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Alzheimer’s type of neurodegeneration dramatically affects H2S and NO synthesis and

interactions in the brain, which results in dysregulated vasomotor function, brain tissue

hypoperfusion and hypoxia, development of perivascular inflammation, promotion of

Aβ deposition, and impairment of neurogenesis/angiogenesis. H2S- and NO-signaling

pathways have been described to offer protection against Alzheimer’s amyloid

vasculopathy and neurodegeneration. This review describes recent developments of

the increasing relevance of H2S and NO in Alzheimer’s disease (AD). More studies are

however needed to fully determine their potential use as therapeutic targets in Alzheimer’s

and other forms of vascular dementia.
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CEREBROVASCULAR DYSFUNCTION IN AD

Due to the increasing prevalence and high severity, Alzheimer’s disease (AD) is one of today’s major
health challenges. AD typically manifests after the age of 60. As the population ages, this disease
impacts a greater percentage of the world-wide population. AD is a progressive neurodegenerative
disorder characterized by deposition of amyloid-beta (Aβ) in the brain tissue that leads to
cognitive, memory, and behavioral impairments. Several hypotheses were proposed to explain
the pathogenesis of AD: Aβ toxicity, cholinergic dysfunction, abnormal phosphorylation of tau
protein, development of oxidative stress due to action of endogenous or exogenous pro-oxidants,
impairment of neurogenesis, excessive cell death, neuroinflammation etc. (Salmina, 2009).

The following strategies have been proposed for the pharmacotherapy of AD: (1) prevention of
accumulation of aberrant proteins (suppression of Àβ production or activation of Àβ clearance);
(2) modulation of neuroplasticity; (3) suppression of neuroinflammation; (4) stimulation of
neurogenesis and other brain repair mechanisms. However, treatments aimed at reducing Aβ

deposits showed no or little success, therefore, alternative approaches appear to be more
prospective. In this context, current prevention and treatment strategies are increasingly focused
on AD associated vasculopathy.

Cerebrovascular dysfunction is not only a marker of ischemic brain pathology, but also
of neurodegenerative disorders such as AD. The vascular hypothesis of AD suggests that
neurodegenerative pathology begins with cerebral hypoperfusion and cerebral microvascular
abnormalities associated with extensive Aβ deposition and blood-brain barrier disruption.
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Contribution of cerebrovascular dysfunction to the pathogenesis
of AD is evident not only in humans (Saito et al., 2015) but also in
experimental models of AD (Han et al., 2015). It is associated with
prominent oxidative stress, Aβ-impaired cerebral circulation,
and alterations in the neurovascular unit or blood-brain barrier
(Han et al., 2008; Bell and Zlokovic, 2009).

Deposition of Aβ is an important mechanism of
cerebrovascular dysfunction in AD, and cerebral amyloid
angiopathy facilitates progression of AD and cognitive
impairment. Cerebral amyloid angiopathy in AD is caused
by the accumulation of Aβ in small-sized and medium-sized
blood vessels, mostly in arteries (Biffi and Greenberg, 2011).
In severe angiopathy, amyloid deposits replace degenerating
vessel smooth muscle cells, thus resulting in microhemorrhages,
ischemic lesions, and encephalopathies (Yamada, 2015).
Accumulation of Aβ leads to extensive neoangiogenesis and
hypervascularity associated with abnormal blood-brain barrier
leakiness in AD (Biron et al., 2011), but the vessels have
smaller diameter suggesting vasomotor dysfunction and/or
vascular remodeling in AD (Burke et al., 2014). Mechanisms
of cerebral amyloid angiopathy in AD include insufficiency
of perivascular drainage of Aβ leading to its accumulation in
the vessel wall; development of perivascular inflammation and
microhemorrhages, vascular oxidative stress (Park et al., 2011;
Hawkes et al., 2014; Boncoraglio et al., 2015). We also found that
Aβ peptides elicit a signal transduction pathway in vascular cells,
induced by α1-adrenergic receptor activation (Haase et al., 2013).
However, it is not clear whichmolecular events and amyloid toxic
action affect the time-course of neurodegeneration. Nevertheless,
it is clear that there is a strong correlation between the prevalence
of cerebral amyloid angiopathy and age. As such, up to 40% of
the elderly population without clinical manifestations of AD
demonstrate features of cerebral amyloid angiopathy, and up
to 80% of people suffering from AD exhibit signs of cerebral
amyloid angiopathy (Jellinger, 2002). Deciphering the molecular
mechanisms of cerebral amyloid angiopathy would be beneficial
for development of novel therapeutic and diagnostic strategies.

