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Mathematical modeling of excitation-contraction coupling (ECC) in ventricular cardiac

myocytes is a multiscale problem, and it is therefore difficult to develop spatially detailed

simulation tools. ECC involves gradients on the length scale of 100 nm in dyadic

spaces and concentration profiles along the 100µm of the whole cell, as well as the

sub-millisecond time scale of local concentration changes and the change of lumenal

Ca2+ content within tens of seconds. Our concept for a multiscale mathematical model

of Ca2+ -induced Ca2+ release (CICR) and whole cardiomyocyte electrophysiology

incorporates stochastic simulation of individual LC- and RyR-channels, spatially detailed

concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and

a system of partial differential equations for myoplasmic and lumenal free Ca2+ and

Ca2+-binding molecules in the bulk of the cell. We developed a novel computational

approach to resolve the concentration gradients from dyadic space to cell level by using

a quasistatic approximation within the dyad and finite element methods for integrating

the partial differential equations. We show whole cell Ca2+-concentration profiles using

three previously published RyR-channel Markov schemes.

Keywords: cardiomyocyte, dyad, calcium cycling, stochastic, spatially resolved cell model, FEM

1. Introduction

Cardiomyocyte muscle filament shortening and lengthening is a Ca2+ dependent process. The
timing of contraction is controlled through electrical excitation via a process known as excitation-
contraction-coupling (ECC). ECC is mediated through Ca2+, and is facilitated through an
amplification process known as Ca2+-induced Ca2+ release (CICR). In ventricular myocytes,
CICR is controlled locally by the colocalization of L-type Ca2+-channels (LCCs) in the T-tubule
membrane on the one side of a dyadic cleft [aka Ca2+ release unit (CRU)] and ryanodine receptor
channels (RyRs) in the junctional sarcoplasmic reticulum (jSR) membrane on the other side.
Depolarization of the plasma membrane leads to the activation of LCCs, which causes Ca2+

entry from the extracellular space into the dyadic space. The influx of Ca2+ activates RyRs,
which release Ca2+ from the sarcoplasmic reticulum (SR) (Fabiato and Fabiato, 1975). Within
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Ca2+ -release-units, Ca2+ dynamics are distinct from the
myoplasm, with steep [Ca2+] gradients and several-fold higher
[Ca2+] (Stern, 1992). The local release events (sparks) of
the ∼20,000 individual CRUs sum to produce a macroscopic
whole-cell Ca2+ transient. The CRUs are coupled through
myoplasmic Ca2+ diffusion, through SR Ca2+ diffusion, and
through the spatially homogeneous membrane voltage.

Fundamental properties of ECC/CICR are: (i) that through
a mechanism of local control of CICR, a graded LCC current
produces a graded RyR Ca2+ release (Barcenas-Ruiz and Wier,
1987; Cannell et al., 1987; Stern, 1992); (ii) high whole cell
CICR-gain at negative membrane potential V and lower whole
cell CICR-gain at positive V (Altamirano and Bers, 2007); (iii)
CICR is achieved by local Ca2+ release in highly localized cell-
subcompartments, with dyadic space [Ca2+] rising to ∼1000×
myoplasmic [Ca2+] (Koh et al., 2006) and strong gradients inside
the dyads (Tanskanen et al., 2007; Hake and Lines, 2008; Hake
et al., 2012); (iv) stochastic transition rates of LCCs depending
on membrane potential (Cleemann et al., 1998) and small
fluctuations in the number of LCCs can result in variability of AP
duration and in early after depolarization formation (Tanskanen
et al., 2005).

These properties illustrate that multiple length scales (tens of
nanometers in the dyadic space to 100µm cell size) and time
scales (sub-millisecond for [Ca2+] changes in the dyad to tens of
seconds for SR dynamics) are involved. To account for thatmulti-
scale character, recently several models with spatially distributed
Ca2+ release sites have been developed (Restrepo et al., 2008;
Restrepo and Karma, 2009; Hatano et al., 2011; Williams et al.,
2011; Nivala et al., 2012; Walker et al., 2014). These realistic
models of CICR release aim at reproducing the fundamental
properties of Ca2+ dynamics and at gaining independence
from model-simplifying assumptions as far as possible with
reasonable effort. Many of these models represent the dyadic
space by a single compartment not resolving concentration
gradients. Detailed spatially resolved models of the CRU have
been developed which represent the steep local [Ca2+] gradients
in the cleft (Koh et al., 2006; Schendel and Falcke, 2010; Hake
et al., 2012; Schendel et al., 2012; Cannell et al., 2013; Stern et al.,
2013 and others reviewed in Williams et al., 2010). However,
a detailed CRU model has not yet been coupled to whole cell
calcium dynamics and to whole cell electrophysiology, with
a detailed representation of the spatial distributions of CRUs,
challenges we address in this study.

We use mathematical multiscale techniques (Green Function,
quasistatic approximation) to simulate a computationally
efficient mathematical model of CRUs with spatially resolved
[Ca2+] and stochastic state dynamics of all individual LC-
and RyR-channels. The dynamics of up to 5120 CRUs is then
embedded into simulations of the cellular concentration fields
for Ca2+ and Ca2+-binding molecules as well as membrane
potential time course.

2. Mathematical Modeling

The mathematical model comprises a system of partial
differential equations for the cytosolic and sarcoplasmic

concentration dynamics, Nc models for the individual
CRUs and a system of ordinary differential equations
for the electrophysiology (see Figure 1). We present the
individual modules first and then describe their coupling
to a whole cell model. All parameter values are listed in
Tables 1–5.

2.1. PDE Model
The dynamics of the cytosolic Ca2+ concentration, c, comprises
of plasma membrane transport, release and uptake by the SR
and binding to buffers. Plasma membrane transport is controlled
by ion channels and the Na+/Ca2+-exchanger. The T-tubule
network is an interface to extracellular fluid in the bulk of
the cytosol due to which membrane fluxes like the Na+/Ca2+-
exchanger contribute to bulk concentration dynamics (JNaCa).
The Na+/Ca2+-exchanger flux through the plasma membrane
(J
pm
NaCa) enters the partial differential equations as flux boundary

condition. The flux Jpump describes the pumping of Ca2+ by
SERCAs into the SR. A leak flux (often denoted by Jleak)
is not included as stochastic RyR openings during diastole
account for SR leak. The Ca2+-binding molecules (bj, j =
s,m, f ) in the cytosol include stationary and mobile buffers and
Fluo-4. The total concentration btotj is spatially homogeneous

for all of the buffers. The partial differential equations
for the cytosolic concentration fields and their boundary
conditions are:

∂c

∂t
= ∇ · (D∇c)+ Jcru + JNaCa − Jpump − Jbuf (1)

