
MINI REVIEW
published: 01 October 2015

doi: 10.3389/fphys.2015.00270

Frontiers in Physiology | www.frontiersin.org 1 October 2015 | Volume 6 | Article 270

Edited by:

Kate Denton,

Monash University, Australia

Reviewed by:

Olaf Grisk,

University of Greifswald, Germany

Sebastian Kelle,

German Heart Institute Berlin,

Germany

*Correspondence:

Lindsea C. Booth,

Florey Institute of Neuroscience and

Mental Health, University of

Melbourne, 30 Royal Parade (corner

Genetics Lane), Parkville, Melbourne,

VIC 3010, Australia

lindsea.booth@florey.edu.au

Specialty section:

This article was submitted to

Integrative Physiology,

a section of the journal

Frontiers in Physiology

Received: 25 June 2015

Accepted: 14 September 2015

Published: 01 October 2015

Citation:

Booth LC, May CN and Yao ST (2015)

The role of the renal afferent and

efferent nerve fibers in heart failure.

Front. Physiol. 6:270.

doi: 10.3389/fphys.2015.00270
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Renal nerves contain afferent, sensory and efferent, sympathetic nerve fibers. In heart

failure (HF) there is an increase in renal sympathetic nerve activity (RSNA), which can lead

to renal vasoconstriction, increased renin release and sodium retention. These changes

are thought to contribute to renal dysfunction, which is predictive of poor outcome

in patients with HF. In contrast, the role of the renal afferent nerves remains largely

unexplored in HF. This is somewhat surprising as there are multiple triggers in HF that

have the potential to increase afferent nerve activity, including increased venous pressure

and reduced kidney perfusion. Some of the few studies investigating renal afferents in

HF have suggested that at least the sympatho-inhibitory reno-renal reflex is blunted.

In experimentally induced HF, renal denervation, both surgical and catheter-based, has

been associated with some improvements in renal and cardiac function. It remains

unknown whether the effects are due to removal of the efferent renal nerve fibers or

afferent renal nerve fibers, or a combination of both. Here, we review the effects of HF

on renal efferent and afferent nerve function and critically assess the latest evidence

supporting renal denervation as a potential treatment in HF.

Keywords: radiofrequency-ablation, renal denervation, arterial baroreflex, renal sympathetic nerve activity, renal

afferent

Patients with heart failure (HF) have a poor prognosis, with a 5-year mortality rate of 75% (Levy
et al., 2002). In HF, the reduced cardiac output and inadequate perfusion of organs triggers a
complex set of compensatory mechanisms, including activation of the sympathetic nervous system
(SNS) and renin-angiotensin-aldosterone system (RAAS) (Weiss et al., 2003). The increased renal
sympathetic nerve activity (RSNA) leads to increased release of renin, renal vasoconstriction (RVR),
reduced renal blood flow (RBF), and renal sodium and water retention, with renal dysfunction
being predictive of poor outcome (Goldberg et al., 2005; Petersson et al., 2005; Jose et al., 2006;
Aspromonte et al., 2011). Althoughmultiple therapies have been developed for the treatment of HF,
these have only partially reduced the disease burden. As such, new treatments and novel approaches
for tackling the disease are desperately needed.

Recently, catheter-based radiofrequency ablation of the renal nerves has been used as a
treatment for drug-resistant hypertension and it has been proposed as a treatment for HF. The
beneficial effects of renal denervation (RDN) are thought to depend on destruction of both the
efferent, sympathetic and the afferent, sensory renal nerve fibers. This review will focus on the
effects of the renal efferent and afferent nerve fibers in HF. We will also review the latest evidence
supporting catheter-based RDN as a treatment in HF.

