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A full decomposition of the predictive entropy (PE) of the spontaneous variations of the

heart period (HP) given systolic arterial pressure (SAP) and respiration (R) is proposed.

The PE of HP is decomposed into the joint transfer entropy (JTE) from SAP and R

to HP and self-entropy (SE) of HP. The SE is the sum of three terms quantifying the

synergistic/redundant contributions of HP and SAP, when taken individually and jointly,

to SE and one term conditioned on HP and SAP denoted as the conditional SE (CSE) of

HP given SAP and R. The JTE from SAP and R to HP is the sum of two terms attributable

to SAP or R plus an extra term describing the redundant/synergistic contribution to the

JTE. All quantities were computed during cardiopulmonary loading induced by −25◦

head-down tilt (HDT) via a multivariate linear regression approach. We found that: (i) the

PE of HP decreases during HDT; (ii) the decrease of PE is attributable to a lessening of

SE of HP, while the JTE from SAP and R to HP remains constant; (iii) the SE of HP is

dominant over the JTE from SAP and R to HP and the CSE of HP given SAP and R is

prevailing over the SE of HP due to SAP and R both in supine position and during HDT;

(iv) all terms of the decompositions of JTE from SAP and R to HP and SE of HP due

to SAP and R were not affected by HDT; (v) the decrease of the SE of HP during HDT

was attributed to the reduction of the CSE of HP given SAP and R; (vi) redundancy of

SAP and R is prevailing over synergy in the information transferred into HP both in supine

position and during HDT, while in the HP information storage synergy and redundancy are

more balanced. The approach suggests that the larger complexity of the cardiac control

during HDT is unrelated to the baroreflex control and cardiopulmonary reflexes and may

be related to central commands and/or modifications of the dynamical properties of the

sinus node.

Keywords: information dynamics, multivariate linear regression analysis, blood pressure variability, heart rate

variability, baroreflex, cardiopulmonary coupling, autonomic nervous system
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INTRODUCTION

Head-down tilt (HDT) is an experimental maneuver inducing
an increase of the venous return, central blood volume, and
central venous pressure (London et al., 1983; Nagaya et al.,
1995). The resulting loading of the cardiopulmonary receptors
in the right atrium and pulmonary veins leads to a sympatho-
inhibitory response increasing the forearm blood flow (London
et al., 1983; Nagaya et al., 1995; Tanaka et al., 1999) and decreasing
the forearm vascular resistance (London et al., 1983; Nagaya
et al., 1995; Tanaka et al., 1999), total peripheral resistance
(Nagaya et al., 1995) and efferent muscle sympathetic nerve
activity (Nagaya et al., 1995; Tanaka et al., 1999). Since the
reduction of venous return and the consequent sinoaortic and
carotid baroreceptor unloading during head-up tilt leads to
a vagal withdrawal and sympathetic activation (Cooke et al.,
1999; Marchi et al., 2013), to an engagement of the arterial
baroreflex (Taylor and Eckberg, 1996; Porta et al., 2011) and
to a reduction of the importance of the cardiopulmonary
pathway (Porta et al., 2012b), it can be hypothesized that
the acute central circulatory hypervoleamia induced by HDT
produces the opposite cardiovascular response. Indeed, a reduced
involvement of the cardiac baroreflex and an improved relevance
of the cardiopulmonary circuits during HDT would explain the
previously observed increase of respiratory sinus arrhythmia and
the decrease of arterial pressure variability especially in the low
frequency band (Porta et al., 2014b).

In the field of information dynamics multivariate tools have
been recently devised that allow the quantitative description of
the dynamical interactions among time series (McGill, 1954;
Schreiber, 2000; Barnett et al., 2009; Faes et al., 2011, 2013,
2015; Lizier et al., 2011; Wibral et al., 2011, 2014; Chicharro
and Ledberg, 2012; Stramaglia et al., 2012; Kugiumtzis, 2013;
Porta et al., 2014a, 2015; Barrett, 2015). These tools have been
successfully applied to disentangle physiological mechanisms
from the spontaneous variability of the heart period (HP),
systolic arterial pressure (SAP), and respiration (R). For example,
the predictive entropy (PE) of HP assessed in the universe of
knowledge�= {HP,SAP,R}, measuring the decline of uncertainty
about the present HP due to the knowledge of the past history
of HP, SAP, and R series, was taken as a measure of the loss
of complexity of the cardiac neural regulation. Indeed, the PE
of HP increased during the vagal withdrawal induced by an
orthostatic challenge (Faes et al., 2015; Porta et al., 2015) and
during an experimental maneuver imposing the regularization
of the respiratory sinus arrhythmia (i.e., controlled respiration
at slow breathing rate; Faes et al., 2015). The transfer entropies
(TEs) from SAP to HP and from R to HP in �, denoting the
portion of PE of HP solely attributable to past values of SAP and
R respectively, were taken respectively as measures of the degree
of involvement of the cardiac baroreflex and cardiopulmonary
reflexes in controlling HP. Indeed, the TE from SAP to HP in
� gradually augmented when the baroreflex was challenged in
proportion to an orthostatic stimulus (Porta et al., 2015) and
the TE from R to HP in � progressively decreased with age
(Nemati et al., 2013; Porta et al., 2014a) as a likely consequence of
the gradual vagal withdrawal inducing a progressive decoupling

between HP variations and respiratory centers (Seals and Esler,
2000; Eckberg, 2003). Unfortunately, the full exploitation of this
approach in assessing cardiovascular control is limited by the
incomplete decomposition of PE of HP (McGill, 1954; Chicharro
and Ledberg, 2012; Stramaglia et al., 2012; Barrett, 2015; Faes
et al., 2015). Indeed, usually the full decomposition of PE is given
for bivariate interactions (e.g., HP and R) (Faes et al., 2015) or
limited to the TE term (Chicharro and Ledberg, 2012; Stramaglia
et al., 2012; Barrett, 2015), while the full decomposition of the
self-entropy (SE) has never been investigated.

The aim of this study is to provide a decomposition of PE
including that of both TE and SE terms when the assigned
target dynamic is HP and the two exogenous signals are SAP
and R. The proposed decomposition is applied to elucidate the
response of the cardiovascular control to HDT. We utilized:
(i) the PE of HP as a global descriptor of the HP dynamic;
(ii) the TEs from SAP to HP and from R to HP in � as
markers of the degree of involvement of the cardiac baroreflex
and cardiopulmonary reflexes, respectively; (iii) the SE of HP as
a measure of the information stored into HP; (iv) the part of
the SE of HP excluding the contributions of SAP and R as an
index of the information stored into HP that cannot be explained
by SAP and R; (v) the SAP-R interaction terms as measures
of the redundant/synergistic contributions of SAP and R to the
information transfer and storage. Results, over the same protocol
exclusively relevant to the TEs from SAP to HP and from R to HP
in � were presented to the EMBC 2014 (Porta et al., 2014b).

METHODS

Modeling the Linear Variability Interactions
Among HP, SAP, and R Series
In the following we consider HP = y = {y(n), n = 1, ...,N}

as an effect series driven by a pair of exogenous series, SAP =

x1 = {x1(n), n = 1,...,N}, and R = x2 = {x2(n), n = 1,...,N}
where N is the series length and n is the progressive cardiac beat
counter. The series y, x1, and x2 form the universe of knowledge
� = {y,x1,x2} about the short-term control of the HP variability
exploited in this study (Porta et al., 2012a). The samples of all
series in � are normalized by subtracting the mean value and by
dividing the result by the standard deviation, in such a way that
y, x1, and x2 have zero mean and unit variance. We also define
the following restricted universes of knowledge obtained from �

by excluding both exogenous signals, i.e., �\x1,x2 = {y}, or one
exogenous signals i.e., �\x1= {y, x2} and �\x2 = {y, x1}.

