improves net protein balance.
Indeed, local insulin infusion at rest increases MPS (Biolo et al.,
1995a, 1999; Hillier et al., 1998) and blood flow (Biolo et al.,
1999). When insulin is infused along with AAs there is an
increase in MPS (Bennet et al., 1990; Hillier et al., 1998) and
slight attenuation of MPB (Bennet et al., 1990) beyond that of
just AA ingestion (Bennet et al., 1990) or insulin infusion (Hillier
et al., 1998). However, following RE, insulin infusion has no
effect on blood flow or MPS, though the slight suppression of
MPB remains (Biolo et al., 1999). Coinciding with the previous
finding (Biolo et al., 1999), in response to a single bout of RE,
the ingestion of CHO alone has no effect on MPS, but attenuates
MPB (Roy et al., 1997; Børsheim et al., 2004). However, co-
ingesting CHO with AA/protein following RE has no further
stimulatory effects on MPS and does not suppress MPB so long
as protein is adequate (∼25 g) (Koopman et al., 2007; Glynn
et al., 2010; Staples et al., 2011). These results indicate that when
performing RE and providing adequate protein there is no benefit
of co-ingesting CHO on stimulating MPS. This is most likely
because the level of insulin required for optimal stimulation
of MPS is remarkably low (Greenhaff et al., 2008; Trommelen
et al., 2015) (i.e., 10–15 IU/ml), only 2–3 times basal resting levels
for most healthy persons, which is easily reached with even a
small dose of protein. With lower doses of protein (i.e., <0.25 g
protein/kg), however, CHO ingestion may impact net protein
balance via the ability to increase systemic insulin and suppress
MPB and/or enhance AA delivery to the muscle, but we need to
experimentally test this thesis. We conclude that while ingestion
of CHO post-exercise would be necessary to replenish depleted
glycogen stores we do not see a strong need to recommend
CHO on top of protein to be consumed post-exercise. It appears
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that even in a glycogen-depleted state protein is still effective
at stimulating MPS following resistance exercise (Camera et al.,
2012) and that only a minimal level of insulin is required to
achieve optimal rates of MPS (Greenhaff et al., 2008).

Training Status

Training “age” may be an important variable impacting the
quantity and duration of the anabolic response following RE.
Compared to untrained participants, trained individuals have
attenuated post-RE MPS and MPB resulting in less total muscle
protein turnover (Phillips et al., 1999). A study by Tang et al.
(2008) had participants train one leg for 8 week while the other
served as the control. After the 8 week intervention, an acute bout
of exercise stimulated a longer MPS response in the untrained or
control leg relative to the trained leg suggesting an attenuation
of the duration (but not magnitude) of MPS with training (Tang
et al., 2008). Following a similar study design, after 8 weeks
Kim et al. (2005) found an attenuation in mixed MPS in the
trained leg, though myofibrillar protein synthesis remained the
same. This finding is similar to that of Wilkinson et al. (2008)
indicating a training-induced refinement, and perhaps efficiency,
of post-exercise MPS. For a comprehensive review on the topic
of training status and how it affects the MPS response and time
course see Damas et al. (2015). The general conclusion from
this review is that RE training reduces not the amplitude but
the duration of the MPS response (Damas et al., 2015). This
may in fact highlight that maximizing hypertrophic potential in
the trained state may require greater focus on the post-exercise
period for protein provision.

Despite the wealth of studies relating to the role of protein
in augmenting the adaptive response to resistance exercise,
relatively little has been conducted to identify whether resistance-
trained individuals require greater relative post-exercise or daily
protein consumption compared to those who are untrained.
Data exist to suggest that athletes performing intensive periods
of training may benefit from increased protein intake from
the perspective of supporting immune function (Witard et al.,
2014b). Moreover, those who engage in weight-categorized
competition or sport may benefit from increased dietary protein
intake (Mettler et al., 2010; Areta et al., 2014; Phillips, 2014b).
However, asmentioned above, the post-REMPS response reaches
a maximum at 20 g or∼0.25 g/kg in both untrained (Moore et al.,
2009) and trained (Witard et al., 2014a) young men. Whether
or not these results hold true when performing whole-body RE
has yet to be determined. We direct the interested reader to
the following papers for more discussion on the topic: (Phillips
and van Loon, 2011; Phillips, 2012, 2014b). The opinions of
these reviews suggest that resistance-training athletes may benefit
from larger protein intakes higher than the recommended dietary
allowance in the range of 1.3–1.8 g/kg/day (Phillips and van Loon,
2011; Phillips, 2012, 2014b). Nonetheless, the training regimens
of the modern athlete are often interdisciplinary in nature and
it is therefore critical to appreciate the context of the research,
athlete, and training paradigm before making recommendations
regarding “optimal” protein intake. Regardless, consideration for
the “3R” approach should be common practice.