∂bj

∂t
= ∇ · (D

j

b
∇bj)+ Rj

(

c, bj
)

, j = s,m, f (2)

En ·D∇c|Ŵ = J
pm
NaCa

En ·D
j

b
∇bj

∣

∣

∣

Ŵ
= 0, j = s,m, f ,

where D and D
j

b
are diagonal diffusion matrices. We denote the

plasma membrane by Ŵ, and the cell volume by νcell ⊂ R
3. We

simulate between 1 and 16 z-discs in a subvolume � < νcell. The
expressions for the fluxes are:

Jbuf =

NB
∑

j= 1

Rj
(

c, bj
)

, Rj
(

c, bj
)

= k+j

(

btotj − bj

)

c− k−j bj ,

j = s,m, f (3)

Jcru =

Nc
∑

i= 1

νcell

νcyt

2(Ricru − |Er − Eri|)
4
3π
(

Ricru
)3







Ni
LCC
∑

j= 1

I
i,j
LCC(t)+

Ni
RyR
∑

j= 1

I
i,j
RyR(t)







(4)

Jpump =
Vmax
P c2

K2
P + c2

, (5)

where 2(x) denotes the step function

2(x) =

{

0 x < 0
1 x ≥ 0

(6)
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FIGURE 1 | The modules of the model and their interaction. The mathematical model comprises a set of partial differential equations (PDEs) for the bulk

concentrations of cytosolic and sarcoplasmic free Ca2+, cytosolic and sarcoplasmic mobile buffers and a cytosolic stationary buffer. The Nc Ca2+ release units

(CRUs) are simulated all individually and are source terms in the bulk concentration dynamics PDEs. The state dynamics of each of their LC- or RyR-channels is a

continuous time Markov chain. The concentration profile in the dyadic space is modeled in spatial detail with a quasistationary approximation, the dynamics of the

concentrations of free Ca2+ and buffer in the jSR are determined by release into the cleft and refilling from the network SR (nSR). The electrophysiology model has

been developed by Mahajan et al. (2008a). The LCC current in the CRUs and the Na+/Ca2+-exchanger flux couple the membrane potential dynamics directly to the

concentration dynamics.

Ca2+ influx and release through LCC (I
i,j
LCC(t)) and RyR (I

i,j
RyR(t))

channels occurs in dyadic clefts. They are represented in the bulk
dynamics by spherical source volumes with a radius determined
by the numbers of LCCs (Ni

LCC) and RyRs (Ni
RyR) in the cleft.

Their dependence on time t is caused by their stochastic behavior
described in detail in Section 2.3. If an individual channel is open,
its current obeys Equations (18 or 19), and is 0 otherwise.

We use the bidomain concept (Keener and Sneyd, 1998)
for modeling cytosol and SR processes. It perceives both
compartments to fill the same volume continuously with volume
ratio νcyt/νcell and νsr/νcell, resp. We include one buffer Bsr in
the SR lumen. The partial differential equation for the SR Ca2+

concentration S and Ca2+ buffer Bsr are

∂S

∂t
= ∇ · (DS∇S)− k+sr

(

Btotsr − Bsr
)

S+ k−srBsr − Jjsr

+
νcyt

νsr
(Jpump) (7)

∂Bsr

∂t
= ∇ · (DB∇Bsr)+ k+sr

(

Btotsr − Bsr
)

S− k−srBsr (8)

En ·DS∇S|Ŵ = En ·DB∇Bsr|Ŵ = 0.

DS and DB are diffusion matrices. Release appears as the flux
Jjsr in the S-dynamics, which refills the individual junctional

sarcoplasmic reticulae. Their concentration (cijsr) dynamics are

described in the context of the CRU models (Equation 21).
The volume of the ith junctional SR is νijsr . The refill flux

is localized within a spherical volume with radius Rijsr in the

network SR:

Jjsr =

Nc
∑

i= 1

νcellν
i
jsr

νsr

2(Rijsr − |Er − Eri|)

4
3π
(

Rijsr

)3

S(Eri)− cijsr

τrefill
. (9)

2.2. Electrophysiology Model
In this subsection we briefly introduce the membrane potential
model of the rabbit ventricular myocyte by Mahajan et al.
(2008a). We assume that the membrane potential is uniform
over the computational domain. The dynamics of the membrane
potential V is described by:

dV

dt
= − (Iion + Istim) . (10)

Istim is the stimulus current to depolarize the cell. Iion
comprises (Mahajan et al., 2008a):

Iion = INa + Ito,f + Ito,s + IKr + IKs + IK1 + INaK

+ ICaL + INaCa. (11)

INa is the fast Na+ current, IK1 is the inward rectifier current,
Ito,f is the fast component of the rapid outward K+ current, Ito,s
is the slow component of the rapid outward K+ current, IKr is the
rapid component of the delayed rectifier current, IKs is the slow
component of the delayed rectifier current and INaK is Na+/K+
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TABLE 1 | Buffering and diffusion parameters.

Parameter Description Value

btotm Total concentration of Troponin C

(stationary buffer)

53.0µM

btots Total concentration of Calmodulin (mobile

buffer)

133.0µM

Btotsr Total concentration of SR buffer 1500.0µM

btot
Fluo−4 Total concentration of Fluo-4 133.0µM

k+s On rate for Troponin C binding 0.043µM−1 ms−1

k−s Off rate for Troponin C binding 0.026ms−1

k+m On rate for Calmodulin binding 0.8µM−1 ms−1

k−m Off rate for Calmodulin binding 0.2ms−1

k+sr On rate for SR buffer binding 0.1µM−1 ms−1

k−sr Off rate for SR buffer binding 60.0ms−1

k+
Fluo−4 On rate for Fluo-4 binding 0.0488µM−1 ms−1

k−
Fluo−4 Off rate for Fluo-4 binding 0.0439ms−1

Dm
b

Diffusion constant of Troponin C 0.04µm2/ms

DB Diffusion constant of SR buffer 0.01µm2/ms

D Diffusion constant of calcium 0.22µm2/ms

DS Diffusion constant of SR calcium 0.20µm2/ms

DFluo−4 Diffusion constant of Fluo-4 0.033µm2/ms

τd Refill-flux constant 0.5 ms

c0 Starting [Ca2+]i 0.275µM

TABLE 2 | Exchanger and uptake parameters.