The open loop autoregressive (AR)model with two exogenous
(X) inputs (ARX1X2) describes the dependence of the current
value of y, y(n), on past values of the same signal and past values
of the exogenous inputs x1 and x2 as

y(n) =

p
∑

j= 1

aj · y(n−j) +

p
∑

j= τ1

b1j · x1(n−j)

+

p
∑

j= τ2

b2j · x2(n−j) + wARX1X2 (n) (1)
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where aj, b1j, and b2j, with 1≤ j≤ p, are the constant coefficients
of the regression of y on past values of y, x1, and x2 respectively,
p is the order of the regressions, τ1 and τ2 are the delays of the
action from x1 and x2 to y respectively, and wARX1X2 (n) is zero
mean white Gaussian noise with variance λ2

ARX1X2
. In addition to

the ARX1X2 model, four structures, all derived from the ARX1X2

model, are of interest in this study: (i) the ARX1 model in which
the exogenous input x2 is disregarded by ignoring the regression
of y on x2; (ii) the ARX2 model in which the exogenous input x1
is disregarded by ignoring the regression of y on x1; (iii) the X1X2

model in which the AR part is disregarded by ignoring the auto-
regression of y; (iv) the AR model in which only the AR part is
considered by ignoring both regressions of y on x1 and x2.

The one-step-ahead prediction of y, ŷ(n/n−1), based on the
ARX1X2 model is given by

ŷ(n/n−1)=

p
∑

j= 1

âj ·y(n−j)+

p
∑

j= τ1

b̂1j ·x1(n−j)+

p
∑

j= τ2

b̂2j ·x2(n−j)

(2)
where the coefficients âj, b̂1j, and b̂2j, with 1≤ j≤ p, are estimated
according to an optimization criterion (here the least squares
approach minimizing the variance of wARX1X2 ) (Soderstrom and
Stoica, 1988). According to the same optimization criterion the
one-step-ahead prediction of the considered simplified versions
of the ARX1X2 model (i.e., the ARX1, ARX2, X1X2, and AR
structures) can be analogously obtained after a new identification
of the regression coefficients. The prediction error is defined as
the difference between y(n) and ŷ(n/n−1). The ability of the
model to describe the dynamic of y is quantified by the variance
of the prediction error. It is bounded between 0 and the variance
of y, σ2. Given the normalization of the series, the variance of
the prediction error actually ranges between 0 and 1, where 0
indicates perfect prediction (the entire σ2 is explained by the
model), and 1 indicates null prediction (no fraction of σ2 is
explained by the model). In the following we will indicate the
variances of the prediction error of the ARX1X2, ARX1, ARX2,
X1X2, and AR models as σ2ARX1X2

, σ2ARX1
, σ2ARX2

, σ2X1X2
, and σ2AR

respectively.

Definition of the Information-theoretic
Quantities
Under the hypothesis of linearity and Gaussianity of the
dynamics, the Shannon entropy (ShE) of the normalized series
y is ShEy = 0.5 · log(2πe) (McEliece, 2002), where log is the
natural logarithm, and the conditional entropy (CE) of y in
� is CEy = 0.5 · log(2πeσ2ARX1X2

). ShEy and CEy measure,
respectively, the total amount of information carried by y and its
remaining portion that cannot be resolved using past samples of
all signals present in � (Barnett et al., 2009). We define the PE of
y in � (Chicharro and Ledberg, 2012; Faes et al., 2015) as

PEy =
1

2
log

1

σ2ARX1X2

(3)

quantifying the portion of uncertainty of y that has been resolved
in� (i.e., PEy = ShEy−CEy); the SE of y in �\x1,x2 (Lizier et al.,
2012; Wibral et al., 2014) as

SEy =
1

2
log

1

σ2AR

(4)

measuring the part of uncertainty of y that has been resolved in
�\x1,x2, (i.e., solely using past values of y); the conditional SE
(CSE) of y given x1 and x2 (Porta et al., 2015) as

CSE y|x1,x2 =
1

2
log

σ2X1X2

σ2ARX1X2

(5)

measuring the part of information carried by y that can be
explained in �, above and beyond the one that can be resolved
using past values of x1 and x2 (Figure 1); the conditional self-
entropy (CSE) of y given x1 in �\x2 (Faes et al., 2015) as

CSE y|x1 =
1

2
log

σ2X1

σ2ARX1

(6)

measuring the part of uncertainty of y that has been resolved
in �\x2 (i.e., without accounting for the possible influences of
the exogenous signal x2) above and beyond the one that can be
resolved using past values of x1; the cross-entropy (C) from x1 to
y in �\x2 (Faes et al., 2015) as

Cx1→y =
1

2
log

1

σ2X1

(7)

measuring the fraction of information carried by y that can be
explained in�\x2 given past values of x1; the joint TE (JTE) from
x1 and x2 to y (Porta et al., 2015) as

JTEx1,x2→y =
1

2
log

σ2AR

σ2ARX1X2

(8)

measuring the fraction of uncertainty of y that has been resolved
in � above and beyond the one that can be resolved in �\x1,x2;
the TE from x1 to y in � (i.e., by accounting for the possible
influences of x2 on y) (Schreiber, 2000; Lizier and Prokopenko,
2010; Kugiumtzis, 2013), denoted here as the conditional JTE
(CJTE) from x1 and x2 to y given x2 (Porta et al., 2015), as

CJTE x1,x2→y|x2 =
1

2
log

σ2ARX2

σ2ARX1X2

(9)

measuring the reduction of uncertainty of y that can be achieved
when �\x1 is completed with the introduction of x1 (Figure 1);
the TE from x1 to y in �\x2 (i.e., without accounting for the
possible influences of x2 on y) (Faes et al., 2015) as

TEx1→y =
1

2
log

σ2AR

σ2ARX1

(10)

measuring the reduction of uncertainty of y that can be
achieved when �\x1,x2 is enlarged with the introduction of
x1. By reversing the role between x1 and x2, CSE y|x2 , Cx2→y,

CJTEx1, x2→y|x1 (Figure 1), and TEx2→y can be computed as well.
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FIGURE 1 | A mnemonic Venn diagram, redrawn from Porta et al.

(2015), of the information-theoretic quantities contributing to the

decomposition of PEy in � = {y,x1, x2}. The diagram is devised to

represent in the information domain the terms whose sum gives the

JTEx1,x2→y according to Equation (21), i.e., CJTE x1,x2→y
∣

∣x1
(yellow area),

CJTE x1,x2→y
∣

∣x2
(yellow area), and ITEx1,x2→y (red area), and the terms

whose sum gives the SEy according to Equation (22), i.e., CSE y|x1,x2
(green

area), SE
x1
y

∣

∣

∣

x2
(blue area), SE

x2
y

∣

∣

∣

x1
(blue area), and ISE

x1,x2
y (pink area).

