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Metabolic syndrome (MS) is characterized by the following physiological alterations:

increase in abdominal fat, insulin resistance, high concentration of triglycerides, low

levels of HDL, high blood pressure, and a generalized inflammatory state. One of

the pathophysiological hallmarks of this syndrome is the presence of neurohumoral

activation, which involve autonomic imbalance associated to hyperactivation of the

sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to

the development of endothelial dysfunction, hypertension, stroke, myocardial infarct,

and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous

system, control synaptic transmission, and regulate neuronal function by releasing

bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane

channels called hemichannels has been described to allow the release of gliotransmitters

and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates

that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic

transmission and neuronal survival. Given that glial cell functions are disturbed in various

metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-

dependent impairment of glial-to-neuron communication by a mechanism related to

dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this

manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive

observed in MS, and shed light about the possible role of hemichannels in this process.
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METABOLIC SYNDROME AND AUTONOMIC NERVOUS SYSTEM
IMBALANCE

The metabolic syndrome (MS) is a clinical disorder characterized by the common co-occurrence of
several physiological alterations, including increased abdominal fat, elevated fasting glucose, high
concentration of triglycerides, low levels of HDL and high blood pressure. People suffering MS are
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more likely to later developing diabetes mellitus and coronary
heart disease, consequently, their life expectancy is reduced
(Eckel et al., 2005; Grundy, 2008). This disorder has become
a growing health problem that affects millions of people
worldwide. Indeed, in United States nearly 50% of people with
60 years or more were estimated to have the metabolic syndrome
in 2011–2012 (Aguilar et al., 2015). Up to now, most efforts to
understand MS have been focused on the study of peripheral
organ malfunction, however, the role of the nervous system on
the alterations observed in MS remains unclear.

In the last decade, different groups have proposed that
autonomic nervous system (ANS) imbalance may be the hidden
factor underlying the progression of different metabolic diseases,
including MS (Thayer et al., 2010; Licht et al., 2013; Wulsin
et al., 2015). One of the main physiological challenges in
the daily life is to keep and maintain the body homeostasis.
The ANS conveys sensory afferent information from several
territories (e.g., blood vessels, heart, and kidneys) toward
nuclei within the central nervous system (CNS), including the
medulla and hypothalamus. The sensory inputs are integrated by
specific neuronal networks that orchestrate highly coordinated
responses to promote adaptive cardiovascular, respiratory, fluid,
and energy balance. These functions are complex and requires
fine adjustments between the two major branches of the
ANS; the sympathetic nervous system (SNS); associated with
energy mobilization; and the parasympathetic nervous system
(PNS); linked with vegetative and restorative functions. Under
physiological conditions, the activities of these branches are in
balance. However, when one branch dominates over the other
some diseases emerge.

ANS imbalance typically relies on hyperactivation of the SNS
and low activity of the PNS, resulting in insulin resistance, altered
lipid metabolism, increased blood pressure and endothelial
dysfunction (Palatini et al., 2006; Tentolouris et al., 2006;
Straznicky et al., 2012; Zucker et al., 2012; Paton et al., 2013; Stern
and Filosa, 2013). Indeed, hyperactivation of pre-sympathetic
neurons located at the CNS has been pointed out as a key
step in the sympatho-excitation observed in MS and further
heart failure and diabetes (Li et al., 2008; Zucker et al., 2012;
Del Rio et al., 2013; Khoo et al., 2013; Guimaraes et al.,
2014; Tremarin et al., 2014; Del Rio, 2015; Moreira et al.,
2015; Schlaich et al., 2015). Importantly, evidence from a large
cross-sectional study revealed that high sympathetic activity
and/or low parasympathetic activity were associated to higher
blood pressures, serum triglycerides, serum glucose, and waist
circumference (Licht et al., 2010). Neurons that control basal
sympathetic activity are located in diverse brain areas, including
the paraventricular nucleus of the hypothalamus (PVH), the
rostral ventrolateral medulla (RVLM), the spinal cord and the
nucleus of the solitary tract (NTS). Among these nuclei, the PVH
contains the pre-autonomic neurons that project to the RVLM
and spinal cord. At the RVLM, two well-known populations
of neurons project toward the spinal cord and other areas,
contributing to autonomic regulation (Swanson and Sawchenko,
1983). One population encompassing about of 50–70% of
projecting RVLM neurons (C1 group) are glutamatergic but
they also synthesize diverse catecholamines, including adrenaline

(Guyenet, 2006). Interestingly, non-spinal C1 neurons from
the RVLM can innervate the hypothalamus, modulating the
excitatory drive to the PVH during baroreceptor activation, a
key step in the neural control of circulation (Verberne et al.,
1999). Despite the current progress in the field, most of efforts
to understand the hyperactivation of SNS during MS have been
focused in neurons. Here, we discuss and hypothesize how glial
cells and their interaction with neurons at the nuclei that control
sympathetic activity could be involved in the pathogenesis and
progression of MS.