Resistance Exercise Program Variables
and Training

Different skeletal muscle adaptations are induced by RE training
than endurance training (Egan and Zierath, 2013). In this regard,
we have shown that after 10 week of RE training, performing a
single bout of RE increases myofibrillar, but not mitochondrial,
protein synthesis whereas synthesis in both protein pools were
acutely stimulated by RE in the pre-trained state (Wilkinson
et al., 2008). Furthermore, with resistance training mixed MPS
may decrease but fraction-specific adaptations (in this case
myofibrillar MPS) may actually be enhanced (Kim et al., 2005).
Indeed, it appears that the remodeling process following exercise
is specific to the type of exercise performed (Wilkinson et al.,
2008) and is tailored with training (Kim et al., 2005).

Manipulating different RE variables impacts both the acute
and chronic anabolic response. For example, when young,
resistance-trained (recreationally weight-training ≥2 times
per week for ≥2 years) men received 20 g of whey protein
after exercise, those who lifted with increased time under
tensions (12 s per repetition) had elevated MPS compared to
a repetition-matched control (2 s per repetition) (Burd et al.,
2012). Specifically, Burd et al. (2012) found that sarcoplasmic
MPS between 0 and 6 h, mitochondrial protein synthesis between
0–6 and 24–30 h, and myofibrillar protein synthesis between
24 and 30 h were all elevated with a longer time under tension
beyond that of the repetition-matched group. It is worth noting
that the repetition-matched group performing less time under
tension per repetition lifted the same relative load. Indeed,
the electromyography of the vastus lateralis indicated that the
group exercising with a longer time under tension had increased
muscle activity, and presumably muscle fatigue, toward the
end of set completion (Burd et al., 2012). We speculate that the
elevated MPS response to the longer time under tension is a
result of increased motor unit recruitment which may be linked
to muscle damage/remodeling (Proske and Morgan, 2001);
however, we acknowledge we do not have experimental support
for our proposed mechanisms. Interestingly, we have reported
that when recreationally-active participants performed leg
extensions at either 30 or 90% of their one-repetition max (1RM)
to contractile failure there was an equal increase in mixed MPS
(Burd et al., 2010). Additionally, 24 h after the RE bouts there
was elevated myofibrillar MPS in only the 30% group (Burd et al.,
2010). Not surprisingly, the 30% group had to perform more
repetitions to achieve contractile failure and thus accumulated
significantly more time under tension. Another study from
our laboratory investigated this same principle over a 10 week
period of training (Mitchell et al., 2012) in healthy but untrained
young men and showed that the acute changes in MPS (Burd
et al., 2010) mirrored those seen with training (i.e., equivalent
hypertrophy). Though time under tension was not measured,
it was concluded that regardless of the load lifted, performing
RE to volitional failure results in hypertrophy (Mitchell et al.,
2012). It appears that reaching contractile failure is required for
optimal skeletal muscle growth. This can be achieved regardless
of the repetition load. Manipulating variables such as time
under tension or repetition-load may accelerate the time it takes
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to reach contractile failure by increasing muscle fatigue and
enhancing the rate of motor unit recruitment, but they do not
likely individually enhance MPS.