Redundant/Synergistic Contribution of x1
and x2 to JTE
The interactive TE (ITE) of y is defined as the variation between
the sum of the information individually transferred from x1 to
y and from x2 to y and the quote jointly transferred (McGill,
1954; Stramaglia et al., 2012) (Figure 1). Therefore, the following
equality

JTEx1,x2→y = TEx1→y + TEx2→y − ITEx1,x2→y (11)

provides a relation among the information jointly transferred
from x1 and x2 to y, JTEx1,x2→y, the quantities individually
transferred from x1 to y, TEx1→y, and from x2 to y, TEx2→y

and the ITEx1,x2→y. ITEx1,x2→y<0 implies synergy of x1 and x2
in contributing to JTEx1,x2→y, indicating that the information
jointly transferred from x1 and x2 to y is larger than the sum
of the information transferred from x1 to y and from x2 to y
when x1 and x2 are taken individually. Therefore, the ITEx1,x2→y

measures the redundant or synergistic contribution of x1 and x2
to JTEx1,x2→y. The smaller and negative the ITEx1,x2→y, the more
relevant the synergy of x1 and x2 in reducing the uncertainty
about the present of y above and beyond the contribution of
past values of y. ITEx1,x2→y>0 implies redundancy of x1 and x2
in contributing to JTEx1,x2→y, indicating that the information
jointly transferred from x1 and x2 to y is smaller than the sum of
the information transferred from x1 to y and from x2 to ywhen x1
and x2 are taken individually. Therefore, the larger and positive
the ITEx1,x2→y, the more relevant the redundancy of x1 and x2 in
reducing the uncertainty about the present of y above and beyond
the contribution of past values of y. The ITEx1,x2→y can be easily
estimated as

ITEx1,x2→y = TEx1→y − CJTE x1x2→y|x2 . (12)

Equation (12) clearly indicates that the information transferred
to y in �\x2 might be larger or smaller than that in � depending

on whether redundancy or synergy occurs. From Equation (12)
it is clear that the sign of ITEx1,x2→y depends on the balance

between two quantities that are larger than 1: (i) σ2AR

/

σ2ARX1
; (ii)

σ2ARX2

/

σ2ARX1X2
. If σ2AR

/

σ2ARX1
>σ2ARX2

/

σ2ARX1X2
, redundancy

is present. Conversely, if σ2AR

/

σ2ARX1
<σ2ARX2

/

σ2ARX1X2
, synergy

is detected. Since ITEx1,x2→y is symmetric in x1 and x2, the
abovementioned considerations hold by reversing the role of
x1 and x2. The ITE x1,x2→y can be also expressed as a percent
value with respect to JTEx1,x2→y. This quantity will be denoted
as ITE%x1,x2→y.

Redundant/Synergistic Contributions of x1
and x2 to SE
The SEy can be seen as

SEy = CSE y|x1,x2 + SEx1,x2y (13)

where

SEx1,x2y =
1

2
log

σ2ARX1X2

σ2AR · σ2X1X2

(14)

represents the synergistic/redundant contribution of x1 and x2
to SEy (Figure 1). If SEx1,x2y >0, then SEy > CSE y|x1,x2 . This

indicates that past values of y and of the exogenous sources, when
taken together, contribute redundantly to resolve the uncertainty
of y because the joint consideration of past values of y and of
the exogenous sources worsens predictability of y compared to
their separated observations. Conversely, if SEx1,x2y <0, the joint
knowledge of past values of y and of the exogenous sources
improves prediction compared to their separated consideration,
thus indicating that past values of y and of the exogenous sources
contribute synergistically to reduce the uncertainty of y. The
SEx1,x2y can be also expressed as a percent value with respect to
SEy. This quantity will be denoted as SE%x1,x2

y .
Defined the redundant/synergistic contributions of x1 and x2

to SEy when x1 and x2 are individually considered as

SEx1y = Cx1→y − TEx1→y (15)

and

SEx2y = Cx2→y − TEx2→y (16)

the equality

SEx1,x2y = SEx1y + SEx2y − ISEx1,x2y (17)

formally corresponds to Equation (11) as far as the information
storage in y is concerned, where ISE stands for the interactive SE
and represents the redundant/synergetic contributions of x1 and
x2 to the information stored in y. At difference from Equation
(11), where the ITEx1,x2→y is the unique synergistic/redundant
term, in Equation (17) all parts might be positive or negative
depending on whether x1 and x2, taken individually or jointly,
contribute redundantly or synergistically to the information
storage of y.
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By substituting Equations (13), (15), and (16) into Equation
(17) it can be easily demonstrated that the

ISEx1,x2y y =
1

2
log

(

σ2ARX1

σ2X1
· σ2AR

·
σ2ARX2

σ2X2
· σ2AR

·
σ2AR · σ2X1X2

σ2ARX1X2

)

(18)

thus leading to the following equality

ISEx1,x2y = Cx1→y − TEx1→y −
(

CSE y|x2 − CSE y|x1,x2

)

(19)

that provides a viable estimate of ISEx1,x2y .

Full Decomposition of PE of y in �
By following the definitions given in the previous sections it can
be easily verified that the PEy in � can be fully decomposed
(Figure 1) as

PEy = JTEx1,x2→y + SEy (20)

JTEx1,x2→y = CJTE x1,x2→y|x2 + CJTE x1,x2→y|x1 + ITEx1,x2→y

(21)

SEy = CSEy|x1,x2 + SEx1y

∣

∣

∣

x2
+ SEx2y

∣

∣

∣

x1
+ ISEx1,x2y (22)

with

SEx1y

∣

∣

∣

x2
+ SEx2y

∣

∣

∣

x1
+ ISEx1,x2y = SEx1,x2y (23)

SEx1y

∣

∣

∣

x2
= CSE y|x2 − CSE y|x1,x2 (24)

and

SEx2y

∣

∣

∣

x1
= CSE y|x1 − CSE y|x1,x2 (25)

where SEx1y

∣

∣

∣

x2
and SEx2y

∣

∣

∣

x1
represent the synergistic/redundant

contribution of x1 conditioned on x2 and vice versa to SEy in
� (Figure 1). It is remarkable that the synergistic/redundant
contribution of x1 and x2 to SEy, measured by SEx1,x2y , depends
on the balance among the synergistic/redundant contributions
of one of the exogenous inputs conditioned on the other,

i.e., SEx1y

∣

∣

∣

x2
and SEx2y

∣

∣

∣

x1
, and on the synergistic/redundant

contribution of x1 and x2 when they are jointly considered (i.e.,
ISEx1,x2y ). Even though Equation (23) formally corresponds to
Equation (21) as far as the information storage in y is concerned,
Equations (21) and (23) are structurally very different. Indeed,
while all the terms in Equation (23) can be positive or negative,
CJTE x1,x2→y|x2 and CJTE x1,x2→y|x1 in Equation (21) are positive

(or null).

EXPERIMENTAL PROTOCOL AND DATA
ANALYSIS

Experimental Protocol
We studied 13 healthy men aged from 41 to 71 years (median:
59 years). A detailed medical history and examination excluded

the evidence of any disease. The subjects did not take any
medication nor did they consume any caffeine or alcohol
containing beverages in the 24 h before the recording. The study
adhered to the principles of the Declaration of Helsinki for
medical research involving human subjects. The human research
and ethical review board of the “L. Sacco” Hospital approved
the protocol. All subjects gave their written informed consent.
Electrocardiogram (ECG) and noninvasive finger blood pressure
(Nexfin, BMEYE, Amsterdam, The Netherlands) were recorded
during the experiments. Signals were sampled at 400Hz. Each
experiment consisted of 10min of baseline recording at rest in
supine position (REST) followed by 10min of recording during
HDT with a table inclination of −25◦. Before REST we allowed
15min of stabilization. The recordings of theHDT session started
5min after tilting the table. During the protocol, the subjects
breathed according to a metronome at 16 breaths.min−1 to
prevent modifications of the magnitude of the respiratory sinus
arrhythmia owing to the changes of the breathing rate as much
as possible (Hirsch and Bishop, 1981; Brown et al., 1993). All
experiments were carried out in the afternoon in the same
temperature-controlled room and the subjects were not allowed
to talk during the protocol. Original data are available through
the corresponding author.