GENERAL FUNCTIONS OF GLIAL CELLS

In the last two decades, glial cells have emerged as critical
players in processing of highly complex information in the
CNS. This is particularly true for astrocytes, which create a far-
reaching syncytial network that anatomically and functionally
communicate neuronal synapses with brain blood vessels
(Volterra and Meldolesi, 2005). Through their processes, each
astrocyte contact multiple chemical synapses (Oberheim et al.,
2006). Thus, astrocytes together with pre- and postsynaptic
neuronal structures constitute the “tripartite synapse” (Araque
et al., 1999). Embedded in this structure, astrocytes sense
neuronal function and respond locally by releasing bioactive
molecules termed “gliotransmitters” (e.g., glutamate, ATP, and
D-serine) (Perea et al., 2009). In addition, astrocytes also can
project specialized terminal processes known as “endfeet” toward
capillaries, intracerebral arterioles, and venules; covering about
of 99% of abluminal vascular surface (Simard et al., 2003). This
complex interaction with neurons and vascular cells facilitate
local and long distance astrocytic release of gliotransmitters
and vasoactive factors, thereby modulating different neuronal
circuits, and networks.

Astrocytes play a crucial role in both gliotransmitter and
ionic homeostasis. During high rates of neuronal activity,
glutamate and K+ accumulated in the cleft are taken up by
astrocytes through excitatory amino-acid transporters (EAATs)
and inwardly rectifying K+ channels or Na+/K+-pumps,
respectively (Allaman et al., 2011). Glutamate and K+ once
inside of the astrocytes diffuses to neighboring astrocytes and
oligodendrocytes via channels known as gap junction channels
(GJCs), a process termed “spatial buffering.” Afterwards,
glutamate is metabolized to glutamine by glutamine synthetase
and released to the extracellular milieu from which it is taken
up by neurons and transformed to glutamate or GABA (Allaman
et al., 2011). By similar mechanisms astrocytes support metabolic
status in neurons. Under physiological conditions, endothelial
cells of the blood brain barrier (BBB) take up blood glucose
and lactate through GLUT-1 and monocarboxylate transporters
(MCTs), respectively. Both lactate and glucose diffuse between
adjacent endothelial cells and eventually are taken up by
astrocytic and released to the interstitial space (Allaman et al.,
2011). Glucose and lactate can diffuse through astrocytes and
their gap junctions with neighboring astrocytes to reach relatively
distant areas. Glucose can be metabolized to lactate by astrocytes,
and both can be released into the extracellular space and taken up
by neurons.
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Microglia constitute about 5–15% of total cells in the CNS
and are essential players of brain innate immune system (Lawson
et al., 1990). Originating from peripheral mielomonocytic
precursor cells (fetal macrophages), microglia populate the brain
parenchyma before developmental closure of BBB (Ginhoux
et al., 2010). In a healthy brain, microglia exhibit a resting
surveillance state (ramified morphology) linked with active
exploration of their environment and permanent searching for
exogenous or endogenous signals representing a brain threat
(Streit, 2001; Kettenmann et al., 2011). When homeostatic
balance is altered, resting phenotype of microglia shift to a
reactive one, with different degrees of activation depending on
nature, intensity and duration of the stimuli (Hanisch, 2002;
Block et al., 2007). During brain damage, rather than show a
repair-orientated profile, reactive microglia constitute a source
of toxic and pro-inflammatory factors (phagocytic morphology),
favoring the recruitment of non-resident brain cells involved in
the innate and adaptive immune response (Block et al., 2007).
In addition to their well-known role on brain immunity and
inflammatory response, microglia are now recognized as essential
players in the integration and consolidation of neuronal circuits.
Various studies have shown that microglia constantly extend
toward and retract from synapses, participating in a new range of
undiscovered functions, including neuronal surveillance, synapse
elimination and regulation of cell death, among others (Tremblay
et al., 2010; Schafer et al., 2013; Wake et al., 2013). Indeed, some
authors have proposed to shift the current notion of tripartite
synapse into a “quad-partite synapse” (Schafer et al., 2013).
Interestingly, neurotransmitter release by neurons modifies
various aspects of glial cell function, including cellular migration,
phagocytosis, intercellular Ca2+ wave generation, metabolic
coupling, blood flow control and gliotransmitter release among
others (Fields and Stevens, 2000; Fields and Stevens-Graham,
2002; Fields and Burnstock, 2006; Inoue et al., 2007). The latter
encloses a permanent feedback loop of interactions between
neurons and glial cells denominated “neuron-glia crosstalk.”