Parameter Definition Value

fNaCa,high Maximal factor of gNaCa at CRU centers 2.5

fNaCa,low Minimal factor of gNaCa distant to CRUs 1.5

fNaCa,surf Factor of gNaCa at surface 0.5

Kp Uptake threshold 0.2µM

Vpmax Strength of uptake 0.8µM/ms

gNaCa Strength of Na+/Ca2+-exchanger 0.84µM/s

ksat Constant 0.2

ξ Constant 0.35

Km,Nai Constant 12.3mM

Km,Nao Constant 87.5mM

Km,Cai Constant 0.0036mM

Km,Cao Constant 1.3mM

cnaca Constant 0.3µM

pump current. These currents and the equations defining them
are described in detail in Mahajan et al. (2008a). The Na+/Ca2+-
exchanger current INaCa is determined by the spatial integral of
the corresponding fluxes in the cytosolic concentration dynamics

INaCa =
νcytF

νcellCm

(

νcell

�

∫

�

JNaCad� +
Acell

Ŵ

∫

Ŵ

J
pm
NaCa dŴ

)

.(12)

A prefactor fNaCa for each finite element has been introduced to
simulate the distribution of the Na+/Ca2+-exchanger according
to Jayasinghe et al. (2009). The LCC-current ICaL is the sum of all

TABLE 3 | Physical constants and ionic concentrations.

Parameter Definition Value

Cm Cell capacitance 3.1. × 10−4
µF

νcell Whole cell volume 2.58 × 10−5
µl

� Simulated sub-cell volume 0.72 × 10−5
µl

x×y cross-section of simulated volume 15 × 15µm2

z height of simulated volume 32µm

F Faraday constant 96.5 C/mmol

R Universal gas constant 8.315 Jmol−1 K−1

T Temperature 308 K

[Na+]o External sodium concentration 136mM

[K+]i Internal potassium concentration 140mM

[K+]o External potassium concentration 5.4mM

cext External calcium concentration 1.8mM

νsr /νcell Ratio of SR to cell volume 0.1

νjsr /νcell Ratio of jSR to cell volume 0.005

νcyt/νcell Ratio of cytosolic volume to cell volume 0.895

κ Constant in Equation (20) 1 nm−1

φ0 Constant in Equation (20) −2.2

individual single channel currents (Equation 19) from the CRU
models

ICaL = −2α
Nc
∑

i= 1

Ni
LCC
∑

j= 1

I
i,j
LCC. (13)

The factor α = Fνcell/Cm� converts the current in terms of
ions/s into pA/pF and at the same time scales the currents up
from values obtained with the simulation volume �, which is set
by the number of simulated z-discs, to values corresponding to a
realistic cell volume νcell. Similarly, the factorAcell/Ŵ in Equation
(12) scales the plasma membrane component from simulated (Ŵ)
to whole cell area (Acell).Cm is the cell membrane capacitance and
F the Faraday constant.

2.3. The CRU Model
The CRU model was based on a model previously developed
by Schendel et al. (2012). We adapted it in a few key points
to properly interact with the PDE model described above. We
omit the index numbering the CRUs in this section for simpler
notation. The dyadic space is modeled as a cylinder of variable
radius and a height of 15 nm containing LCCs and RyRs, which
are placed in regular arrays at the bottom and top of the cylinder
(see Figure 2). The number of RyRs in each CRU was randomly
determined using an exponential distribution with mean 50. For
each four RyRs there was one LCC. The diameter of the cylinder
was determined for each CRU such that there was a margin of
60 nm between the outermost channel and the boundary of the
cleft.

2.3.1. Stochastic Channel Gating
The state dynamics of the LC- and RyR-channels are simulated
with Markov models. For the RyRs we explored three models,
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TABLE 4 | LCC and RyR parameters for (Stern et al., 1999; Cannell et al.,

2013; Walker et al., 2014) model.

Parameter Definition Value

Nc Number of CRUs 5120

NRyR Average number of RyRs per CRU 50

NLCC Average number of LCCs per CRU 12.5

rRyR,LCC Ratio of RyRs and LCCs 4.0

LCC PARAMETERS

gLCC LCC single channel conductance 0.0546µM3/ms

k0p Threshold for Ca-induced inactivation 90.0µM

c̄p Threshold for Ca dependence of

transition rate k6

60.0µM

τpo Time constant of activation 1 ms

r1 Opening rate 0.3ms−1

r2 Closing rate 3ms−1

s′1 Inactivation rate 0.00195ms−1

k′1 Inactivation rate 0.00413ms−1

k2 Inactivation rate 0.0001ms−1

k′21 Inactivation rate 0.00224ms−1

TBa Time constant 450 ms

RyR PARAMETERS Stern et al. (1999) AS MODIFIED BY

Schendel and Falcke (2010)

gRyR RyR permeability 2.33µM3 s−1

kom Activation rate 60 s−1

kim Inactivation rate 5 s−1

kmaxac Maximal activation rate 928.8 s−1

kmax
in

Maximal inactivation rate 7.8 s−1

Kjsr Half max. value for cjsr-effect on RyR 550µM

Kac Activation threshold 8.5µM

Kin Inactivation threshold 8.5µM

λ Asymmetric inactivation 27.5

RyR PARAMETERS (Cannell et al., 2013)

gRyR RyR permeability 2.33µM3 s−1

kopen Opening rate 4.57 × 105 cdi
2.12 s−1

kmaxopen Maximal opening rate 800 s−1

kclose Closing rate 245 cdi
−0.27 s−1

RyR PARAMETERS (Walker et al., 2014)

gRyR RyR permeability 2.33µM3 s−1

η Ca2+ Hill coefficient 2.1

kopen Opening rate k+ φ c
η
di

k+ Opening rate constant 1.107 ×10−4 ms−1
µM −η

kclose Closing rate 0.2 s−1

φ [Ca2+]jsr- dependent regulation term φb + ([Ca2+]jsr/φk )
4

φk [Ca2+]jsr- dependent regulation

affinity

1.5mM

φb [Ca2+]jsr- dependent regulation

intercept

0.8025

For the equations of the 4-state RyR model see (Stern et al., 1999; Schendel and Falcke,

2010).

the first is a model originally developed by Stern et al. (1999)
in it’s modified version by Schendel et al. (2012). It is a
four state model [see Figure 3A(i)], including one open, one
resting and two inactivated states. It features RyR inhibition in
case of high cytosolic or low jSR Ca2+concentrations. For an

TABLE 5 | Ionic current conductances.