Extraction of the Beat-to-Beat Variability
Series
After detecting the R-wave on the ECG and locating the R-
wave peak using parabolic interpolation, the temporal distance
between two consecutive R-wave apexes was computed and
utilized as an approximation of HP. The maximum of arterial
pressure inside the n-th HP [i.e., HP(n)] was taken as the n-th
SAP [i.e., SAP(n)]. R signal was obtained from the respiratory-
related amplitude modulation of the ECG. The amplitude of
the first QRS complex delimiting HP(n), taken as the difference
between the R-wave apex and the isoelectric line, was taken
as the n-th R [i.e., R(n)]. The occurrences of R-wave and SAP
peaks were carefully checked to avoid erroneous detections or
missed beats. If isolated ectopic beats affectedHP and SAP values,
these measures were linearly interpolated using the closest values
unaffected by ectopic beats. HP, SAP, and R sequences of 256
consecutive synchronous measures were chosen inside the REST
and HDT periods, thus focusing on short-term cardiovascular
regulatory mechanisms (Task Force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology, 1996). The random selection of the onset
of analysis within the overall REST and HDT periods made
this preprocessing step operator-independent. The series were
linearly detrended before multivariate linear regression analysis.
If evident nonstationarities, such as very slow drifting of themean
or sudden changes of the variance, were visible despite the linear
detrending, the random selection was carried out again. The HP
and SAP means and the HP and SAP variances were indicated as
µHP, µSAP, σ

2
HP and σ2SAP and expressed in ms, mmHg, ms2, and

mmHg2 respectively.

Power Spectral Analysis
The power spectrum was estimated according to an univariate
parametric approach fitting the series according to the AR
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model (Kay and Marple, 1981). The Levinson-Durbin recursive
algorithm was utilized to estimate the coefficients of the AR
model and the variance of the white noise. The number of
coefficients p was chosen according to the Akaike’s figure of
merit in the range from 8 to 14. The power spectral density
was computed from the AR coefficients and from the variance
of the white noise according to the maximum entropy spectral
estimation approach (Kay and Marple, 1981). The AR spectral
density was factorized into spectral components, the sum
of which provides the entire power spectral density (Baselli
et al., 1997). The AR spectral decomposition provided power
and central frequency of the components of the AR spectral
density. The central frequency of the components expressed in
cycles.beats−1 was converted into Hz by dividing the values
by µHP. A spectral component was labeled as low frequency
(LF) or high frequency (HF) if its central frequency ranged
between 0.04 and 0.15Hz or was in the range of±0.05Hz around
the paced breathing rate respectively. The LF and HF powers
were computed as the sum of the powers of all LF and HF
spectral components respectively. TheHF power of the HP series,
expressed in absolute units (i.e., ms2) and labeled as HFaHP, was
utilized as a marker of vagal modulation directed to the heart
(Akselrod et al., 1981), while the LF power of the SAP series,
expressed in absolute units (i.e., mmHg2) and labeled as LFaSAP,
was utilized as a marker of sympathetic modulation directed to
vessels (Pagani et al., 1986).

Construction of Surrogates and Surrogate
Analysis
We tested the null hypotheses of HP-SAP and HP-R coupling
without or with preservation of the HP information storage. This
test was performed by creating two sets of surrogates.

The first set was composed by the original SAP and R
series, while the HP sequence was substituted with a series
obtained by randomly shuffling the HP samples (Palus, 1997).
The shuffling procedure was performed according to one of
the N! permutations of the HP samples. As a consequence the
SAP and R series were fully uncoupled to the HP shuffled
dynamics and the original HP information storage was destroyed,
while preserving the distribution of all series and the repetitive
dynamical structures of SAP and R. This surrogate will be
referred to as HP-shuffled surrogate.

The second set was composed by time-shifted versions of the
original series (Andrzejak et al., 2003). While the HP series was
left unmodified, the SAP and R sequences were shifted according
to a delay much larger than the maximal order of the multivariate
model (i.e., 50 cardiac beats), thus destroying the short-term
temporal correspondence of the SAP and R samples to HP values,
while preserving the HP information storage. The delays from
SAP and R to HP were independently chosen. The values at the
end of the SAP and R sequences were wrapped to their onset. This
surrogate will be referred to as time-shifted surrogate.

For each triplet of original HP, SAP, and R series we created
a triplet of HP-shuffled and time-shifted surrogates. If the values
derived from the original data were significantly different from
those obtained from the surrogate sets the null hypothesis of
HP-SAP and HP-R coupling without or with preservation of the
HP information storage was rejected.

Surrogate data are available through the corresponding
author.

Calculation of the Information-theoretic
Quantities
The HP series was modeled via ARX1X2, ARX1, ARX2, X1X2,
and AR models where X1 = SAP and X2 = R. The delays
from SAP and R to HP, τSAP and τR, were set to 0 to allow
the description of the fast vagal reflex (within the current
HP) capable to modify HP in response to changes of SAP
and R (Eckberg, 1976; Baselli et al., 1994; Porta et al., 2012a).
The coefficients were identified via a traditional least squares
approach and Cholesky decomposition method (Soderstrom
and Stoica, 1988; Baselli et al., 1997). The AR and X parts had
the same model order p. The model order was optimized in the
range from 4 to 16 according to the Akaike figure of merit for
multivariate processes (Akaike, 1974) over the most complex
model structure (i.e., the ARX1X2, model). The whiteness of
the HP prediction error and its mutual uncorrelation, even at
zero lag, with the SAP and R series was checked over the same
model (Baselli et al., 1997; Porta et al., 2012a). All remaining
model structures were separately identified using the optimal
order of the ARX1X2 model. After the identification of the model
coefficients the variances of the prediction errors were computed
and the indexes PEHP, SEHP, JTESAP,R→HP, CJTE SAP,R→HP|R,

CJTE SAP,R→HP|SAP, ITESAP,R→HP, CSEHP|SAP,R, SESAP,R
HP ,

SESAPHP

∣

∣

R
, SERHP

∣

∣

SAP
, ISESAP,R

HP , ITE%SAP,R→HP, and SE%SAP,R
HP

were evaluated.

Statistical Analysis
We performed paired t-tests to check the significance of the
difference between time, frequency and PEHP indexes derived
at REST and during HDT. If the normality test (Kolmogorov-
Smirnov test) was not fulfilled, the Wilcoxon signed rank test
was utilized. The same test was exploited to check the difference
between original and surrogate sets. Differences among the terms
of the decompositions of PEHP (i.e., SEHP and JTESAP,R→HP),
of JTESAP,R→HP (i.e., CJTE SAP,R→HP|R, CJTE SAP,R→HP|SAP, and

ITESAP,R→HP), of SEHP (i.e., CSEHP|SAP,R and SESAP,R
HP ) and of

SESAP,R
HP (i.e., SESAPHP

∣

∣

R
, SERHP

∣

∣

SAP
, and ISESAP,R

HP ) were assessed
within the index and experimental condition via two-way
repeated measures analysis of variance (Holm-Sidak test for
multiple comparisons). The same test was utilized to compare

ITE%SAP,R→HP and SE%SAP,R
HP in both experimental conditions.