Gliotransmission is part of the basis of “neuron-glia crosstalk”
and multiple mechanisms have been described to mediate
gliotransmitter release, including the Ca2+-dependent exocytosis
(Bezzi et al., 2004; Zhang et al., 2004; Imura et al., 2013),
carrier membrane transport (Rossi et al., 2000) and opening of
a wide-range of channels encompassing P2X7 channels (Duan
et al., 2003; Suadicani et al., 2006; Hamilton et al., 2008),
volume-regulated anion channels (Kimelberg et al., 1990; Takano
et al., 2005; Rudkouskaya et al., 2008; Lee et al., 2010) and
connexin hemichannels (Stout et al., 2002; Ye et al., 2003)
(Figure 1). Though most studies regarding neuron-glia crosstalk
have been focused in gliotransmitter release, in the last decade
it has become evident that brain cells can communicate via
alternative mechanisms. Among them are those relying on
heterotypic glia-to-neuron contacts mediated by homophylic
and heterophylic adhesion molecule interactions (Avalos et al.,
2009; Sandau et al., 2011) (Figure 1). Importantly, vesicles
containing molecules/organelles (e.g., exosomes, microparticles,
and apoptotic bodies) have resulted in an new unexpected
mechanism of brain cell communication, allowing the exchange
of gliotransmitters, organelles, genetic information, proteins,

and infectious agents between glial cells and neurons (Frühbeis
et al., 2013). Direct astrocyte-to-neuron communication not
only occur through GJCs (Fróes et al., 1999; Rozental et al.,
2001; Dobrenis et al., 2005), but also via intercellular bridges
or long cellular extensions called intercellular nanotubes (Wang
et al., 2012) (Figure 1). In the next section, we focused in a
specific route of gliotransmitter communication mediated by
single membrane channels called “hemichannels.”

HEMICHANNELS AND GLIA-TO-NEURON
COMMUNICATION

Hemichannels are composed of six protein subunits called
connexins (Cxs). The latter encompass a highly conserved
protein family encoded by 21 genes in humans and 20
in mice, with orthologs in other vertebrate species (Söhl
and Willecke, 2004). For a long time, the pivotal function
attributed to hemichannels was to provide the building blocks
of GJCs, permitting direct but selective cytoplasmic continuity
for ions and molecular exchange between contacting cells (Sáez
et al., 2003). Nevertheless, recent studies have shown that
hemichannels in “non-junctional” membranes can allow the
permeation of ions and small molecules and thus, provide a
diffusional route of exchange between the intra- and extracellular
milieu (Sáez et al., 2005). Accordingly, hemichannels allow the
cellular release of autocrine and paracrine signaling molecules
(e.g., ATP, glutathione, glutamate, D-serine, NAD+, and PGE2)
to the extracellular milieu, as well as the entry of other important
signaling ions and molecules (e.g., Ca2+, cADPR, and glucose)
(Retamal et al., 2015). Recently, a new family of three membrane
proteins termed pannexins (Panxs 1–3) was shown to form single
membrane channels with similar paracrine signaling features of
hemichannels (Panchin, 2005). Despite that Cxs and Panxs do not
share significant amino acid sequences, both Cx hemichannels
and Panx channels (hereinafter referred as Panx for simplicity)
exhibit similar membrane topology and oligomerization features.

Astrocytes are characterized by their higher expression of
Cx30 and Cx43 (Dermietzel et al., 1989; Batter et al., 1992), but
other Cxs such as Cx26, Cx40, Cx45, andCx46 have been detected
in a lesser extent (Scemes et al., 1998; Rouach et al., 2008).
Astrocytes also express important levels of Panx1 (Iglesias et al.,
2009; Santiago et al., 2011), whereas both Cx43 and Panx1 have
demonstrated to form functional channels in astrocytes in vitro
and in vivo (Iglesias et al., 2009; Karpuk et al., 2011; Santiago
et al., 2011; Orellana et al., 2015). Furthermore, it has been
shown that astrocytic hemichannels are permeable to different
molecules (Giaume et al., 2013; Montero and Orellana, 2014),
thus allowing the release of ATP (Stout et al., 2002; Anderson
et al., 2004; Iglesias et al., 2009; Garré et al., 2010), glutamate
(Ye et al., 2003), aspartate (Ye et al., 2003), taurine (Stridh
et al., 2008), D-serine (Pan et al., 2015), and glutathione (Rana
and Dringen, 2007), as well as the uptake of glucose (Retamal
et al., 2007). Up to now, only few studies have documented the
expression of functional hemichannels in microglia. Cx32 was
the first Cx documented able to form hemichannels in microglia.
Pioneering observations by Takeuchi and colleagues, showed that
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FIGURE 1 | Mechanisms of glia-to-neuron communication. Glial cells release gliotransmitters (e.g., glutamate, D-serine, and ATP) through Ca2+- and