Parameter Definition Value

gNa Peak INa conductance 12.0mS/µF

gto,f Peak Ito,f conductance 0.11mS/µF

gto,s Peak Ito,s conductance 0.04mS/µF

gK1 Peak IK1 conductance 0.3mS/µF

gKr Peak IKr conductance 0.0125mS/µF

gKs Peak IKs conductance 0.1386mS/µF

gNaK Peak INaK conductance 1.5mS/µF

FIGURE 2 | Two examples for channel placement in the CRU model. For

30 RyRs and 8 LCCs (left) and 16 RyRs and 5 LCCs (right). The number of

RyR channels per CRU obeys an exponential distribution with an average of

50 across all CRUs.

in-depth description of this model see (Schendel et al., 2012).
The second model is the two-state model [see Figure 3A(ii)]
developed by Cannell et al. (2013), in which termination of
CICR is mediated through the steep Ca2+dependence of the
RyR closed time. With a small decline in jSR [Ca2+] the
Ca2+flux via open RyRs declines, causing a decline in local
dyadic [Ca2+], which in turn causes a decrease in the open
probability of neighboring RyRs, a process known as induction
decay. This RyR model does not rely on experimentally un-
substantiated biophysical mechanisms for CICR termination,
such as dyadic/cytoplasmic RyR Ca2+-dependent inactivation, or
RyR-lumenal Ca2+-dependent inactivation. The third model is
the two-state model [see Figure 3A(iii)] developed by Walker
et al. (2014) (adapted from Williams et al., 2011) which
incorporates modulation of the RyR-opening rate by junctional
RyR-lumenal [Ca2+] (cijsr). This model has a fixed closing rate,

and, in accordance with the experimental data of Cannell et al.
(2013), there is only weak regulation of the RyR opening-
rate when (cijsr) is <1mM. It is of note that the opening rate

of this last RyR-Model is theoretically unbound, however in
our simulations opening rates larger than 0.7ms−1 were not
encountered.

For the LCCs we used the 7-statemodel developed byMahajan
et al. (2008a) (see Figure 3B) which exhibits both Ca2+

dependent and Ca2+ independent inactivation.
Each channel’s state was chosen randomly according to the

steady state distribution for the initial values. The transition times
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FIGURE 3 | State scheme for the RyR and LCC Markov Models. A(i)

4-state RyR-channel model of Stern et al. (1999), O denotes the open, I the

inactivated, and R the resting state. The activation rate ko is a fourth order Hill

function of dyadic Ca2+, the inactivation rate ki is a first order Hill function of

Ca2+. The Ca2+ dependent rates are influenced by the Ca2+ concentration in

the jSR. The model was originally developed by Stern et al. (1999) and was

modified by Schendel et al. (2012). A(ii) 2-state RyR-channel model of Cannell

et al. (2013) where O denotes the open and C the closed state and kopen and

kclose are polynomial functions of [Ca2+]. A(iii) 2-state RyR-channel model of

Walker et al. (2014) where O denotes the open and C the closed state, kopen is

a polynomial function of both [Ca2+] and [Ca2+] jsr (i.e., kopen is influenced by

the Ca2+concentration in the jSR) and kclose is a constant. (B) 7-state scheme

for the LCC according to Mahajan et al. (2008a) with the states O open, I1Ca,

I2Ca Ca2+ dependent inactivated states, C1, C2 closed states, I1Ba, I2Ba
Ca2+ independent inactivated states (for details see Mahajan et al., 2008a).

between different states were determined using the Gillespie
Algorithm for time dependent transition rates. That algorithm
determines the time of an event as the time of the crossing of a
random threshold by an integrated propensity for each individual
Markov chain. With the given rate of changes in membrane
potential and Ca2+ concentration, propensities are strongly time
dependent. Hence, before we finally accept a calculated update
of V and c, we verify that we have taken into account all
events triggered by propensity crossings by the update during
the iteration step. The precise definition of the transition rates
are given in Schendel et al. (2012), Cannell et al. (2013), and
Walker et al. (2014) for the three RyR-Models and in Mahajan
et al. (2008a) and the accompanying CellML data (Mahajan et al.,
2008b) for the LCC Model (there are slight discrepancies in the
equations between the CellML data and the original paper; the
equations we use are from the CellML data). In some cases we
had to adjust the constants involved in the equations, and these
are given in Table 4.

The frequency of transitions becomes very large with a large
number of CRUs and with many channels in each CRU. While
this in itself does not have a significant impact on the speed of

the stochastic algorithm, it can force very small timesteps on
the PDE model. In order to alleviate this problem and allow
for longer timesteps we take advantage of the properties of the
stochastic process. Those channel state transitions which do not
represent either openings or closings are (within a given iteration
step) independent stochastic events.We can therefore execute an
arbitrary number of such transitions in a single iteration. This
approach scales almost independently of the total number of
states of the channel model. It is only dependent on the frequency
of transitions from open to closed state or vice versa.

2.3.2. Ca2+profile in the CRU
The Ca2+concentration in the cleft (cdi) is modeled by the
following equation in cylindrical coordinates:

∂cdi

∂t
=

NLCC
∑

i= 1

JiLCC +

NRyR
∑

j= 1

J
j
RyR + Dc1r,ϕcdi(Er)−

∂

∂z
Jz. (14)

Because the time to reach the stationary concentration profile
upon opening or closing of a channel is about one order of
magnitude shorter than the timescale of channel state transitions,
we assume steady state for cdi. We make a separation ansatz
(yielding only a negligible error as discussed in Schendel and
Falcke, 2010):

cdi(r, ϕ, z) = f (r, ϕ) · Z(z).

The large aspect ratio radius/height of the dyadic space renders
gradients in the z-direction of the cylinder due to channel fluxes
negligible (Schendel et al., 2012). However, electro-diffusion due
to differential charge densities on T-tubule and jSR membrane
causes a substantial gradient. Soeller and Cannell (1997)
determined the charge density profile shaping Z(z) (Soeller and
Cannell, 1997). With their result we obtain

Z(z) = e−2φ0e
−κz

.

The values of φ0 and κ are listed in Table 3. To find f we consider
(Equation 14) for a given configuration of open channels. The
flux through the channels is constant due to the steady state
assumption. We describe the channel fluxes as Dirac-δ-functions
in space with the channel currents as pre-factors, integrate the
equation over z and obtain

1r,ϕ f (r, ϕ) = −
1

Dch∗

[

NLCC
∑

i= 1

IiLCCδ(r − ri, ϕ − ϕi)

+

NRyR
∑

j= 1

I
j
RyRδ(r − rj, ϕ − ϕj)



, (15)

where h∗ =
∫ h
0 Z(z)dz1. Solving this using the Green function

G((r, ϕ), (ri, ϕi)) we find

1A factor of h on the rhs of Equation (15) cancels with the same factor in the
denominator of Equations (18, 19) turning point sources into line densities.
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f (r, ϕ)− cbulk =
1

h∗Dc

NLCC
∑

i= 1

IiLCC G((r, ϕ), (ri, ϕi)) (16)

+

NRyR
∑

j= 1

I
j
RyR G((r, ϕ), (rj, ϕj))