Statistical analysis was carried out using a commercial statistical
program (Sigmaplot, ver.11.0, Systat Software, San Jose, CA,
USA). A p < 0.05 was always considered as significant.

RESULTS

Table 1 summarizes the results relevant to the time and
frequency domain analyses of the HP and SAP series. HDT
did not affect the time domain parameters of both HP and
SAP series (i.e., µHP, σ2HP, µSAP, and σ2SAP). Conversely,
the frequency domain indexes were significantly modified.
Indeed, HFaHP increased during HDT, while LFaSAP significantly
declined.
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The bar graph shown in Figure 2 compares PEHP computed
at REST and during HDT. PEHP was significantly decreased
during HDT. The full decomposition of PEHP into more specific
quantities is given in Figures 3–6.

The grouped bar graph of Figure 3 shows the two terms
forming PEHP according to Equation (20) (i.e., SEHP, white bars,
and JTESAP,R→HP, black bars). SEHP was markedly larger than
JTESAP,R→HP in both conditions. SEHP significantly decreased
during HDT, while JTESAP,R→HP was not affected by the posture
modification.

The grouped bar graph of Figure 4 depicts the three
constituents of JTESAP,R→HP according to Equation (21)
(i.e., CJTESAP,R→HP|R, white bars, CJTESAP,R→HP|SAP, gray
bars, and ITESAP,R→HP, black bars). None of the terms
forming JTESAP,R→HP were modified by HDT. At REST
CJTESAP,R→HP|R, CJTESAP,R→HP|SAP, and ITESAP,R→HP were
similar, while duringHDT ITESAP,R→HP was significantly smaller
than CJTESAP,R→HP|R. It is remarkable that ITESAP,R→HP was
larger than 0 in all subjects regardless of the experimental
condition, suggesting that SAP and R contributed redundantly
to JTESAP,R→HP both at REST and during HDT.

The grouped bar graph of Figure 5 shows the two terms
forming SEHP according to Equation (13) (i.e., CSEHP|SAP,R,

TABLE 1 | Results of time and frequency domain analyses of HP and SAP

series.

REST HDT

µHP [ms] 937 ± 99 955 ± 111

σ2
HP [ms2] 1052 ± 742 950 ± 594

HFaHP [ms2] 144 ± 133 205 ± 150#

µSAP [mmHg] 128 ± 21 132 ± 21

σ2
SAP

[mmHg2] 24.5 ± 11.6 20 ± 14.7

LFaSAP [mmHg2] 7.6 ± 7.7 3.4 ± 3.0#

µHP, HP mean; σ 2
HP, HP variance; HFaHP, HP power in HF band expressed in absolute

units; µSAP, SAP mean; σ 2
SAP

, SAP variance; LFaSAP, SAP power in LF band expressed

in absolute units; REST, resting supine condition; HDT, −25◦ head-down tilt. Values are

expressed as mean ± standard deviation. The symbol # indicates a significant difference

with p < 0.05.

FIGURE 2 | The bargraph shows the PEHP assessed at REST and

during HDT. The values are reported as mean plus standard deviation. The

symbol * indicates a significant difference with p < 0.05.

white bars, and SESAP,R
HP , black bars). CSEHP|SAP,R significantly

decreased during HDT, while SESAP,R
HP was not affected by the

posture modification. SESAP,R
HP was significantly smaller than

CSEHP|SAP,R in both experimental conditions. The average value

of SESAP,R
HP was larger than 0 indicating that, on average, SAP

and R contributed redundantly to the information storage in HP.

However, SESAP,R
HP was negative in 31% and 46% of subjects at

REST and during HDT respectively, thus indicating that at the
level of the information storage in HP synergy between SAP and
R occurred frequently.

FIGURE 3 | The grouped bargraph shows the SEHP (white bars) and

JTESAP,R→HP (black bars) assessed at REST and during HDT. SEHP and

JTESAP,R→HP are the two terms of the PEHP decomposition according to

Equation (20). The values are reported as mean plus standard deviation. The

symbol * indicates a significant difference between experimental conditions

within the same index, while the symbol # indicates a significant difference

between indexes within the same experimental condition with p < 0.05.

FIGURE 4 | The grouped bargraph shows the CJTESAP,R → HP|R

(white bars), CJTER ,SAP→HP|SAP (gray bars) and ITESAP,R→HP (black

bars) assessed at REST and during HDT. CJTESAP ,R→HP|R,

CJTER ,SAP→HP|SAP, and ITESAP,R→HP are the three terms of the

JTESAP,R→HP decomposition according to Equation (21). ITESAP,R→HP is the

synergistic/redundant term of the JTESAP,R→HP decomposition. The values

are reported as mean plus standard deviation. The symbol # indicates a

significant difference between indexes within the same experimental condition

with p < 0.05.
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The grouped bar graph of Figure 6 depicts the
synergistic/redundant terms present in the decomposition
of SEHP according to Equation (22) (i.e., SESAPHP

∣

∣

R
, white bars,

SERHP

∣

∣

SAP
, gray bars, and ISESAP,R

HP , black bars). No significant
difference was detected within indexes given REST or HDT or
within experimental conditions given the index. On average,

SESAPHP

∣

∣

R
, SERHP

∣

∣

SAP
, and ISESAP,R

HP were positive at REST,
but indexes were negative in 54%, 31%, and 54% of subjects

respectively. On average during HDT SERHP

∣

∣

SAP
and ISESAP,R

HP

remained positive, while SESAPHP

∣

∣

R
became negative. SESAPHP

∣

∣

R
,

SERHP

∣

∣

SAP
, and ISESAP,R

HP were negative in 77%, 38%, and 38% of

FIGURE 5 | The grouped bargraph shows the CSEHP|SAP,R (white bars)

and SE
SAP,R
HP

(black bars) assessed at REST and during HDT.

CSEHP|SAP,R and SESAP,R
HP are the two terms of the SEHP decomposition

according to Equation (13). SESAP,R
HP is the synergistic/redundant term of the

SEHP decomposition. The values are reported as mean plus standard

deviation. The symbol * indicates a significant difference between experimental

conditions within the same index, while the symbol # indicates a significant

difference between indexes within the same experimental condition with

p < 0.05.

FIGURE 6 | The grouped bargraph shows the SESAPHP |R (white bars),

SERHP|SAP (gray bars), and ISE
SAP,R
HP

(black bars) assessed at REST and

during HDT. SESAPHP

∣

∣

∣

R
, SERHP

∣

∣

∣

SAP
, and ISESAP,R

HP are the three

synergistic/redundant terms of the SEHP decomposition according to

Equation (22). The values are reported as mean plus standard deviation.

subjects respectively during HDT. These results stressed that at
the level of the information storage in HP synergy between SAP
and R was commonly present both at REST and during HDT,
even though it did not take priority over redundancy.

The contributions of the redundant/synergistic terms to

JTESAP,R→HP and SEHP (i.e., ITESAP,R→HP and SESAP,R
HP ) are

compared in Figure 7 after expressing them as ITE%SAP,R→HP

and SE%SAP,R
HP . Since ITE%SAP,R→HP was larger than 20%

at REST, ITESAP,R→HP represented a sizable amount of

JTESAP,R→HP. Conversely, SE%
SAP,R
HP was significantly smaller

(about 3%), being a negligible quantity compared to SEHP.

Both ITE%SAP,R→HP and SE%SAP,R
HP were not affected by HDT.