Endothelial cells in the cerebral vasculature may contribute to
the formation of amyloid deposits surrounding the cerebral blood
vessels. Several recent studies have highlighted that endothelial
cells might be the target for the toxic action of heavily aggregated
proteins, glia-derived cytokines, and stimuli inducing oxidative
and metabolic stress in AD brains (Salmina et al., 2010). Cerebral
endothelial cells are in the close connection with pericytes,
astrocytes, and neurons in the neurovascular unit, therefore
altered paracrine and autocrine interactions of these cells might
be critically involved in the development of microvascular
abnormalities in AD.

GASEOUS TRANSMITTERS IN THE BRAIN:
GENERAL CHARACTERISTICS

Production of gaseous transmitters by mammalian cells has
attract much attention in past few years. Hydrogen sulfide
(H2S) is now considered the third gaseous transmitter besides
nitric oxide (NO) and carbon monoxide (CO) to contribute

to the regulation of cardiac function, systemic and pulmonary
blood pressure and vasomotor activity, control inflammation,
and angiogenesis (Köhn et al., 2012; Lo Faro et al., 2014).
Being produced by various cell types, these gaseous transmitters
can easily penetrate the plasma membrane thus inducing wide
spectrum of signaling cascades in the target cells. In brain,
H2S, CO, and NO are released by astroglial cells, neurons, or
endothelial cells (Figure 1), and can functionally interact.

The action of NO in the brain is extensively studied. NO
is now known as a potent vasorelaxant, neurotransmitter,
pro-inflammatory, and pro-oxidant molecule (Guix et al.,
2005; Kovac et al., 2011; Tabatabaei and Girouard, 2014),
even there are some data on antioxidant activity of NO
(Hummel et al., 2006). Coordinated expression and activity
of nitric oxide synthase (NOS), as either constitutive or
inducible isoforms, in endothelial and neuronal cells regulates
local NO release to contribute to local neurovascular and
metabolic coupling, and neuronal excitability. Molecular targets
of NO are cysteine and tyrosine residues in cell proteins
that can be nitrosylated or nitrated, respectively (Hess et al.,
2005). Although the neurotoxic vs. neuroprotective activity
of NO is still a matter of debate, and even dose-dependent
effects should be considered (Tripathy et al., 2015), the
majority of the data suggests that dysregulated NO production
facilitates neurodegeneration (Figure 2; Jullienne and Badaut,
2013).

Almost similar activities can be attributed to CO produced
by heme oxygenase. CO acts as a modulator of cerebral
vasomotor function (Parfenova et al., 2012b), but in the
contrast to NO which can easily react with superoxide anion to
produce peroxynitrite (i.e., in proinflammatory conditions or in
reperfusion) with the ultimate pro-oxidant activity, CO exerts
anti-oxidant properties (Parfenova et al., 2012a). Molecular
targets of CO are potassium (BKCa) channels, guanylyl cyclase,
NADPH oxidase, and the heme-containing components of the
mitochondria respiratory chain (Parfenova and Leffler, 2008). In
general, CO is considered to be a cytoprotective mediator in the
brain, and elevation of its level may improve cerebrovascular
outcome of brain injury (Liu et al., 2015).

Endogenous H2S acts as a potent regulator of various
biological processes mainly related to vasomotor function
(Figure 2). H2S regulates intracellular calcium concentrations
via L-type calcium channels, T-type calcium channels,
sodium/calcium exchangers, transient receptor potential
channels, β-adrenergic receptors, and N-methyl-D-aspartate
receptors (NMDA) in various cells (Zhang et al., 2015).