SNARE-dependent exocytosis (1) in addition to the release that occurs through alternative non-exocytotic pathways (see below). Depolarization, reductions in

extracellular divalent cation concentrations, increases in intracellular Ca2+ and posttranslational modifications might result in the opening of connexin and pannexin

hemichannels (HCs) and thus allow the release of gliotransmitters (2). Long-lasting activation of P2X7 by ATP might lead to the appearance of large currents and the

rapid exchange of large molecules, including the release of gliotransmitters (3). One theory states that P2X7 receptor conductance dilates over the time and thereby

allows the passage of large molecules; however, another hypothesis states that ATP activate a second non-selective permeabilization pathway (Baroja-Mazo et al.,

2013). Recently, it was shown that Panx1 hemichannels might mediate this permeability for large molecules in astrocytes (4) (Iglesias et al., 2009). Additionally,

gliotransmitter release may occur through volume-regulated anion channels (VRAC) (5) and different carriers and/or co-transporters acting normally or in reverse (6)

(e.g., excitatory amino-acid transporters, the cystine-glutamate antiporter, and the D-serine/chloride co-transporter). Within the last decade, a growing body of

evidence has indicated that glial cells can also communicate with neurons via the release of vesicles (e.g., exosomes, microparticles, and apoptotic bodies),

containing different cellular messengers (e.g., mRNA, viruses, and organelles) (7). Adjacent glial cells and neurons can communicate directly through F-actin-based

transient tubular connections known as tunneling nanotubes (8), via cell-to-cell contacts between membrane-bound ligand molecules and their receptors (9) or

aggregates of intercellular channels known as gap junctions, which allow the exchange of small molecules (10).

TNF-α induces the release of glutamate (Takeuchi et al., 2006),
whereas the expression of functional hemichannels formed by
Cx43 and Panx1 also has been reported (Orellana et al., 2011a,
2013a).

Which are the major functions of hemichannels in the
brain? In the CNS, hemichannels play different physiological
roles including ischemic tolerance or preconditioning (Schock
et al., 2008), establishment of adhesive interactions (Cotrina
et al., 2008), fear memory consolidation (Stehberg et al.,
2012), synaptic transmission (Chever et al., 2014a), glucose
sensing (Orellana et al., 2012a; Orellana and Stehberg, 2014),
chemoreception (Reyes et al., 2014), BBB permeability (De Bock
et al., 2011), and neuronal migration (Elias and Kriegstein,
2008). However, an increasing body of evidence has situated
hemichannels as potential regulators of starting and maintaining
homeostatic imbalances in diverse brain diseases (Orellana

et al., 2009, 2012b, 2013b; Davidson et al., 2013; Takeuchi and
Suzumura, 2014; Retamal et al., 2015). Indeed, uncontrolled
opening of glial cell hemichannels induced trigger an excessive
release of gliotransmitters (e.g., ATP, glutamate, and D-
serine) that could be neurotoxic for neurons (Orellana
et al., 2012b). Recently was demonstrated that astrocytes or
microglia stimulated with amyloid-β (Aβ) peptide exhibit
increased Cx43 and Panx1 hemichannel-dependent glutamate
and ATP release, which results toxic for hippocampal and
cortical neurons (Orellana et al., 2011a). Similarly, follow-up
work showed that astrocytes pre-treated with conditioned
media from Aβ peptide-treated microglia, release neurotoxic
amounts of glutamate and ATP via Cx43 hemichannels when
subjected to hypoxia in high glucose containing medium
(Orellana et al., 2011b). Importantly, the release of both
gliotransmitters reduced neuronal survival via activation of
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neuronal NMDA/P2X7 receptors and Panx1 (Orellana et al.,
2011a,b). How glutamate/ATP affects neuronal hemichannel
opening and survival? Most available evidence indicates that
neurons express functional hemichannels formed by Panx1 or
Cx36 (Thompson et al., 2006; Schock et al., 2008). The opening of
Panx1 could occur by protein-protein interactions with activated
P2X7 receptors (Iglesias et al., 2008) or through increases in
[Ca2+]i or phosphorylation triggered by activation of P2X7 or
NMDA receptors, respectively (Locovei et al., 2006; Weilinger
et al., 2012).