Remarkably, while ITE%SAP,R→HP was consistently positive in all

subjects, the variability of SE%SAP,R
HP was much higher due to the

presence of both negative and positive values.
For the surrogate analysis, the PEHP was significantly larger

when computed over the original series than over both types
of surrogates. This result held in the case of any term of the
JTESAP,R→HP decomposition according to Equation (21). The
SEHP and, more specifically, CSEHP|SAP,R was significantly larger
over the original data than HP-shuffled surrogates. Conversely,

the terms of the SESAP,R
HP decomposition according to Equation

(23) computed over the original data were similar to those
calculated over both types of surrogates.

DISCUSSION

The methodological findings of this study can be summarized
as follows: (i) the study proposes a full decomposition of PE of
y in � = {y,x1,x2} that includes the decomposition of SE of y
in addition to the known decomposition of JTE from x1 and
x2 to y; (ii) both JTE and SE decompositions include a term

FIGURE 7 | The grouped bargraph shows the ITE%SAP,R → HP (white

bars) and SE%
SAP,R
HP

(black bars) assessed at REST and during HDT.

ITE%SAP,R→HP and SE%SAP,R
HP measure the percent redundant/synergistic

contributions of SAP and R to JTESAP,R→HP and SEHP respectively. The

values are reported as mean plus standard deviation. The symbol # indicates a

significant difference between indexes within the same experimental condition

with p < 0.05.
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describing redundancy/synergy of x1 and x2 in contributing to
the information carried by y and the redundant/synergistic term
of SE has a more complex structure; (iii) the utility of the JTE and
SE decompositions is demonstrated in the field of cardiovascular
control analysis to disentangle physiological mechanisms from
spontaneous variations and clarify the origin of the increase of
respiratory sinus arrhythmia during HDT.

The experimental findings of this study can be summarized
as follows: (i) in agreement with the literature we confirm
the increase of respiratory sinus arrhythmia after acute
cardiopulmonary loading induced by HDT; (ii) the PE of HP
decreases during HDT, thus suggesting a larger complexity of
the cardiac control and a vagal enhancement; (iii) the SE of
HP is larger than the JTE from SAP and R to HP and the SE
of HP due to SAP and R is negligible compared to the CSE
of HP given SAP and R both at REST and during HDT, thus
emphasizing the relevance of physiological mechanisms other
than those mediated by SAP and R changes in governing the
HP dynamics; (iv) the invariance of the CJTE from SAP and R
to HP given R and CJTE from SAP and R to HP given SAP
during HDT suggests a limited involvement of the baroreflex
and cardiopulmonary pathway in controlling the HP dynamic
during HDT; (v) the decrease of the CSE of HP given SAP and
R in response to HDT suggests that the increase of respiratory
sinus arrhythmia might be the consequence of modifications
of the sinus node dynamical properties and/or an enhanced
activity of the respiratory centers occurring independently of the
cardiac baroreflex and cardiopulmonary circuits; (vi) SAP and
R contribute redundantly to the information jointly transferred
to HP, while, at the level of the information storage into HP,
redundancy and synergy are more balanced; (vii) the amount
of synergy or redundancy of SAP and HP to the information
transfer and storage in HP is not affected by HDT, thus again
stressing that the response to HDT is not mediated by a strong
involvement of the cardiac baroreflex and cardiopulmonary
circuits; (viii) surrogate analysis indicates that the terms of
the JTE decomposition detect significant HP-SAP and HP-R
interactions and the CSE of HP given SAP and R measures a
significant HP information storage both at REST and during
HDT.

Methodological Findings
Decomposition of PE of y in � = {y,x1,x2}
The study proposes a viable approach to tackle the issue of
the PE decomposition of a target signal y affected by two
exogenous signals, x1 and x2. The PE, measuring the reduction of
uncertainty about the present of y when past samples of y, x1, and
x2 are given (Chicharro and Ledberg, 2012; Faes et al., 2015), can
be decomposed into the information jointly transferred from x1
and x2 to y and the information stored into y. The information
stored into y estimates the amount of uncertainty about the
present of y that can be resolved using only past values of y
(Lizier et al., 2012; Wibral et al., 2014), while the JTE from x1
and x2 to y quantifies the reduction of uncertainty about the
present value of y when past samples of x1 and x2 are given above
and beyond the information stored into y (Porta et al., 2015).
The decomposition of JTE from x1 and x2 to y into two terms

considering the contribution of x1 to y given x2 and that of x2 to
y given x1plus an additional term describing the balance between
redundancy and synergy to the joint information transfer (i.e.,
the ITE) was originally proposed in (Stramaglia et al., 2012) by
generalizing to the conditional case the notion of interaction
information (McGill, 1954). Conversely, the full decomposition
of SE of y is original, thus completing the PE decomposition
of y in � = {y,x1,x2}. The SE is first decomposed into two
terms: (i) the first term is the SE of y conditioned on the
exogenous sources (i.e., the CSE of y given x1 and x2) assessing
the information storage not attributable to SAP and R influences;
(ii) the second term is a synergistic/redundant term indicating
whether past values of y and of both exogenous signals, when
jointly considered, contribute synergistically or redundantly to
resolve the uncertainty of y (i.e., the SE of y due to x1 and x2).
The SE of y due to x1 and x2 can be decomposed further into
two terms considering the unique contribution of x1 and x2 plus
an extra term describing the joint contribution of x1 and x2 (i.e.,
the ISE). We stress that, while in the decomposition of JTE from
x1 and x2 to y given in Equation (21) the synergistic/redundant
term is only one (i.e., ITE), in the decomposition of SE of y given
in Equation (22) only one term is definitely larger than or equal to
zero (i.e., the CSE of y given x1 and x2). Indeed, the SE of y due to
x1 and x2 can be positive or negative and, consequently, the SE of
y larger or smaller than the CSE of y given x1 and x2, depending
on the balance among synergistic/redundant behaviors of past
values of y and x1, past values of y and x2 and past values of y
and both x1 and x2 in reducing the uncertainty of y.

Both JTE and SE of y in � = {y,x1,x2} Feature

Redundant/Synergistic Terms
The JTE decomposition includes a term describing the redundant
or synergistic contribution of x1 and x2 to JTE (McGill, 1954;
Stramaglia et al., 2012; Barrett, 2015; Wibral et al., 2015).
This term indicates that the single contributions of x1 and
x2 to JTE do not invariably contain duplicate information
(i.e., redundant contribution) about the present value of y,
but, conversely, the contemporaneous knowledge of x1 and x2
might lead to extra information (i.e., synergistic contribution).
The inclusion of any new additional exogenous signal in the
universe of knowledge (e.g., x2 in�\x2) leading to synergy means
to improve the prediction of y well above the one obtained
when the exogenous signals are taken individually. Through,
the SE decomposition this study proves that the notion of
synergy or redundancy applies to the information storage as well.
Information storage depends on the action of exogenous inputs
(Lizier et al., 2012; Wibral et al., 2014) and the significance of
the contribution of the exogenous signals to SE of y has been
proved experimentally in the context of cardiovascular control
analysis (Porta et al., 2015). The SE decomposition indicates
that x1 and x2 might contribute redundantly or synergistically to
the information storage. The study of the synergistic/redundant
contributions of x1 and x2 to the information stored in y is
more complex because the assessment of synergy/redundancy
should take into account not only the ability of past values of
x1 and x2 to reduce the uncertainty of y but also that of past
values of y, thus increasing the number of synergistic/redundant
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terms. Conversely, in the case of the information transfer
synergy/redundancy is exclusively attributable to past values of
x1 and x2 since the contribution of past values of y is conditioned
out. The multiplicity of terms describing redundancy/synergy
at the level of the information storage has been spelled out in
Equation (23) and viable estimators for their computation were
provided.