Increased Sympathetic Nerve Activity in Heart Failure

There are differential increases in sympathetic activity to individual organs in HF, as shown by
measurement of regional noradrenaline spillover in HF patients (Hasking et al., 1986). It has been
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shown in HF patients and animal models of HF that the greatest
increase in SNA is to the heart, with a smaller increase to
the kidneys (Hasking et al., 1986; Ramchandra et al., 2009a).
Importantly, these increases in SNA to the heart and kidneys
are predictive of poor outcome (Kaye et al., 1995; Petersson
et al., 2005). Relatively large increases in RSNA have been
reported in rats 4 weeks after myocardial infarction, with burst
incidence increased from 35 to 47% (DiBona et al., 1988; Feng
et al., 1994), and RSNA was increased from 30 to 60% of
maximum in rabbits with pacing-induced HF (Liu et al., 2000,
2001). However, such large increases in RSNA are not always
seen in the early stages of HF. For example, in sheep paced
into HF (ejection fractions: 35–40%), cardiac SNA (CSNA) was
increased three-fold, whereas a modest increase in RSNA was
only observed when activity was expressed as bursts per minute,
mostly driven by an increase in heart rate (HR) (Ramchandra
et al., 2009b). Similarly in patients, renal noradrenaline spillover
is not increased in mild HF (ejection fraction: 29%) but is
significantly increased in severe HF (ejection fraction: 18%)
(Rundqvist et al., 1997).

Causes of Increased Renal Efferent
Sympathetic Nerve Activity in HF

Increased sympathetic drive to the kidneys in HF causes
renal vasoconstriction, RAAS activation and sodium and water
retention, leading to increases in blood volume and BP. Although
this may initially be beneficial in improving perfusion, with
deteriorating heart function, the enhanced sympathetic drive
puts extra load on an already stressed cardiovascular system. This
leads to a vicious cycle of increasingly high levels of sympathetic
drive and a progressively deteriorating cardiac system (Figure 1).
The mechanisms underlying the specific increase in sympathetic
drive to the heart and kidneys in HF remain incompletely
understood.

FIGURE 1 | Vicious cycle of heart failure; where activation of the

sympathetic and renin-angiotensin-aldosterone systems contributes

to a progressive deterioration in cardiac function.

Blunted Arterial Baroreflex Control in HF
There is extensive evidence indicating that altered control
by inhibitory and excitatory reflexes contributes to the
sympathoexcitation in HF. The arterial baroreflex is the
main inhibitory reflex controlling SNA and desensitization of
this reflex could contribute to increased SNA levels. Desensitized
arterial baroreflex control has been shown for muscle SNA in
HF patients (Leimbach et al., 1986; Grassi et al., 1995), and for
RSNA in rabbits (Liu et al., 2000), dogs (Wang et al., 1991),
and rats (Feng et al., 1994; DiBona and Sawin, 1995) with
experimentally-induced HF. Impaired baroreflex control of
SNA has, however, not been shown in all studies. For example,
preserved arterial baroreflex control of muscle SNA has been
reported in patients with HF (Dibner-Dunlap et al., 1996) and
it has been argued that even in patients with advanced HF, the
baroreflex control of muscle SNA is not desensitized (Floras,
2001). In anesthetized dogs with pacing-induced HF, baroreflex
control of RSNA was preserved although baroreflex control
of HR was desensitized (Dibner-Dunlap and Thames, 1989).
Similarly, in ovine pacing-induced HF, the baroreflex control of
RSNA and CSNA were unchanged; however, there was impaired
baroreflex control of HR (Watson et al., 2007; Ramchandra et al.,
2009a).

Attenuated Cardiopulmonary Reflex Inhibition of
SNA in HF
The increase in blood volume and thus cardiac pressures that
occur in HF would be expected to stimulate the cardiopulmonary
reflex and inhibit SNA. There is extensive evidence that in HF
the sensitivity of this inhibitory reflex is reduced. In rats, the
reflex decrease in RSNA in response to acute volume expansion
is reduced (DiBona et al., 1988). Similarly, we demonstrated
that inhibition of RSNA, as well as CSNA, by volume expansion
in normal sheep was largely abolished in sheep with HF
(Ramchandra et al., 2009b). These findings indicate that the
cardiopulmonary mechanoreceptor reflex is largely ineffective in
HF, allowing SNA to remain elevated in the face of expanded
blood volume.