G(r, ri) =
1

2π
log

(
∥

∥r̂i − r
∥

∥

q ‖ri − r‖

)

for ri 6= 0

G(r, 0) =
1

2π
log

(

R

‖r‖

)

where R is the radius of the dyadic space, q = R
‖ri‖

, and r̂i =

q2ri. cbulk is the Ca
2+concentration at the boundary of the cleft

(cylinder barrel) as computed by the PDE model.
With

η(Eri, Er) =
Z(z)

h∗Dc
G((r, ϕ), (ri, ϕi))

cdi can be written as

cdi(Er) = Z(zi)cbulk +
NLCC
∑

i= 1

IiLCC η(Eri, Er)+

NRyR
∑

i= 1

IiRyR η(Eri, Er). (17)

The currents IiLCC and IiRyR depend themselves on the local Ca2+

concentration at the channel mouth:

IiRyR = g(cjsr − cdi(Eri)) for i ∈ NRyR (18)

IiLCC = JLδV
cexte

−δV − cdi(Eri)

1− e−δV
for i ∈ NLCC (19)

with δ = 2F/(RT). Here, Eri denotes the location of the mouth of
the ith channel. Inserting Equations (18, 19) into Equation (17)
and evaluating it at each channel mouth defines a system of linear
equations for the concentration values setting the currents for
given values of cjsr and cbulk. The coefficients of that system can
be calculated in advance of a simulation from the cleft geometry,
which renders the simulation very efficient.

2.3.3. Buffers in the Dyadic Space
In order to employ the two state RyR-models by Cannell et al.
(2013) and Walker et al. (2014) (see the paragraph on Stochastic
Channel Gating below) we found it necessary to introduce a form
of Ca2+buffering in the dyadic space. This is to be expected
since in the original papers the models were fitted to data
from experiments conducted in the presence of buffers such as
Calmodulin, Fluo-4, and ATP. Cannell et al. (2013) used also in
their simulations high buffer concentrations within the dyadic
space, and in order to adapt our model to this degree of buffering
we introduce a linear buffer factor β . The coupling factor η now
takes the form:

η(Eri, Er) =
1

β

Z(z)

h∗Dc
G((r, ϕ), (ri, ϕi))

We adjusted β so that the Ca2+ concentration at the channel
mouths and the average dyadic Ca2+ concentrations matched

the values given in the paper by Cannell et al. (2013). An
approximation of [Ca2+]i that would be measured by a single-
wavelength Fluo-4 experimental recording (denoted [Ca2+]

exp
i )

was calculated from the Ca2+-bound Fluo-4. The in vitro
calibration approach described in Takahashi et al. (1999) was
used:

[Ca2+]
exp
i = Kd × (F − Fmin)/(Fmax − F), (20)

where Kd is the dissociation constant of Fluo-4, F is the
experimentally measured fluorescence intensity (here the [Ca2+-
bound Fluo-4]), Fmax is the measured fluorescence intensity
in Ca2+-saturated dye (here this is set as the maximum
[Ca2+-bound Fluo-4], i.e., btot

Fluo−4), and Fmin is the measured

fluorescence intensity in the absence of Ca2+ (here set to zero)
(see Table 1).

2.3.4. Modeling jSR dynamics
Each dyadic space is paired with its own junctional SR (jSR)
compartment. We assume spatially uniform Ca2+concentration
in the jSR. Ca2+dynamics in the jSR depends on the release
flux through the RyRs and a refill flux from the network SR
(nSR), which we assume to depend simply on the concentration
difference S − cjsr . The buffering by Calsequestrin is modeled
using the fast buffer approximation.

dcjsr

dt
= βjsr





S(Er)− cjsr

τrefill
−

1

νjsr

NRyR
∑

j= 1

I
j
RyR



 (21)

βjsr =

(

1+
nKcsqnBcsqn

(Kcsqn + cjsr)2

)−1

S(Er) denotes the free nSR Ca2+concentration at the location Er
of the spherical volume representing refilling in the S-dynamics
(Equation 7). This equation is solved numerically by linearization
with very small time steps (< 10−4 ms).

2.4. Module Interactions
Themodules interact on a time scale longer than a single iteration
step by the dependencies of the dynamics on Ca2+, V , and
other state variables. Instantaneous interactions are important
for the algorithmic realization of the time integration. We use
for the completely coupled system an Euler forward method.
The instantaneous interactions are between the PDE system and
the CRU models mediated by Ca2+ currents and concentrations,
between the CRU models and the electrophysiological model
by the LCC current, and between the PDE system and the
electrophysiological model via the bulk and plasma membrane
components of the Na+/Ca2+-exchanger flux (see also Figure 1).

2.4.1. Bulk Concentrations—Electrophysiology
We use the Ca2+ concentration spatially resolved at the plasma
membrane for calculating local values of J

pm
NaCa and analogously in

the bulk for JNaCa, and then average (Equation 12) to obtain the
current entering the membrane potential dynamics. Vice versa,
J
pm
NaCa serves as boundary condition and JNaCa as bulk source term
for the PDEs.
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2.4.2. Bulk Concentrations—CRUs
The value of the Ca2+ concentration c determined by the PDEs
is averaged along the rim of a cleft volume and then serves as
boundary condition cbulk in Equation (17) to determine the RyR

and LCC currents (I
i,j
LCC and I

i,j
RyR) in each CRU. Vice versa, these

currents determine the source terms for the bulk concentration
dynamics in Equation (1).

2.4.3. Electrophysiology—CRUs
The membrane potential affects the LCC currents (Equation 19)
and vice versa the sum of all individual LCC currents the
membrane potential (Equation 13).

2.5. Numerical Approach
We used a piecewise bi-linear finite element method for the
solution of the spatially three-dimensional reaction-diffusion
model including the complex distribution of CRUs at multiple
z-discs. The first challenge was the fine scale resolution of the
computational grid to resolve the strong concentration gradients
at the boundary of the CRUs. We take the equidistant tetrahedral
elements with the size of 0.05µM in our computations. The next
challenge is to deal with the adaptive time stepping schemes for
solving the reaction-diffusion systems. Due to the fast transitions

of the channel opening/closings in a CRU, the time scales vary
from tens of microseconds to milliseconds. To resolve such rapid
changes adaptive and higher order time steppings are inevitable
to treat the very smooth diffusion effects as efficiently as possible.
To this end, we use higher order linearly implicit Runge-Kutta
methods for time discretization of reaction-diffusion systems, see
(Lang, 2001; Chamakuri et al., 2012). These belong to a large
class of methods which try to avoid the nonlinear system and
replace it by a sequence of linear ones. Also, this allows the use of
adaptive timescales in the simulations. Specifically, we employed
a second order Rosenbrockmethod called ROWDA (Lang, 2001),
and we avoid the time discretization implications of this problem
as described in Chamakuri and Rüdiger (2012, Section 4.2).