JTE and SE Decompositions in Network Physiology
Our approach is framed into the emerging field of network
physiology describing the complexity of aggregates of parts and
their interactions as a network of nodes with interconnections
(Bashan et al., 2012). This feature is in common with other
approaches adopting the same logic for representing complex
interactions among subsystems regardless of the scale (David
et al., 2006; Bressler and Seth, 2011; Bashan et al., 2012; Iatsenko
et al., 2013; Kralemann et al., 2014; Stankovski et al., 2015; Porta
and Faes, 2016). This description might involve the utilization of
raw data (David et al., 2006; Bressler and Seth, 2011), realizations
of point processes or series of events (Porta and Faes, 2016) or
phase evolutions estimated from raw data or series of events
(Iatsenko et al., 2013; Kralemann et al., 2014; Stankovski et al.,
2015). The functionals exploited to assess the strength of the
interconnections among nodes might be fully adherent to the
Wiener-Granger principle (Granger, 1963) if their calculation
is based on a direct comparison of indexes computed in the
unrestricted and restricted universes of knowledge via metrics
assessing the predictability improvement (Bressler and Seth,
2011; Porta and Faes, 2016) and/or uncertainty decrement
(Schreiber, 2000; Hlavackova-Schindler et al., 2007; Porta and
Faes, 2016), or based on the explicit computation of coupling
functions (Iatsenko et al., 2013; Kralemann et al., 2014;
Stankovski et al., 2015), or the estimation of coupling coefficients
of an assigned model (David et al., 2006). The approach
devised in this study is fully consistent with the Wiener-Granger
principle in the information domain, where functionals assess the
uncertainty decrement and account for conditioning variables
according to a multivariate approach. As such, some analogs
can be found with fully multivariate methods based on the
explicit calculation of coupling functions (Kralemann et al., 2014;
Stankovski et al., 2015) and on its decomposition into self-, direct,
and indirect components (Stankovski et al., 2015). Nevertheless,
in the present study the proposed decomposition is achieved
in a completely different framework (i.e., the Wiener-Granger
one) and it is expressively devised for the identification of
synergistic/redundant components, rather than for the exclusive
separation of the direct influences from the indirect ones.

Experimental Findings
Time and Frequency Domain Analyses of HP

Dynamics during HDT
Time and frequency domain parameters confirmed that HDT
does not significantly affect the HP and SAP means (Harrison
et al., 1986; Nagaya et al., 1995; Kardos et al., 1997; Tanaka
et al., 1999) but it increases the HF power of HP (Kardos et al.,
1997) and decreases the LF power of SAP (Weise et al., 1995).
These findings were interpreted as a sign of the involvement

of the autonomic nervous system in adjusting HP and SAP in
response to the posture challenge and, more specifically, as an
indication of the increased vagal modulation directed to the
sinus node and the decreased sympathetic modulation directed
to the vessels during HDT (Nagaya et al., 1995; Weise et al.,
1995; Tanaka et al., 1999). Unfortunately, time and frequency
domain analyses exploited in this study, and traditionally utilized
to understand the physiological adaptation to acute central
circulatory hypervolaemia (Weise et al., 1995; Kardos et al.,
1997), are not helpful to clarify the origin of the increase
of respiratory sinus arrhythmia during HDT. This limitation
can be primarily attributable to the univariate nature of these
classical time and frequency domain analyses and to their
inability to interpret causality, thus preventing the possibility of
disentangling the HP response to HDT driven by changes of
SAP and R from the one independent of them. This limitation is
tackled by the proposed multivariate approach grounded in the
framework of information dynamics.

Information Dynamics Approach to the Assessment

of the Cardiovascular Control during HDT
The involvement of the cardiovascular control in regulating the
HP dynamic during HDT is clearly suggested by the significant
decrease of PE of HP. Since we reported earlier that the level of
predictability of HP based on past samples of HP, SAP and R is
under vagal control being increased during head-up tilt and high
dose administration of atropine (Porta et al., 2012c), the decrease
of the amount of uncertainty about the present of HP that can
be resolved by past values of HP, SAP, and R, as measured by the
PE of HP, suggests a larger complexity of the cardiac control and
an increased vagal regulation during HDT. Even though based
on multivariate analysis, this finding is useless in explaining the
mechanisms underpinning vagal activation and the increase of
respiratory sinus arrhythmia because PE is a global parameter
vaguely linked to physiological mechanisms. We need to directly
exploit the decomposition of JTE of SAP and R to HP and SE
of HP to try to elucidate the origin of the increase of respiratory
sinus arrhythmia during HDT.

The information stored into HP, as measured by the SE
of HP, is significantly larger than the JTE of SAP and R to
HP. This finding suggests that, even though the knowledge
of SAP and R is really helpful in resolving the uncertainty
of HP, the contribution of these two signals is significantly
smaller compared to the ability of past HP values in predicting
the current HP. The relevance of the information storage in
HP as the likely consequence of the importance of signals
driving HP dynamics independently of SAP and R, such as
modulation of efferent cardiac neural activity driven by central
commands, originating from respiratory and vasomotor centers
in the brainstem, and independent of afferent inputs (Preiss
and Polosa, 1974; Valentinuzzi and Geddes, 1974; Preiss et al.,
1975; Koepchen, 1984; Dick et al., 2009). Also the dynamical
properties of the sinus node (i.e., how it responds to changes of
sympathetic and vagal inputs) might play an important role in
setting the magnitude of the information stored in HP because
they directly affect the memory of HP over its past values (Chess
and Calaresu, 1971; Berger et al., 1989; Porta et al., 2003). In
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addition to the dynamical response of receptors, the self-storage
of information intoHP depends on the type of neurotransmitters,
their concentration, rate of release, degradation and removal and
sympatho-vagal interactions (Kawada et al., 1996; Nakahara et al.,
1998, 1999; Porta et al., 2003).

Remarkably, we found that the SE of HP and, more
specifically, the CSE of HP given SAP and R decreased during
HDT, while the JTE of SAP and R to HP remained unmodified.
The reduction of the CSE of HP given SAP and R supports
the central drive hypothesis as a possible explanation for the
increase of respiratory sinus arrhythmia during HDT. Indeed,
the activation of a central mechanism, independent of the
cardiac baroreflex and cardiopulmonary stimulation, could limit
the ability of past values of HP in reducing the uncertainty
of the current HP value. For example, if the respiratory
centers improved their activity (Valentinuzzi and Geddes, 1974;
Dick et al., 2009), the resulting augmented modulation of
the cardiovagal motorneuron responsiveness would produce an
increase of respiratory sinus arrhythmia (Eckberg, 2003) and
make cardiac regulation more complex (Porta et al., 2012c).