Exaggerated Responses to Chemoreceptor
Stimulation in HF
There is also evidence that the sympathoexcitatory chemoreflex is
sensitized in patients with HF and that this is strongly associated
with severity of the disease and poor outcome (Chua et al., 1997;
Ponikowski et al., 2001). In support of these findings, in rabbits
with pacing-induced HF, deactivation of the carotid chemoreflex
with hyperoxia or cryoablation of the carotid bodies decreased
RSNA (Sun et al., 1999; Marcus et al., 2014). Similarly, in ovine
pacing-induced HF, deactivation of the carotid chemoreflex with
hyperoxia decreased CSNA (Xing et al., 2014). Although, as
described above, RSNA burst rate is not significantly elevated in
this ovine HF model, hyperoxia decreased RSNA, as expressed
as bursts/minute due to a decrease in HR (Xing et al., 2014).
There is evidence that increased angiotensin II (AngII) levels,
acting on angiotensin type-1 (AT-1) receptors in the carotid body,
contributes to the sensitization of the chemoreflex in HF (Li et al.,
2006).
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Central Mechanisms Stimulating SNA in HF
Amore in-depth discussion of the central control of RSNA in HF
is presented by Ramchandra et al. in this same special edition. As
such we will only touch upon this briefly.

There is extensive evidence that the central angiotensinergic
system plays a critical role in stimulating the increased SNA in
HF. Blockade of central AT-1 receptors with losartan reduced
the elevated RSNA in rats with HF induced by myocardial
infarction (DiBona et al., 1995; Zhang et al., 1999) and reduced
the high level of CSNA in ovine HF (Ramchandra et al., 2012). In
addition, there are increased levels of AT1 receptors in a number
of central autonomic areas, including the subfornical organ,
paraventricular nucleus of the hypothalamus (PVN), nucleus
of the solitary tract (NTS), and rostral ventrolateral medulla
(RVLM) (Yoshimura et al., 2000; Gao et al., 2008). In particular,
there is strong evidence that the PVN plays an important role in
setting the increased levels of RSNA in HF (Patel, 2000), although
the same is not true for CSNA (Ramchandra et al., 2013). In
addition to AngII, a number of other factors within the PVN are
likely to contribute to the changes in RSNA, including impaired
nitric oxide function (Reddy et al., 2007), increased cytokine
levels and oxidative stress (Guggilam et al., 2007; Kang et al.,
2010).

Renal Afferent Nerve Fibers in HF

Compared with the widely studied renal efferents, there have
been few studies of the renal afferent nerve fibers in HF.
Renal afferent nerve activity is influenced by two main
classes of receptors; mechanoreceptors and chemoreceptors.
Mechanoreceptors are found within the renal parenchyma and
in the wall of the renal pelvis (Niijima, 1975). These respond to
increases in intra-renal pressure (Ueda et al., 1967) and can be
stimulated experimentally by renal vein occlusion/compression
in rats (Ueda et al., 1967), cats (Astrom and Crafoord, 1968),
and dogs (Kostreva et al., 1981) and physical compression
of the hilus of the kidney (Ueda et al., 1967; Astrom and
Crafoord, 1968). Stimulation of renal mechanoreceptors with
increases in renal venous pressure has been shown to lead to
an increase in ipsilateral renal afferent activity and decreases in
ipsilateral and contralateral efferent RSNA (Ueda et al., 1967;
Kopp et al., 1985).Mirroring the decrease in contralateral efferent
RSNA, mechanoreceptor activation generally results in decreased
contralateral RVR (Kostreva et al., 1981). RVR on the ipsilateral
side, however, has been reported to increase in direct response
to increased renal venous pressure via non-neural mechanisms
(Dilley et al., 1983; Kopp et al., 1985). Activation of renal
mechanoreceptors has also been shown to affect renal function,
with an increase in contralateral urine flow and contra- and
ispilateral increases in sodium excretion (Kopp et al., 1985),
although some studies have shown no change in ipsilateral
sodium excretion and instead showed a decrease in potassium
excretion (Dilley et al., 1983).