Our parallel implementation of the discretization routines
are based on the public domain package DUNE (Bastian et al.,
2008), especially the dune-pdelab discretization module. The
parallel linear solvers depend on the dune-istl module. Based
on this, we developed a finite element simulator to solve
the whole cell calcium cycling model. The internal parallel
Cartesian (called Yasp) grid in DUNE is used for the parallel
grid constructions. In our domain decomposition approach,
the original domain is partitioned into subdomains and each
subdomain is assigned to a single processor. In our computations,

FIGURE 4 | A schematic illustrating the basic steps for a single iteration. Orange marks all values produced and all work done by the CRU-Model. The work

and results of the PDE-Model are marked in red, everything involved with the Electrophysiology ODE-Model (Electrophys. in the diagram) is marked in brown. A

superscript t marks the value of a given quantity at time t, while a superscript t+ τ denotes the predicted value of that quantity at time t+ τ , e.g., the prediction step

for the PDE-Model uses the flux values from the CRU and ODE-Model at time t. The CRU Transition Prediction step uses both the current values at time t and the

predicted values at time t+ τ from the PDE- and ODE-model.
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we used a non-overlapping domain decomposition approach to
solve the discretized PDE model. In this regard, we parallelized
our code by using minimum global communications for solving
the stochastic part of the problem. The time discretization results
in a system of linear equations which can be solved using efficient
iterative solvers. The BiCGSTAB (van der Vorst, 1994) with
Jacobi preconditioner is used as the linear solver and the relative
tolerance of 10−6 is used as the stopping criteria for the linear
solver at each step of the ODE time integrator.

Here we propose a novel technique to determine the new
timestep during the stochastic opening of many CRUs. Due to the
presence of the large numbers of CRUs, the stochastic algorithm
that governs the timestep for the next channel transition plays
an important role for the computations. As mentioned before,
channel state transitions which do not represent openings or
closings are, within a given iteration step, independent stochastic
events. We can therefore execute several of them within a single
iteration. Additionally, typical time steps during an AP are in
the range of 0.01ms, i.e., they are shorter than the diffusion

FIGURE 5 | Simulation of a typical Ca2+ gradient in a CRU. The

stationary dyadic [Ca2+] profile of a single open RyR is shown.

FIGURE 6 | Free [Ca2+]i and SR free [Ca2+] at 70.0ms after activation,

using the Walker et al. (2014)-RyR-model. (A) Myoplasm [Ca2+]i . (B) nSR

[Ca2+] for the 8th z-disc numbered from the bottom in Figure 7. The

concentration is color-coded according to the color scale shown. There are

320 CRU per z-disc, with an average of 50 RyR and 12.5 LCC per CRU. See

Supplementary Movies 1, 2 for the evolution of [Ca2+]i and nSR [Ca2+]

through an AP.

time between neighboring CRUs. Consequently, conductance
changing events in different CRUs are statistically independent
on the time scale of a single iteration and we can allow for several
of them in (distinct) CRUs within one time step.

We introduce two time steps: first the deterministic timestep
τdet (which is allowed by the numerical integration of the
PDEs) and second the stochastic timestep τstoc. We propose the
following algorithm.

The bulk calcium cycling PDE model and the
electrophysiology model are integrated from t to t + τdet,
where τdet is the accepted deterministic timestep of the PDE
solver. Then, the stochastic channel transitions are predicted
from t to t + τdet. Suppose there were Ns conductance changing
stochastic events at times t + τi where i = 1 . . .Ns, τi ≤ τdet
and 0 ≤ Ns ≤ Nc. Here, the time of the stochastic event is τi
for the ith CRU. In case that there is no stochastic event for
a CRU, τi is set to τi = τdet. The stochastic timestep τstoc is
determined from the τi as the time by which a maximum number
of acceptable transitions is reached. The maximum number
has been determined empirically to be sufficiently small with
0.1 Ns to cause no essential difference to simulations with τstoc
sufficiently small to guarantee Ns = 1. Now all the occurring
events in the CRUs up to t + τstoc are set to take place at time
t + τstoc. By doing so, we avoid time steps which are too small
for acceptable simulation time. A schematic illustrating a single
iteration and how the time steps are determined can be found in
Figure 4.

FIGURE 7 | Three dimensional visualization of spatially resolved [Ca2+]

at 70.0ms after activation, using the (Walker et al., 2014)-RyR-model.

(A) Isosurfaces show [Ca2+]i in green for [Ca2+]i = 0.6µM and red for [Ca2+]i
= 2.4µM . (B) The yellow isosurface shows free SR-[Ca2+] = 430µM . There

are 320 CRU per z-disc, amounting to 5160 CRUs in total, with an average of

50 RyR and 12.5 LCC per CRU. See Supplementary Movies 1, 2 for the

evolution of [Ca2+]i and nSR [Ca2+] through an AP.
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3. Results

Our main result is the fully coupled simulation tool. Our
motivation was to be able to take stochastic channel state
dynamics for each channel in each CRU and the concentration
profile within CRUs into account while executing the simulation
of (partial) differential equations for other state variables.
Figure 5 shows such a concentration profile inside the dyadic
space calculated with Equation (17) for a typical RyR current.
Gradients are substantial such that distant RyRs and LCCs
experience much smaller concentrations and Ca2+-dependent
transition rates than channels close to an open one.

We simulated 16 z-discs, each with 320 CRUs, and the
Ca2+ dynamics for this sub-cellular region (∼30% of the
cardiomyocyte) were coupled to the whole-cell electrophysiology
ODE model. It took 64.2 h to solve a single action potential on
848 Intel Xeon E5-2650 v2 2.60 GHz CPUs (central processing
units). The Ca2+ concentration profile 70.0 ms after stimulus at

a single z-disc is shown in Figure 6. The local Ca2+ dynamics
and corresponding whole cell electrophysiology are shown in
Figure 7A and in Supplementary Movie 1. The SR free [Ca2+]
is visualized in Figure 7B and in Supplementary Movie 2.
Currents are shown in Figure 8.

The simulation shows that we can reproduce the whole
sequence of Ca2+ transients from the initial concentration profile
in the dyadic space, via sparks to the whole cell transient. The
cytoplasmic [Ca2+] is rather heterogeneous, due to randomness
of release events as well as variations in CRU size. The
concentration of 0.6 µM is reached in almost the whole volume,
but 2.4 µM only in the proximity of the the z-discs. The currents
reproduce basic features of the Mahajan-model (Mahajan et al.,
2008a), and likewise reproduce experimental plots of rabbit Ca2+

currents well (Weber et al., 2002), but show some discrepancies
mostly related to Na+/Ca2+-exchanger current.