Exogenous H2S can produce relaxation of a number of
non-cerebral systemic arteries by mechanisms involving
opening of adenosine 5′-triphosphate (ATP)-sensitive potassium
(KATP) channels, intermediate (IK) and small conductance
potassium channels (SK), KCNQ-type voltage-gated potassium
(Kv7.x) channels, regulating the Cl−/HCO−

3 transporter,
decreasing adenosine triphosphate levels, and/or release of
endogenous vasodilatory prostanoids (Köhn et al., 2012).
Of note, exogenous H2S can produce vasoconstrictions at
low concentrations (<100µM) in some vessels, probably via
inhibition of cAMP/protein kinase A (PKA) pathway in smooth
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FIGURE 1 | Putative physiological effects of NO and H2S produced in the cells of the neurovascular unit. NVU, neurovascular unit; NOS, nitric oxide

synthase; MST, 3-mercaptopyruvate sulfurtransferase; CSE, cystathionine-γ-lyase; CBS, cystathionine-β-synthase.

muscle cells and/or interaction with the endothelial nitric oxide
synthase/nitric oxide (eNOS/NO) pathway (Kubo et al., 2007a).

The biological effects of H2S in the central nervous system
and cerebral circulation are less clear. Cerebral vessels express
H2S-generating enzymes (Chertok and Kotsyuba, 2012),
thus, cerebral endothelial cells may use H2S to induce
cerebrovascular relaxation to increase local blood flow.
H2S produced by astrocytes or endothelial cells within
the neurovascular unit may mediate gliovascular control
adjusting local blood perfusion to the actual needs in the
activated brain area (Figure 1). Biological effects of H2S
include modulation of neuronal excitability, regulation of
vessel tone, anti-oxidant and anti-inflammatory activity,
regulation of vascular tone, angiogenesis, and blood-brain
barrier permeability (Geng et al., 2015; Kimura, 2015). In
general, H2S demonstrates neuroprotective properties (Zhang
and Bian, 2014), but the sensitivity of the cells to H2S depends on
developmental status of the cells: differentiated cell have greater
sensitivity to H2S compared to progenitor cells (Tsugane et al.,
2007).

There is evidence that microvascular function is not
controlled by the activity of these three gaseous transmitters
independently by themselves, but rather by a complex interaction
between NO, CO, and/or H2S gases, which enables a complex
pattern of hemodynamic microvascular control in the brain
(Dyson et al., 2014) and can affect the function of neuronal cells
(Pong and Eldred, 2009). As an example, nitrosothiols are organic
compounds or functional groups containing a nitrosogroup
attached to the sulfur atom of a thiol. S-Nitrosated proteins

(SNOs) serve to transmit nitric oxide (NO) bioactivity in vivo;
their reaction with H2S, however, results in the formation of
HSNO which can promote further trans-nitrosation of specific
protein targets or give NO and nitroxyl (HNO), both of
which could have biological activity aimed to promote smooth
muscle cell relaxation (Filipovic et al., 2012). Oxidation of
H2S could lead to formation of polysulfides, which are very
reactive with cell tiols (Greiner et al., 2013; Wedmann et al.,
2014). TRPA1 channels are proposed to represent potential
targets for the stimulatory effects of polysulfides in the cells
(Hatakeyama et al., 2015), and these channels are importantly
also affected by lipid peroxidation metabolites and glycolysis
by-product methylglyoxal (Eberhardt et al., 2012; Sullivan
et al., 2015). Activation of TRPA1 channels enables Ca2+

signal-effector coupling at discrete sites along the endothelium
to evoke graded cerebral artery vasodilation (Qian et al.,
2013).

H2S-GENERATING MACHINERY IN BRAIN
CELLS

H2S is produced from cysteine due to the activity of various
enzymes (Figure 1). Within the neurovascular unit, cystine as a
cysteine precursor is taken up by astrocytes and then cysteine is
released from astroglial cells for neuronal and endothelial needs
(Guebel and Torres, 2004). Import of l-cystine into astrocytes
and corresponding efflux of l-glutamate is provided by the x(c)—
antiporter whose expression is elevated in neuroinflammation or
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FIGURE 2 | Contribution of NO and H2S to the pathogenesis of cerebral amyloid angiopathy. Purple arrows, reduced levels and actions of NO and H2S.

iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric oxide synthase; CSE, cystathionine-γ-lyase; CBS, cystathionine-β-synthase.

brain hypoxia (Jackman et al., 2010, 2012). Cysteine is further
converted into H2S or taurine (with anti-oxidant and anti-
inflammatory activities), and is a mainly used for glutathione
synthesis.