In addition to effects on the kidney, renal mechanoreceptor
activation has been shown to inhibit SNA from the ansa subclavia
and decrease right ventricular contractility and blood pressure
(BP) (Kostreva et al., 1981). However, other studies have found

no change in HR, BP or RBF with increases in intrarenal pressure
(Kopp et al., 1984, 1985). A decrease in renal perfusion by balloon
inflation in the aorta for 2min (which is likely to activate chemo-
and inhibit mechanoreceptors) caused an increase in hindlimb
vascular resistance in anesthetized rabbits (Rankin et al., 1992).
The decreased renal perfusion is thought to elicit hypoxic-driven
release of local mediators, such prostaglandin E2, bradykinin, and
adenosine, which stimulate renal afferents leading to neutrally-
mediated increases in hindlimb vascular resistance (Ashton et al.,
1994). The main responses to renal mechanoreceptor activation
are abolished by spinal cord transection at T6, indicating that
the mechanoreceptor reno-renal reflex is dependent on central
integration (Francisco et al., 1980; Kopp et al., 1985).

The second class of renal sensory receptors are the
chemoreceptors: R1 and R2 receptors, which are activated
by the chemical environment of intrarenal tissue and renal
pelvis, respectively (Recordati et al., 1978, 1980). R1 receptors
are activated by renal ischaemia, stimulated experimentally by
prolonged arterial and venous occlusion and systemic asphyxia
(Recordati et al., 1978). R1 activation, induced by renal artery
occlusion, is associated with an increase in ipsilateral efferent
RSNA, which persists after spinal cord transection at T6 in rats
(Recordati et al., 1982). R2 receptors are activated experimentally
by backflow of concentrated urine (Rogenes, 1982), hypertonic
NaCl, and hypotonic KCl (Recordati et al., 1980). Activation
of R2 chemoreceptors results in an increase in both ipsilateral
and contralateral efferent RSNA, which is more pronounced if
backflow of urine is bilateral, and is variably accompanied by
small increases in BP and HR (Recordati et al., 1982; Rogenes,
1982). Like the response of R1 receptors, the R2 response remains
after spinal cord transection at T6 (Recordati et al., 1982) and is
enhanced by transection at C3 (Rogenes, 1982); therefore, a reflex
integrated at a spinal level.

Renal afferent nerve fibers aremainly unmyelinated (primarily
C- fibers) with a small population of faster conducting, A-delta,
myelinated fibers (Knuepfer and Schramm, 1987). Studies in
rats indicate that the renal afferent nerve fibers project from
the kidney to the ipsilateral dorsal root ganglia, between T6
and L2 (Donovan et al., 1983; Knuepfer and Schramm, 1987),
with the peak number at T12–13. By stimulating myelinated
renal afferent fibers, investigators have shown that there are
direct projections from the kidney to the most medial segment
of the nucleus gracilis and the caudal half of the NTS (Simon
and Schramm, 1984) and fluorescent tracer studies between
the kidneys and posterior medulla show that monosynaptic
connections make up approximately 8% of renal afferents (Wyss
and Donovan, 1984). In addition to these brainstem regions, in
cats, electrical stimulation of the renal afferents effects activity
of medullary neurons in the lateral tegmental field, paramedical
reticular nucleus and dorsal vagal complex, and hypothalamic
neurons in the lateral preoptic area, lateral hypothalamic area,
and PVN (Calaresu and Ciriello, 1981). Additionally, the ventral
medulla has been shown to receive input from renal afferents
in the cat (Vizzard et al., 1992). Indeed, Xu et al. (2015) have
recently shown that there is a neural connection from the RVLM
to the PVN that is activated by stimulation of renal afferents.
Importantly for the role of the renal afferents in HF, the same
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authors have previously shown that RVLM projecting PVN
neurons are more active in rats with chronic HF (Xu et al.,
2012). As the RVLM plays a crucial role in the regulation of
SNA, this may be a pathway by which renal afferent activation
in HF influences sympathetic tone; however, this remains to be
confirmed. Electrical stimulation of renal afferent nerve fibers has
also been studied using Fos (a marker of neuronal activation)
immunohistochemistry (see Solano-Flores et al., 1997).

Potential Factors Driving the Changes in Renal
Afferent Activity in HF
There are very few studies that have examined the role of the renal
afferent nerve fibers in HF. HF is associated with a number of
symptoms which would be expected to stimulate renal afferent
activity, such increased venous pressure and decreased RBF.
Kopp et al. showed that the inhibitory mechanoreceptor reno-
renal reflex is blunted in HF, due to high circulating AngII
(Kopp et al., 2003) and activation of endothelin A receptors
(Kopp et al., 2010). Blunting of the inhibitory reno-renal reflex
may be a mechanism by which sodium is retained and efferent
sympathetic drive to non-renal vascular beds is stimulated in
HF. It is unknown whether the excitatory renal-chemoreflex is
enhanced in HF, potentially in parallel with the enhanced arterial
chemoreflex.