In contrast to current recommendations (American College of
Sports Medicine, 2009), we propose that an important variable
to consider in regards to the optimization of MPS and the
subsequent hypertrophic response is to ensure, regardless of the
load lifted, that loads are lifted to the point of contractile failure.
Contractile failure, particularly when lifting lighter loads, often
occurs when there is significant muscle fatigue and motor unit
activation. Motor unit activation refers to the size and quantity
of motor units recruited. The term “muscle fatigue” is frequently
misinterpreted. Fatigue is the inability to produce maximal force;
thus, muscle fatigue is the inability of recruited motor units to
generate their maximal force output (Stephens and Taylor, 1972;
Dorfman et al., 1990). Significant muscle fatigue is reached by
activating and exhausting a full cadre of motor units (and thus
fiber types) and, regardless of any RE variable, requires a high
degree of effort. From a broad prescriptive standpoint, we have
emphasized the need for a high degree of effort in performing RE
(Phillips and Winett, 2010). We propose that the manipulation
of a multitude of RE variables may mean much less in terms of
stimulating hypertrophy than simply exerting a high degree of
effort to achieve contractile failure.

Relatively high (70–100% 1RM) training loads have been
proposed to induce greater muscle hypertrophy (Campos et al.,
2002; American College of Sports Medicine, 2009) than lower
loads due to the increased mechanical loading and demand
for fiber recruitment. However, as muscle fibers fatigue their
motor units drop out and cease firing; a process that necessitates
different motor units to be recruited to preserve the required
force (Dorfman et al., 1990; Moritani et al., 1992). This is, at
least partially, why surface electromyography and motor unit
activation increase with muscular fatigue (Dorfman et al., 1990)

and why similar hypertrophic adaptations are seen with varying
external loads (Schoenfeld et al., 2014). Though lower loads may
not initially need to recruit the larger motor units (innervating
fast-twitch fibers) like higher loads may, with significant muscle
fatigue there is an accompanied “dropout” of the smaller motor
units (innervating slow-twitch fibers) such that subsequent
contractions will be obliged to recruit additional (larger) motor
units. If comparable motor units are activated and both groups
are exercising until contractile failure it seems reasonable that
similar adaptations are seen between low- and high-load RE
training (Schoenfeld et al., 2014). However, we hypothesize
that muscle fatigue (inability to generate maximal force) is
not as important as motor unit activation in inducing muscle
hypertrophy. For example, to reach contractile failure exercising
at ∼30% 1RM one would have to achieve ∼70% muscle fatigue.
In contrast, to reach contractile failure at ∼70% 1RM, an
individual would only achieve∼30%muscle fatigue. Thusmuscle
fatigue, albeit rendering an increase in motor unit activation,
cannot be the most important determinant of the skeletal muscle
response to RE if low- and high-load RE are inducing similar
MPS (Burd et al., 2010) and hypertrophy (Mitchell et al., 2012).
Instead, we hold on to the hypothesis that reaching contractile
failure is what drives skeletal muscle adaptation (see Figure 1).
We emphasize that it is naïve to prescribe moderate-heavy loads
as the only way to induce muscle hypertrophy (American College
of Sports Medicine, 2009). We also acknowledge that, as Mitchell
et al. (2012) has shown, there may be a neuromuscular effect
where the practice of lifting heavier loads over longer durations
stimulates greater improvements of muscular strength. This is
potentially due to a lack of inhibition on afferent feedback
(Amann et al., 2009), but future research is required to be certain.

A number of meta-analyses on the impact of different RE
program variables on muscle strength and hypertrophy are
available (Peterson et al., 2005; Krieger, 2010; Schoenfeld et al.,

FIGURE 1 | Schematic showing how resistance exercise variables and protein ingestion can impact muscle protein turnover. MPS, muscle protein

synthesis; MPB, muscle protein breakdown; PRO, protein.
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2014, 2015). The conclusion, on examination of these analyses
(Peterson et al., 2005; Krieger, 2010; Schoenfeld et al., 2014,
2015), would be that exercise volume (load × sets × reps) and
training frequency (sessions per week) are important variables
that affect the hypertrophic response and to this list we would
propose the addition of effort. Contrary to popular belief, muscle
hypertrophy may not be significantly influenced by resistance
exercise load (Schoenfeld et al., 2014). This is despite 7 out of
the 11 studies being volume equated, essentially suggesting the
participants in the low-load groups did not train until contractile
failure (Schoenfeld et al., 2014). We recognize there are many
other variables that are manipulated to maximize changes in

muscle mass, however, we hypothesize that these are largely moot
when contractile failure is reached. Instead of any particular
medley of RE variables, we propose that muscular hypertrophy
is fundamentally driven by maximal motor unit recruitment and
exercising until contractile failure.
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