RELATIONSHIP BETWEEN GLIAL CELL
ACTIVATION AND
INFLAMMATION/OXIDATIVE STRESS

In numerous brain disorders, glial cells experience a long-lasting
process that underlies striking morphological, molecular and
functional changes referred as “reactive gliosis” (Block et al., 2007;
Pekny and Pekna, 2014). This phenomenon constitutes a graded,
multistage glial cell reaction, which counteracts acute damage,
restoring homeostasis and limiting brain parenchyma injury.
In this stage, astrocytes show hypertrophy and enlargement
of the intermediate filament network via upregulation of the
glial fibrillary acidic protein (GFAP) and vimentin and re-
expression of nestin (Pekny and Pekna, 2014). In addition, a
general impairment of glial cell functions has been described
such as altered gliotransmission and Ca2+ signaling, disturbed
mitochondrial dynamics and antioxidant defense, as well as
elevated production of nitric oxide (NO) (Block et al., 2007;
Pekny and Pekna, 2014). Although reactive gliosis is an adaptive
mechanism for protection, when persistent, it can turn into
a detrimental response, leading to uncontrolled production of
pro-inflammatory cytokines and reactive oxygen species (ROS),
which worsens disease progression. At one end, reactive gliosis
leads to neuroinflammation mediated by increased levels of IL-
1β, IL-6, TNF-α, IL-3, and TGF-β (Block et al., 2007; Pekny and
Pekna, 2014). At the other end, elevated levels of inflammatory
mediators further cause the secretion of more cytokines and
production of more ROS and reactive nitrogen species (RNS)
(Mrak and Griffin, 2005; Rosales-Corral et al., 2010). Therefore,
redox metabolism regulates cytokine signaling and vice versa,
which in some circumstances could create a vicious cycle between
oxidative stress and neuroinflammation (Rosales-Corral et al.,
2010).

Glial cells use energy and antioxidant power generated by
mitochondria to reduce inflammation and support neuronal
health (Quintanilla et al., 2012; von Bernhardi and Eugenín,
2012). These glial beneficial properties have been proposed to
be mostly based on the metabolism and fusion and fission
dynamics of their mitochondria (Hertz et al., 2007; Stephen
et al., 2014). Fusion is necessary to ameliorate stress by mixing
components of partially damaged mitochondria, whereas fission
helps to produce new mitochondria, but it also serves as
quality control by allowing the removal of injured mitochondria,
by facilitating apoptosis during significant levels of cellular
damage (Westermann, 2010). Importantly, diverse studies have

revealed a wide-range of defects in mitochondrial dynamics
and bioenergetics in glial cells during inflammation (Brown
et al., 1995; Almeida et al., 2001; Motori et al., 2013). In
fact, reactive astrocytes exhibit increased glycolytic rate and
production of ROS (Brown et al., 1995; Almeida et al.,
2001), whereas those exposed to pro-inflammatory cytokines,
show mitochondrial fragmentation and reduced mitochondrial
respiratory capacity (Brown et al., 1995). Apparently, these
effects are produced by activation of Drp-1, a GTPase that
control mitochondrial elongation in mammalian cells (Hoekstra
et al., 2015). In the same context, treatment with IL-
1β increases ROS levels in cultured human astrocytes, an
effect which is potentiated by IFN-y (Sheng et al., 2013).
Similarly, microglia exposed to lipopolysaccharide (LPS), a
bacterial pro-inflammatory agent, exhibit an impairment in
mitochondrial oxygen consumption (Moss and Bates, 2001;
Chénais et al., 2002; Voloboueva et al., 2013) and increased
ROS production (Voloboueva et al., 2013). Other studies have
explored the use of specific mitochondrial antioxidants to reduce
mitochondrial injury induced by pro-inflammatory cytokines
in glial cells (Park et al., 2015). Inhibition of mitochondrial-
ROS production by treatment with Mito-TEMPO, a specific
mitochondrial antioxidant (Park et al., 2015), suppressed
the production of mitochondrial and intracellular ROS in
LPS-stimulated microglia (Park et al., 2015). Interestingly,
treatment with Mito-TEMPO significantly prevented the LPS-
induced increase in TNF-α, IL-1β, and IL-6 levels found
in microglia (Park et al., 2015). Altogether this evidence
indicates that mitochondrial failure could be critical to
perpetuate the vicious cycle between oxidative stress and
neuroinflammation.

REACTIVE GLIOSIS, INFLAMMATION, AND
OXIDATIVE STRESS IN THE BRAIN
DURING MS

Different studies indicate that most animals subjected to MS
models have systemic inflammation and impaired mitochondrial
function and redox metabolism (Ando and Fujita, 2009;
Litvinova et al., 2015). In the nervous system, animals subjected
to different models of MS (e.g., high fat diet, HFD) exhibit
an increased number of reactive astrocytes and microglia, as
well as elevated levels of pro-inflammatory cytokines, ROS
and lipid peroxidation (Thaler et al., 2012; Tomassoni et al.,
2013; Gao et al., 2014; Treviño et al., 2015). For instance,
1 day after mice or rats fed a HFD, microglial reactivity
increases in the hypothalamus along with the levels of tumor
necrosis factor-α (TNF-α) and interleukin-1β (IL-1 β) (Gao
et al., 2014). Interestingly, these inflammatory and oxidative
responses do not depend on weight gain, since obese leptin
receptor mutant db/db and melanocortin receptor 4 knockout
mice do not show reactive microglia when fed a standard
chow diet (Gao et al., 2014). Moreover, IFN-γ and IL-
1β levels are significantly increased in Zucker diabetic fatty
rats, predominantly in hippocampal regions near to activated
astrocytes and microglia (Hwang et al., 2014). On the other hand,
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HFD increases brain lipid peroxidation, which is accompanied
by increased ROS and mitochondrial depolarization (Ma et al.,
2014). In the same animal model, other authors found increased
production of NO, lipid peroxidation, impaired glutathione
metabolism and mitochondrial failure (Raza et al., 2015). In
summary, these data suggest that inflammation and redox
imbalance could be key elements in brain dysfunction occurring
during MS.