Ablation of the Renal Nerve Fibers in Heart
Failure: Evidence For Potential Benefit
Following Catheter-based RDN

Discussed above are some of the potential factors stimulating
SNA in HF and the effects of the renal sympathetic and sensory
nerves. The critical question is whether removing the effect of
these nerves is beneficial in HF. The development of catheter-
based renal nerve ablation has led to increasing interest in
RDN as a treatment for hypertension and HF. Although not
without controversy (Bhatt et al., 2014), RDN has been shown
to be effective in lowering BP in patients with drug-resistant
hypertension (Krum et al., 2009; Esler et al., 2010). Recently,
the First Report of the Global SYMPLICITY Registry showed a
significant reduction in 24 h ambulatory BP after RDN in nearly
1000 patients (Böhm et al., 2015), supporting the population
effect of catheter-RDN.

The BP lowering effects of RDN are postulated to be due
to destruction of both renal efferent and afferent nerve fibers
(Figure 2). As outlined previously, efferent renal nerves play a
major role in stimulating renin release, renal vasoconstriction,
and sodium retention (DiBona and Kopp, 1997), thus removal
of these nerves decreases BP. It has also been suggested
that in hypertension, increased afferent renal nerve activity
causes a reflex increase in sympathetic outflow and worsening
hypertension (Katholi and Woods, 1987; Campese et al., 1995)
and there is evidence that ablation of the afferent nerve
fibers reduced muscle SNA (Schlaich et al., 2009) and plasma
noradrenaline (Ezzahti et al., 2014). These effects of both efferent
and afferent RDN are likely to be beneficial in HF.

Successful destruction of the renal nerves depends heavily
on the ablation sites in relation to the renal nerves. It has

FIGURE 2 | Sympathetic efferent and sensory afferent renal nerves

postulated to be interrupted with RDN.

recently been highlighted that although the number of renal
nerves is higher in proximal regions of the renal artery, the renal
nerves are closest to the renal artery in distal regions in humans
(Sakakura et al., 2014), pigs (Tellez et al., 2013), and sheep (Booth
et al., 2015a). Therefore, starting ablations as close as possible
to the kidney may be the most effective method of ablating the
renal nerves. We have previously shown a ∼80% reduction in
renal noradrenaline levels with six ablations started as close as
anatomically possible to the kidney in sheep (Booth et al., 2015b).

Clinical Studies of RDN in HF
While it is intuitive to use RDN in hypertensive patients to
reduce BP, this is less so in HF where BP is reduced in the
majority of cases. However, the ability of RDN to reduce RSNA
and thus the increased renal vasoconstriction, renin release, and
sodium retention is likely to have beneficial effects. Indeed, a
safety trial in HF patients showed that there were no significant
reductions in BP following RDN in the seven systolic HF
patients and, importantly, RDN was associated with an increase
in 6-min walk distance 6 months after RDN (Davies et al.,
2013). Importantly, in a pilot study RDN was shown to reduce
ventricular tachyarrhythmias in two patients with chronic HF
(Ukena et al., 2012). Further, RDN trials in hypertensive patients
with cardiomyopathy have shown that 6 months after RDN
patients had reduced left ventricular mass (Doltra et al., 2014;
Mahfoud et al., 2014) and increased EF (Mahfoud et al., 2014).
Larger clinical trials of renal denervation in HF are ongoing
(Verloop et al., 2013).