We explored the use of three RyR models which all produce
realistic action potentials (Figure 9). When using the (Stern et al.,

FIGURE 8 | Membrane potential, ionic currents, and concentrations after a stimulus of 40 mV for 1ms with the (Walker et al., 2014)-RyR model. (A)

Membrane potential. (B) Currents IK1, IKr , IKs, INaK , and Ito,s. (C) LCC current (ICaL), Na
+/Ca2+-exchanger current (INaCa), Ito,s, and INa (truncated). (D) Average

cytosolic [Ca2+]i and [Ca2+]
exp
i

as defined in Equation (20). (E) Ca2+ -fluxes: Jrel , JCa, JNaCa, Jup. (F) Buffer-bound [Ca2+] ([bm], [bs], [Bsr ]), and nSR lumenal [Ca2+]

([Casr ]) are plotted. [bm] and [bs] are conventional concentrations in units ofµM whereas [Casr ] and [Bsr ] are expressed for simplicity in units of µMνsr /νcyt (µmol/l

cytosol). Plots are of the first AP from a simulation with 16 z-discs.
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FIGURE 9 | Comparison of 4-state RyR model (Stern et al., 1999, top

panels), 2-state RyR model (Cannell et al., 2013, middle panels), and

2-state RyR model (Walker et al., 2014, bottom panels). (A) Stern et al.

(1999) membrane potential. (B) Stern et al. (1999) average cytosolic [Ca2+]i
and [Ca2+]

exp
i

(as defined in Equation 20). (C) Cannell et al. (2013) membrane

potential. (D) Cannell et al. (2013) average cytosolic [Ca2+]i and [Ca2+]
exp
i

.

(E) Walker et al. (2014) membrane potential. (F) Walker et al. (2014) average

cytosolic [Ca2+]i and [Ca2+]
exp
i

. Plots are of the first AP from a simulation of

a single z-disc.

1999) model there were slow kinetics of Ca2+ release and a low
RyR maximum open percentage (2.7%). Gain (the ratio of Jrel
to JCa) was ∼4 during the first 50ms of the AP and ∼3 for the
remainder of the AP (AP duration = 265ms, basic cycle length
BCL = 350ms). With the (Cannell et al., 2013) model many
RyRs open and close (spark-like) within 20ms of the start of the
AP, and gain was high in this early phase of the AP (∼10) and
moderate in the later AP (∼6) and there was a corresponding fast
rise in the [Ca2+]i with an early peak at ∼10ms, followed by a
reduction of [Ca2+]i and a second [Ca2+]i rise and fall through
the AP. With the (Walker et al., 2014) model gain was ∼6 in
the early AP, then ∼2 in the remainder of the AP, and there
was a relatively high RyR maximum open percentage (32%). The
(Cannell et al., 2013; Walker et al., 2014) 2-state RyR-schemes
have markedly faster (and more physiological) kinetics of Ca2+

release than the (Stern et al., 1999) 4-state scheme. With the
(Walker et al., 2014)-RyR scheme our model displays expected
restitution properties with shorter APD and [Ca2+]i transient
with shorter BCL (Figure 10).

4. Discussion

This proof of concept study demonstrates a new multi-scale
model of CICR linking three spatial scales: (1) detailed molecular

stochastic modeling of the CRU at a continuous spatial scale;
(2) a whole-cell ODE electrophysiology model, which describes
the potassium channels, the voltage gated sodium channels, the
sodium-potassium pump, and integrates all membrane fluxes
to derive the total membrane current and voltage; (3) a PDE
FEM calcium diffusion model representing myoplasmic and nSR
Ca2+ diffusion between CRUs and between z-discs. One rationale
for this approach is that it allows the removal of the artificial
compartment for the sub-membrane space, and hence provides a
more quantitative modeling of diffusion processes and gradients.

Taking gradients in the dyadic cleft into account in a
simulation with thousands of CRUs would be impossible without
the use of the stationary Green function. An estimate of
the advantage of the quasi-static approximation with respect
to computational speed can be obtained from estimating the
number of operations per cleft. Our approach requires to solve
a linear system of equations whenever channels open or close or
the boundary condition or the jSR concentration has changed
significantly. That means (NRyR + NLCC)2 operations each.
Simulating the concentrations inside the cleft would require
about 1000 grid points and a time step in the microsecond range
(see Thul and Falcke, 2004). Consequently, it would be at least a
few hundred times slower than the use of the stationary Green
function. Applying the dynamic Green function would entail
similar computational efforts, since it converges extremely slowly
(Bentele and Falcke, 2007).

To our knowledge, our model is the only whole cell AP
model which includes CRUs clustered around the z-discs (a
proxy for explicit T-tubules) and spatial resolution of intra-CRU
[Ca2+] with realistic steep [Ca2+] gradients. Other approaches
include the multiscale model of Restrepo and Karma (2009)
which simulates 20,000 CRUs with Markov models for individual
LC- and RyR-channels in a three-dimensional grid interacting
with a membrane voltage ODE-model (Mahajan et al., 2008a).
This was developed further by Nivala et al. (2012) and was
modified to a bidomain approach with finite elements belonging
to cytoplasm or SR. A related model of Williams et al. (2011)
incorporates energetic coupling of the RyRs, and non-junctional
RyRs, but is used only for the analysis of the diastolic RyR
dynamics without an ODE electrophysiology model. Walker
et al. (2014), based on Williams et al. (2011), developed a finite
volume model of a single CRU which includes modeling of intra-
CRU calcium concentration differences, diffusion of Ca2+ and
mobile buffers, T-tubules, Markov chain models for the channels
and excitation-contraction coupling gain. Cannell et al. (2013)
investigated spark dynamics and termination using a two-state
RyR model with modeling of intra-CRU calcium concentration
differences, but until our current study the Cannell et al. (2013)
model had not been coupled to a whole cell geometry or to an
action potential model. Torres et al. (2014) modeled a modified
local control mechanism to simulate confocal image data and
to explore the relationship between Ca2+ transients and the
activation of non-junctional RyR clusters of myocytes with sparse
T-systems. A finite-element model has been implemented by
Hatano et al. (2011) which incorporates subcellular structures
including the T-tubule system, SR, myofibrils and mitchondria,
where electrophysiology and local calcium dynamics are coupled
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FIGURE 10 | Restitution properties with the (Walker et al., 2014)-RyR model. (A) Membrane potential. (B) Average cytosolic [Ca2+]i ]. (C) Average cytosolic

[Ca2+]
exp
i

as defined in Equation (20). Solid line: basic cycle length (BCL) = 350 ms; dashed line: BCL = 300 ms; dotted line: BCL = 250ms. At cycle length 350ms

the DI was 177ms. At cycle length 300ms the DI was 132ms. At cycle length 225ms the DI was 87ms. (D) Constant BCL Restitution Curve (Otani and Gilmour,

1997). For clarity, the AP with the shortest DI in (D) is not shown in (A–C). These simulations have been carried out with a single z-disc.

to a local myofibril contractionmodel to simulate local and global
contraction. They model the spatial detail of CICR release and
local contraction for three myofibrils of one sarcomere length but
do not model the CRU [Ca2+] in spatially resolved detail.