COULD HEMICHANNELS CONTRIBUTE TO
HYPERACTIVATION OF SYMPATHETIC
NEURONS DURING MS?

Most of the answer to this question relies in how inflammation,
oxidative stress and lipids affect the opening of these
hemichannels and whether the release of several substances
through them could impair normal neuronal excitability
(Bennett et al., 2012). Pioneering studies by Takeuchi and
colleagues showed that TNF-α treatment could increase the
opening of Cx32 hemichannels in microglia, resulting in
glutamate release and further neuronal death (Takeuchi et al.,
2006). A follow-up study proposed that glutamate released
via Cx32 hemichannels play a key role in neuronal damage
promoted by experimental autoimmune encephalomyelitis,
amyotrophic lateral sclerosis and Alzheimer’s disease (Shijie
et al., 2009; Takeuchi et al., 2011). On the other hand, Morita and
colleagues showed that IL-1β increases astroglial hemichannel
opening in culture and brain slices after exposure to a medium
lacking divalent cations (Morita et al., 2007). Similarly, IL-1β
and TNF-α directly enhances Cx43 hemichannel opening in
astrocytes (Retamal et al., 2007); whereas astroglial hemichannel
opening evoked by prenatal inflammation is prevented by
blocking TNF-α/IL-1β pathways (Avendaño et al., 2015).
Different studies have described that IL-1β and TNF-α induce
p38 MAPkinase activation in astrocytes (Clerk et al., 1999;
Rossa et al., 2006; Mitchell et al., 2007), causing iNOS activation
(Gutiérrez-Venegas et al., 2005; Xu et al., 2006) and further
NO production (Guan et al., 1997; Badger et al., 1998).
Accordingly, upon treatment with NO donors, astrocytes
exhibited an increased hemichannel opening associated with
S-nitrosylation of Cx43 (Retamal et al., 2006). Similarly,
NO is also involved in the increased hemichannel opening
and expression of Panx1 observed in neurons subjected
to oxygen and glucose deprivation (Zhang et al., 2008).
Moreover, opening of hemichannels and microglia subjected to
proinflammatory conditions depend on activation of iNOS/NO
and p38 MAP kinase pathways (Orellana et al., 2013a; Avendaño
et al., 2015). These data suggest that NO could affect the
functional state of hemichannels in brain cells exposed to
inflammatory conditions, including MS, where iNOS expression
is dramatically increased (Ando and Fujita, 2009; Litvinova et al.,
2015).

Other focus of attention should be directed to the high
levels of fatty acids and different lipids occurring during the
progression of MS. HFD induces reactive astrogliosis within days
(Calvo-Ochoa et al., 2014; Yeh et al., 2015), which is associated

to important changes in hippocampal function and synaptic
transmission (Calvo-Ochoa et al., 2014). Recently, Retamal and
co-workers showed that unsaturated fatty acids modulate the
activity of Cx46 hemichannels in Xenopus oocytes (Retamal et al.,
2011), whereas linoleic acid also induces Cx43 hemichannel
opening in HeLa cells, through a PI3K/Akt/Ca2+-dependent
pathway (Figueroa et al., 2013). These data suggest that fatty acids
modulate hemichannel opening, which could be an additional
and interdependent key step along with inflammation and
oxidative stress in the activation of sympathetic neurons during
the progression of MS.