Effect of RDN on Renal Function in Experimental
HF
As previously described, RSNA is increased in severe HF and
this has detrimental actions suggesting that RDN would be
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beneficial. Indeed, bilateral surgical RDN attenuated the sodium
retention following myocardial infarction in rats (DiBona and
Sawin, 1991; Souza et al., 2004) and in dogs with HF (Villarreal
et al., 1994). Studies in rats, 3–4 weeks after myocardial infarction
(LVEDP ∼ 18mmHg), showed impaired water and sodium
excretion following an acute salt load, a finding reversed by prior
RDN (DiBona et al., 1988). Increased sodium reabsorption in HF
is likely to be at least partially driven by increased expression of
the Na-K-2Cl cotransporter in the thick ascending loop of Henle,
which has been shown in HF rats and was reduced following
RDN (Torp et al., 2012). In addition to altered sodium handling,
large myocardial infarcts have been associated with increased
RVR, decreased renal plasma flow and an inability to increase
glomerular filtration rate after volume loading (Hostetter et al.,
1983). As mentioned above, reduced RBF and renal dysfunction
are predictive of poor outcome in HF patients (Goldberg et al.,
2005; Petersson et al., 2005; Jose et al., 2006). In rabbits paced
into HF, unilateral RDN prevented the reduction in RBF, increase
in RVR and upregulation of AT-1 receptor expression in renal
cortical blood vessels otherwise seen with HF (Clayton et al.,
2011). Together these studies indicate that RDN improves renal
function in experimental models of HF, probably mainly by
efferent denervation.

Effect of RDN on Cardiac Function in
Experimental HF
Surgical RDN has been shown to reduce left ventricular filling
pressure and improve function following myocardial infarction
in rats (Nozawa et al., 2002; Hu et al., 2014a); while, catheter-
based RDN, prior to pacing-induced HF, has been shown to
reduce the incidence of atrial and ventricular fibrillation and
left ventricular filling pressure in dogs (Zhao et al., 2013; Guo
et al., 2014). In contrast, in rabbits with pacing–induced HF,
unilateral surgical RDN did not improve cardiac function but
reduced the sensitivity of theHR baroreflex and decreased plasma
noradrenaline levels (Schiller et al., 2013). The majority of studies
investigating RDN in HF have assessed the effects before or at
the induction of HF. One of the few studies investigating RDN
in established HF showed improved cardiac and renal function
in rats when surgical denervation was performed 1 and 4 weeks
post-myocardial infarction (Hu et al., 2014b). In addition, a
recent study investigating the effects of surgical RDN in rats
with cardiac dysfunction secondary to chronic pressure overload
showed that RDN reduced myocardial fibrosis, increased cardiac
β-adrenergic receptor expression and decreased cardiac AT-1
receptor levels (Li et al., 2015). In pacing-induced ovine HF, the
high resting level of CSNAwas not reduced shortly after catheter-
based RDN, but the baroreflex-mediated increase in CSNA in

response to the fall in BP was inhibited following the procedure
(Booth et al., 2015c). This lack of a reflex increase in CSNA
resulted from a leftward shift of the CSNA arterial baroreflex
curve (Booth et al., 2015c). These findings indicate that RDN can
have beneficial cardiac effects in experimental HF, but further
studies are required to determine the mechanisms involved. In
addition, the extent to which any effects of RDN in HF depend
on ablation of the afferent versus efferent nerve fibers remains,
at present, unknown. This could be addressed using methods of

selective denervation; such as destruction of renal afferent fibers
with capsaicin (Foss et al., 2015) or destruction of renal efferent
fibers with 6-hydroxydopamine (LeNoble et al., 1985).

Conclusions

The renal nerves are made up of afferent sensory and efferent
sympathetic nerve fibers. Although the activities of both types
of nerve fibers are postulated to increase in HF, the role of the
sympathetic nerves have been much more widely investigated.
In HF there is an increase in sympathetic outflow, especially to
the heart and kidneys, which is associated with poor outcome.
In experimentally induced HF, RDN, both surgical and catheter-
based, has been associated with some improvements in renal and
cardiac function. In contrast, the role of renal afferents remains
largely unexplored in HF, although there are multiple triggers
that could potentially increase afferent nerve activity. Some of
the few studies investigating this have suggested that at least
the inhibitory reno-renal reflex is blunted in HF. This may be
one mechanism stimulating efferent sympathetic drive in HF,
which leads to renal vasoconstriction, renin release, and sodium
retention. Although the evidence outlined above indicates the
beneficial effects of removing the renal nerves in HF, it remains
unknown whether the effects are due to removal of the efferent,
sympathetic renal nerves or sensory, afferent renal nerves, or a
combination of both.
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