We explored the use of three RyRmodels: the 4-state model of
Stern et al. (1999), the 2-State induction decay model of Cannell
et al. (2013), and the 2-State model of Walker et al. (2014)
[similar to the Cannell et al., 2013-model except with the addition
of modulation of the RyR open probability by junctional RyR-
lumenal [Ca2+] (cijsr)]. With the (Stern et al., 1999) RyR-model

peak [Ca2+]i equals 0.8µMwith time to peak of 200ms.With the
(Cannell et al., 2013) model, dual peaks in [Ca2+]i were observed
with an early peak of [Ca2+]i = 0.6µM at time to peak ∼10ms,
with the principal peak [Ca2+]i transient of ∼0.8µM and time
to peak 100ms. With the (Walker et al., 2014) peak [Ca2+]i was
∼1.0µM and time to peak 130ms. The time to peak [Ca2+]i for
both the 2-state models is comparable to that reported for the
rabbit by Weber et al. (2002). The early [Ca2+]i local maximum
with the (Cannell et al., 2013) model may be explained from the
origins of the (Cannell et al., 2013) model, which is from fits to
experimental data from Ca2+ sparks and blinks, and has never

been previously used in a model of prolonged CICR resulting
from an AP. Indeed the authors of this model state that the
model equations are not designed to capture behavior at resting
[Ca2+]i with fully loaded SR. The RyR-dynamics of this model
with its current parameters are therefore reproducing spark like
behavior in an AP. We had to introduce strong buffering inside
the dyadic space and jSR-depletion in order to reach closing
rates sufficiently fast for termination of release at the end of an
action potential. However, this proof of concept investigation
does not provide evidence that induction decay alone is an
insufficient mechanism to cause the termination of CICR in an
AP. Rather, the model provides a platform for investigating AP
CICR. Careful experimentally led tuning of the 2-state model
parameters alongside Ca2+ buffering parameters and the jSR refill
flux will allow assessment of the feasibility of induction decay
as the sole CICR termination mechanism in an AP. A second
possible explanation for the early local maximum in [Ca2+]i
with the (Cannell et al., 2013)-model is that in our model we
do not explicitly represent the [Ca2+]i uptake and release by
the mitochondria. Although mitochondrial [Ca2+]i uptake and
release is controversial on such fast timescales (Boyman et al.,
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2014), there is evidence that fast early mitochondrial [Ca2+]i
uptake can act like a fast stationary buffer, and that inhibition
of fast uptake through a specific inhibitor of the mitochondrial
Ca2+ uniporter (MCU) can result in an early local maximum
of the [Ca2+]i transient (Maack et al., 2006). Furthermore, the
data in Figure 9 show that the [Ca2+]i recorded in experiments
via a fluorescent Ca2+ probe such as Fluo-4 [approximated as
([Ca2+]

exp
i ), as defined in Equation 20] would smooth-out any

early [Ca2+]i peak, if this were a genuine experimental feature
of cardiomyocyte CICR. In AP simulations with the 2-state
RyR models, some local high calcium transients at CRU-sites
remained into the diastolic period, associated with CRUs where
some RyRs remained open. A similar phenomenon has been
described in the setting of spontaneous Ca2+-sparks by Stern
et al. (2013), who used an RyR-scheme similar to Walker et al.
(2014) [a 2-state model, with modulation of the open probability
by junctional RyR-lumenal [Ca2+] (cijsr)].

The discrepancies between our simulations and the
ODE-Mahajan model with respect to Na+/Ca2+-exchanger
current illustrate the value of spatially resolved modeling in
exploring detailed properties of Ca2+ dynamics. Using the
same Na+/Ca2+-exchanger model as Mahajan et al. (2008a)
we were not able to reproduce the same time course of the
total Na+/Ca2+-exchanger current. In both models the current
has the same general profile, with a short period in reverse
mode (positive current) in the first phase of an action potential,
followed by forward mode (negative current) during the V-
plateau and decline. However, in our approach the INaCa current
turns negative much later during the plateau than in the ODE
model. The Na+/Ca2+-exchanger depends on the [Ca2+] in
sub-membrane space in the ODE model and on the cytoplasmic
concentration c in our simulations, including of course the
regions with high c-values at and close to CRUs. The main reason
for the differences is that the sub-membrane [Ca2+] in the
ODE model exhibits a sharp rise and decline while the average
myoplasmic concentration shows slower dynamics. We have
experimented with localizing the Na+/Ca2+-exchanger molecule
density in proximity to the CRUs to reflect the observed higher
abundance of Na+/Ca2+-exchanger near the CRU (Scriven
et al., 2000, 2002; Jayasinghe et al., 2009; Scriven and Moore,
2013). However, that has not fully resolved the discrepancies
with respect to the ODE results yet. We expect to gain detailed
insights into the factors shaping the Na+/Ca2+-exchanger
current through investigation of these problems.

5. Conclusions and Limitations

We showed on a level of proof-of-concept that multiscale
modeling of cardiomyocyte ECC from sub-dyadic scales to
many z-discs using full partial differential equations is possible.
We demonstrate that the model produces realistic physiology
on these scales and has the potential to provide new insight
into subcellular mechanisms and structures. Maybe the most
severe limitation of this modeling approach is the requirement
for high performance computing (HPC) to run it. We expect

some improvement of simulation efficiency by more specifically
tailored numerical methods, however the requirement for HPC
will remain. The use of the Green function inside the dyadic
cleft requires linearity of the reaction diffusion equations there.
That excludes non-linear buffering terms and allows for linear
buffering only. Some of the limitations of our model arise from
its early state of development and will be removed with inclusion
of more detail like e.g., anisotropic diffusion, mitochondria, more
detailed buffering, and non-junctional RyR. We used modular
programming as far as possible to ease the exploration of a variety
of ion channel models and other species specific membrane
potential dynamics.
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myoplasmic [Ca2+]i transient; (C) is a section through the PDE solution at the 8th

z-disc from the top with the image colored by free myoplasmic [Ca2+].

Supplementary Movie 2 | Simulation of the first AP with 16 z-discs using

the (Walker et al., 2014)-RyR model. (A) Shows the three-dimensional 16 z-disc

[Casr ] by means of a 430 µM isosurface; (B) shows the membrane-potential and

the mean myoplasmic [Ca2+]i transient; (C) is a section through the PDE solution

at the 8th z-disc from the top with the image colored by [Casr ].
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