Another aspect to take into consideration is the high
production of free radicals, ROS and RNS in metabolic
disorders. A growing body of studies have described that
redox potential modulates hemichannel opening in astrocytes
(Retamal, 2014). Pioneering studies by Contreras and colleagues
showed that Trolox, a free radical scavenger, blocks hemichannel
activity induced by metabolic inhibition in cortical astrocytes
(Contreras et al., 2002). Later on, a follow-up work demonstrated
that dithiothreitol (DTT), a cysteine-reducing agent, reduced
astroglial hemichannel activity observed during ischemia-like
conditions (Retamal et al., 2006). Interestingly, the response
induced by DTT was mimicked by a cell-permeant reduced
glutathione ethyl ester (GSH-EE), but not by the non-permeant
GSH, suggesting that intracellular cysteines of Cx43 could
be oxidized during brain ischemia, affecting hemichannel
function (Retamal et al., 2006). In the context of Cx43
hemichannels, it has been proposed that redox potential could
modulate them depending on their phosphorylation status,
the latter associated to cell damage (Retamal et al., 2007).
Accordingly, in astrocytes under physiological conditions (little
Cx43 dephosphorylation), DTT increases hemichannel opening,
whereas the opposite occurs in astrocytes exposed to long periods
of pathological conditions, including inflammation (conspicuous
Cx43 dephosphorylation) (Retamal et al., 2006, 2007; Retamal,
2014). All these data suggest that inflammation, lipids and
oxidative stress could be the milestones of hemichannel-
dependent glial dysfunction during MS. However, the specific
cellular mechanism by how glial cell dysfunction could induce
sympathetic neurons hyperactivation during metabolic disorders
remains to be elucidated. Astrocytes act as modulators of the
synapsis by controlling the neuronal postsynaptic excitability
in the NST through release of glutamate (Vance et al., 2015).
Moreover, it has been proposed that the interaction between
astrocytes and neurons in the hypothalamic paraventricular and
supraoptic nuclei, both centers involved in the generation of
coordinated neurohumoral responses, influence the autonomic
response (Stern and Filosa, 2013). Following this line of
thought, the optogenetic activation of astrocytes in the RVLM
activates pre-sympathetic neurons in an ATP-dependent manner,
thus increasing sympathetic renal nerve activity, arterial blood
pressure, and heart rate (Marina et al., 2013). Interestingly,
physiological function of astrocytic Cx43 and Panx1 channels
include regulation of basal and stimulated excitatory synaptic
transmission in the hippocampus (Prochnow et al., 2012; Ardiles
et al., 2014; Chever et al., 2014a,b), whereas increased opening
of astrocytic Cx43 hemichannels evoked by LPS alters excitatory
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synaptic activity (Abudara et al., 2015). Indeed, recently, Stehberg
and colleagues showed that gliotransmmiter release through
astroglial Cx43 hemichannels modulates the neuronal activity
in the amygdala (Stehberg et al., 2012). This work, showed
that microinjection of specific Cx43 hemichannel blocking
peptides into the rat’s basolateral amygdala abolished the fear
memory consolidation (Stehberg et al., 2012). Additionally,
recent works demonstrate that hemichannels expressed in
astrocytes modulates: (i) human neuronal cortex activity
during development (Moore et al., 2014), (ii) basal activity of
hippocampal neurons in adult mice (Chever et al., 2014a), and
(iii) the inhibitory interneuron activity in response to local
hyperexcitability (Torres et al., 2012). Thus, nowadays, the role
of astroglial Cx43 hemichannels as neuronal modulators emerges
as an ongoing concept in the neuroscience field. At this regard,
the uncontrolled release of ATP, glutamate or D-serine via glial
cell hemichannels (Ye et al., 2003; Takeuchi et al., 2006; Orellana
et al., 2011a,b; Pan et al., 2015) could play a crucial role in
hyperactivation of sympathetic system. All these gliotransmitters
have showed tomodulate synaptic transmission in different brain
areas, including the SNS (Guyenet, 2006).

We speculate that a moderate uncontrolled hemichannel
opening could raise intracellular free Ca2+ concentration in glial
cells, leading to altered gliotransmitter release. Supporting this
idea, a recent study revealed that glutamate release via astroglial
Cx43 hemichannels is associated to impaired excitatory synaptic
activity in pyramidal neurons in response to Schaffer’s collateral
stimulation (Abudara et al., 2015). In this context, it was recently
demonstrated that astrocytes respond to physiological changes
of the pO2 at the brainstem. Thus, when pO2 is decreased,
astrocytes release ATP to the extracellular media, increasing
pre-sympathetic neurons activity (Angelova et al., 2015). These
findings suggest that astrocytes are metabolic sensors at the
brainstem and changes in their metabolism could modulate
sympathetic activity through the release of gliotransmmiters.
In agreement with this idea, it has been shown that ATP
released from astrocytes in the RVLM, increase renal nerve
activity, arterial blood pressure, and heart rate (Marina et al.,
2013).

Given that an increased hemichannel opening could lead
to synaptic malfunctioning and, therefore, to worsening
some conditions associated to MS, it could be interesting
to analyze other alternatives as well. Thus, in addition to
the release of gliotransmitters that potentially affect normal
neuronal synapses, astrocytes may also release ascorbate through
VSOACs and hemichannels (Wilson et al., 2000; Ahmad and
Evans, 2002). Neuronal metabolism under physiological and
particularly pathological conditions is highly oxidative (Lai,
1992; Coyle and Puttfarcken, 1993). Astrocytes have large
intracellular concentrations of antioxidants, which include
reduced glutathione and ascorbate (Wilson, 1997). Neurons
can take up ascorbate released from astrocytes, oxidizing it
to dehydroascorbate (DHA). Then, DHA is released from
neurons through facilitative glucose transporters (GLUTs)
(Corti et al., 2010), and further imported by astrocytes via
GLUTs, where it is reduced back to ascorbate and once
again released to the extracellular media by a pathway