The invariance of JTE from SAP and R to HP during HDT
is not a sufficient condition to exclude the role of the cardiac
baroreflex and cardiopulmonary reflexes in the rise of respiratory
sinus arrhythmia during HDT. Indeed, during graded head-up
tilt we found that the invariance of JTE from SAP and R to
HP hides the progressive increase of the information transferred
from SAP to HP in �, as quantified by the CJTE from SAP and
R to HP given R, and the decrease of the information transferred
from R to HP in �, as quantified by the CJTE from SAP and R to
HP given SAP, with the magnitude of the orthostatic challenge
and baroreflex unloading (Porta et al., 2015). Therefore, it is
necessary to check the trend of CJTE from SAP and R to HP
given R and CJTE from SAP and R to HP given SAP during
HDT to better characterize the involvement of the baroreflex and
cardiopulmonary pathway in controlling HP dynamics. Given
the invariance of the CJTE from SAP and R to HP given R and
CJTE from SAP and R to HP given SAP during HDTwe conclude
that the amount of information transferred along the cardiac
baroreflex and cardiopulmonary reflexes is not significantly
different from that observed at REST and, thus, we exclude again
the cardiac baroreflex control and cardiopulmonary reflexes as
possible physiological mechanisms underpinning the observed
increase of respiratory sinus arrhythmia.

The opposite influences on the venous return, central blood
volume and central venous pressure during head-up tilt and
HDT, leading to baroreflex unloading, sympathetic activation,
and vagal withdrawal in the case of the head-up tilt (Montano
et al., 1994; Cooke et al., 1999; Furlan et al., 2000; Marchi et al.,
2013) and cardiopulmonary loading and sympathetic inhibition
in the case of HDT (Nagaya et al., 1995; Tanaka et al., 1999),
might suggest opposite effects on the degree of involvement of the
baroreflex control of HP and cardiopulmonary neural circuits.
Contrary to this expectation, while head-up tilt maneuver led to
an augmented involvement of the baroreflex control of HP and
a reduced participation of the cardiopulmonary reflexes (Porta
et al., 2012b, 2015), the invariance of the information transferred
along the cardiac baroreflex and cardiopulmonary pathway

observed in the present study suggests that the physiological
response to acute central circulatory hypervolaemia during HDT
cannot be simply deduced from the knowledge of the response to
acute central circulatory hypovolemia during head-up tilt.

Redundancy and Synergy of SAP and R in

Contributing to the Information Transferred and

Stored in HP Dynamics
SAP and R contribute redundantly to the information jointly
transferred to HP. This means that SAP and R hold common
information about the present value of HP above and beyond
that derived from past values of HP. Remarkably, this quantity
is important since it explains more than 20% of JTE from
SAP and R to HP. The redundant nature of the SAP and
R contributions to the information transferred to HP is not
surprising. Indeed, R can directly modulate SAP by modifying
venous return, pressure gradients over large arteries in the
thorax and stroke volume via respiratory-related changes of the
intrathoracic pressure (Innes et al., 1993; Toska and Eriksen,
1993; Caiani et al., 2000). However, the redundant contribution
of SAP and R to JTE from SAP and R toHPmight also come from
more complex interactions and integrations between vasomotor
and respiratory centers occurring at the brain stem level. This
amount of redundancy might accomplish a principle of fault
tolerance and harmonization of neural responses. In this specific
experimental protocol the amount of redundancy of SAP and R
to the information transferred to HP was not significantly varied
during HDT, again confirming that HDT did not affect quantities
closely linked to the functioning of the cardiac baroreflex and
cardiopulmonary reflexes.

Even though on average SAP and R contribute redundantly
to the information storage into HP, we cannot conclude
that redundancy is prevailing over synergy as far as the
information storage of HP is concerned. Indeed, the SE of
HP due to SAP and R, measuring the balance between
redundancy and synergy at the level of the information storage
at REST, is quite small (i.e., 3% of the SE of HP) and in
31% of subjects synergistic behaviors between SAP and R in
contributing to the SE of HP were observed. As a result of the
presence of both redundancy and synergy inside the group of
subjects in both experimental conditions, indexes describing the
synergistic/redundant behavior of SAP and R to the information
storage of HP are characterized by greater variability compared to
the index describing the synergistic/redundant behavior of SAP
and R to the information transferred into HP. The amount of
redundancy of SAP and R to the information storage of HP was
not significantly varied during HDT, thus again stressing that
HDT did not affect quantities linked to the functioning of the
cardiac baroreflex and cardiopulmonary circuits even when the
action of these reflexes is mediated by memory effects of HP on
its own past.

Surrogate Analysis
Surrogate data were constructed with the main aim to test the
significance of the proposed indexes as markers of the strength
of the HP-SAP and HP-R coupling in absence or presence of
a significant amount of information stored in HP. According
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to this idea two types of surrogates, both destroying the HP-
SAP and HP-R coupling are generated. The first type, the HP-
shuffled surrogates, wiped out the HP autocorrelation function,
while the second type, the time-shifted surrogates, preserved
it. Remarkably, all indexes derived from the decomposition of
JTE from SAP and R to HP both at REST and during HDT
were significantly larger from those derived from surrogates,
regardless of the type. This result indicates that both at REST and
during HDT the HP-SAP and HP-R interactions are significant
as well as the detected redundancy of SAP and R in contributing
to the JTE from SAP and R to HP, suggesting that indexes
derived from the JTE decomposition are helpful to detect
physiological interactions from spontaneous variations. The SE
of HP and, more specifically, the CSE of HP given SAP and R, was
significantly larger in the original data than in the HP-shuffled
surrogates both at REST and during HDT. This result suggests
that the information stored into the HP dynamics is significant
in both experimental conditions. Conversely, the terms of the
decomposition of SE of HP due to SAP and R computed over
the original data were indistinguishable from those calculated
over surrogate data regardless the type of surrogate both at REST
and during HDT. We suggest two possible explanations for this
finding: (i) the contributions of SAP and R to the SE of HP did
not reach the level of significance both at REST and during HDT;
(ii) the surrogate analysis proposed in the present study is not
suitable to test the significance of the causal interactions from
SAP and R to HP at the level of the SE decomposition.

Significance of the Study and Future Perspectives
A full decomposition of the amount of uncertainty about a target
signal that can be resolved based on two presumed driving signals
is provided. The decomposition is relevant to the information
jointly transferred from the two driving signals to the target
one and to the information stored into the destination signal.

Terms describing the balance between redundancy and synergy
of the two driving series in resolving the uncertainty of the target
signal have been highlighted and viable estimators have been
proposed. The application to the experimental data suggests the
relevance of the approach in dissecting out cardiovascular control
mechanisms with the aim of accepting or rejecting physiological
hypotheses. Since the proposed quantities are highly specific
and take the form of indexes that can be computed very
efficiently and robustly via a traditional multivariate regression
analysis of spontaneously varying variables, they appear to
be suitable candidates for large scale applications to clinical
databases recorded even under uncontrolled conditions. Due
to the generality of the approach it might be applied not
only to cardiovascular physiology and neuroscience, but also
in any field of science in which interactions among systems,
or constituents of the same system, are under evaluation.
Future studies should extend the decomposition to model-free
frameworks to account for the possible presence of nonlinear
dynamics disregarded by the present approach. In addition,
given that in the present contribution the interaction terms
actually represent the balance between redundancy and synergy,
future studies might test different information decomposition
strategies (Barrett, 2015; Wibral et al., 2015) and extend the

proposed decomposition of SE to allow the coexistence of both
redundancy and synergy as independent positive quantities.
We also advocate studies devoted to the improvement of the
physical/physiological interpretation of the parts of the JTE
and SE decompositions that can be achieved by extending
the application of these decompositions to new experimental
conditions, proposing new experiments aimed at modulating
the terms of the decompositions, comparing this approach
to different techniques for the quantification of the coupling
strength, developing new strategies for the construction of ad-hoc
surrogate sets and designing specific simulation studies.
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