that is sensitive to VSOAC inhibitors (Wilson, 1997).
Thus, astrocytic ascorbate represents a way of membrane
electron transport, in which, reducing equivalents derived
from astrocytic metabolism are shared with neurons, as
antioxidant support (Lane and Lawen, 2009), as well as
means of promoting non-transferrin bound iron uptake by
astrocytes, which may also play neuroprotective roles (Lane et al.,
2010). Accordingly, Corti and co-workers, proposed that the
ascorbate released by astrocytes attenuates glutamate-induced
excitotoxicity, oxidative stress and acidosis in neurons (Corti
et al., 2010).

At the other end, if the hemichannel activity is very high,
an excessive release of ascorbate can be expected. In the brain,
copper is used for several important physiological processes
(Lutsenko et al., 2010; Scheiber et al., 2014). However, changes
in copper homeostasis have been correlated to development of
some neurodegenerative diseases (Scheiber et al., 2014). This is so
because ascorbate can increase copper accumulation in astrocytes
(Scheiber et al., 2010a,b), which -at high concentrations- is toxic
for them (Bulcke et al., 2015), as well as for neurons (Scheiber
et al., 2014). A massive ascorbate release from astrocytes can
be associated to an increase of copper associated to neuronal
death. Interestingly, in Bulcker’s work, they reported that cell
loss induced by copper/ascorbate was correlated with increased
permeability to propidium iodide, which is a fluorescent dye
extensively used to measure hemichannel opening in several cell
types (Ebihara et al., 2011; Shahidullah and Delamere, 2014;
Mandal et al., 2015). We suggest that moderate increase of
hemichannel opening observed during MS could lead to synaptic
malfunctioning due to a massive release of glio transmitters,
but also can help neuronal survival. In addition, massive
hemichannel activity could lead to both neuronal and glial cell
death, due to excessive glutamate release and overload of copper
in astrocytes. Since this idea has not been confirmed in MS yet,
future studies are needed focusing on the role of astrocytes as
neuron protectors during MS.

FUTURE DIRECTIONS

Until this point we discussed the possible mechanism
that associates glial cell hemichannel opening with the
increased sympathetic activation observed during the MS.
This hypothesis could plausible if hemichannel opening
increases until certain (unknown) level. However, what about
if hemichannel activity increase even more? The most obvious
suggestion is that neuronal function and synaptic transmission
will be compromised, resulting in further production of
neuropathies (Retamal et al., 2015). It is well known that
metabolic-associated diseases can produce the appearance of
neuropathies (Kim and Feldman, 2012; D’Amico and Bertini,
2013). One possibility is that gliotransmitters released from
glial cells due to hemichannel opening become neurotoxic,
as has been recently demonstrated (Orellana et al., 2011a,b;
Avendaño et al., 2015). In summary, we propose that under
MS a positive feedback loop can be generated between
reactive gliosis, inflammation, mitochondrial dysfunction and
hemichannel opening (Figure 2). The latter may contribute
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FIGURE 2 | Possible actions of metabolic syndrome on glia-to-neuron communication mediated by hemichannels. Metabolic syndrome (MS) may induce

a generalized inflammatory state that could affect the nervous system (1). In this context, autocrine/paracrine release of pro-inflammatory cytokines (e.g., IL-1β and

TNF-α) by reactive glial cells could lead to the activation of a p38MAPK/iNOS-dependent pathway and further production of nitric oxide (NO) (2). NO could cause the

nitrosilation of Cx43, resulting in opening of Cx43 glial cell hemichannels (3). Alternatively, for an unknown mechanism, NO could increase the activity of Panx1

hemichannels. Along with the systemic inflammatory state, MS impairs mitochondrial function in glial cells, leading to redox potential imbalance and subsequent

uncontrolled production of reactive oxygen species (ROS) (4). Modulation of oxidative status of Cx43 and/or Panx1 hemichannels by ROS could increase their activity

(5). High levels of triglycerides and fatty acids during the progression of MS could directly enhance the opening of hemichannels in glial cells (6). In addition, paracrine

release of gliotransmitters through glial cell hemichannels (e.g., ATP, glutamate, D-serine) (7) could act on neighboring or distant neurons, resulting in the activation of

P2X7 and NMDA receptors (8). The latter increase levels of [Ca2+]i , (9) and thereof the activity of neuronal Panx1 channels, resulting in neuronal function impairment

and cell death (10).

to the autonomic imbalance at early stages of MS specifically
through a glial cell dependent modulation of sympathetic neuron
activity in the brainstem. Importantly, as the disease progress,

development of neuropathies could take place mainly associated
with the neurotoxic consequence of a massive opening of
hemichannels.
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