The endogenous levels of H2S in the brain and various organs
were recently re-evaluated and found to be much lower than
previously estimated (Ishigami et al., 2009; Wintner et al., 2010).
Nevertheless, H2S is generated by two major enzymes, namely
cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE)
using vitamin B6 as cofactor. Some authors believe that CSE plays
a major role in generating H2S in cardiovascular system, while
CBS is responsible for H2S production in the brain (Wang et al.,
2014), i.e., by activated astrocytes due to shift in intracellular pH
required for release of H2S from bound sulfur (Ishigami et al.,
2009). CSE, but not CBS, was detected in cerebral microvessels,
whereas CBS was detected in brain parenchyma (Leffler et al.,
2011).

CBS and CSE may also use homocysteine for H2S
synthesis (Wang, 2012): initial conversion of homocysteine
to cyctathionine followed by conversion to cysteine. When H2S
is synthesized from cysteine due to activity of CBS or CSE/3MST,
l-serine or pyruvate are the side products, respectively (Olson
et al., 2013).

Brain transsulfuration pathway involving cysteine,
homocysteine, and cystathionine generates H2S and the
atypical amino acid lanthionine (Hensley and Denton, 2015).
The latter regulates brain cells autophagy (Harris-White et al.,

2015), neuritis outgrowth (Hubbard et al., 2013), and is currently
discussed as a candidate for correction of neurological alterations
seen in neurodegeneration (Hensley and Denton, 2015).

Increased expression of transsulfuration pathway enzyme CSE
is caused by dietary restriction, particularly, by shortage in the
sulfur amino acids consumption. As a result, H2S production is
elevated and its cytoprotective properties become more evident.
It was proposed that dietary restriction-mediated positive effect
on longevity might have a relation to permanent H2S-mediated
protection from various pathogenic stimuli (Hine et al., 2015).

Since CSE expression was not confirmed in brain cells, CBS
is considered to be the major H2S-producing enzyme in the
brain. In agreement, astroglial cells express CBS at high level
(Wang, 2012). However, H2S was identified in the brain of CBS-
knockout mice. This led to the identification of a third H2S-
generating pathway, which is regulated by 3-mercaptopyruvate
sulfurtransferase (3MST) along with cysteine aminotransferase
(CAT; Tanizawa, 2011) in the presence of thioredoxin. Although
expression of CBS is mainly attributed to astrocytes (Enokido
et al., 2005) and microglia (Du et al., 2014), 3MST is mainly
expressed in neurons and endothelial cells (Figure 1). Of note,
down-regulation of 3MST expression was detected in astroglial
cells after stroke (Zhao et al., 2013). In general, astrocytic
production of H2S is almost 10 times higher compared to H2S
production in microglial cells (Wang et al., 2014). Endothelial
cells expressing 3MST represent also a source for H2S production
from cysteine and alpha-ketoglutarate (Shibuya et al., 2009);
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noteworthy, cerebral endothelial cells may use H2S to induce
smooth muscle cell relaxation to increase local blood flow.
Therefore, H2S produced by astrocytes or endothelial cells
within the neurovascular unit may mediate gliovascular control
adjusting local blood perfusion to the actual needs in the activated
brain area (Figure 1). Nevertheless, it is still a matter of debate,
which enzyme(s) is (are) responsible for brain injury-associated
alterations in endogenous H2S production (Zhao et al., 2013).
Recently, it was found that target inhibition of different H2S-
generating enzymes can be achieved in experimental conditions
by pharmacological approach, i.e., with DL-propargylglycine,
which is an inhibitor for CSE, aspartate which is an inhibitor for
3MST, or O-(carboxymethyl)hydroxylamine hemihydrochloride,
which is an inhibitor for CBS (Jiang et al., 2015). This approach
revealed pivotal roles of 3MST and CSE in ischemia-reperfusion-
associated blood-brain barrier alterations.

It is generally accepted that H2S and NO interact with each
other at the level of expression of the enzymes producing these
molecules where mutual down-regulation effect is demonstrated
(Rong-na et al., 2011; Figure 2). In macrophages, both NO
and H2S irreversibly suppress NOS activity (Heine et al.,
2015), thus providing negative feedback control. In contrast,
there are some reports on mutually stimulatory activity of
these two gases on their production (Kolluru et al., 2013).
Therefore, H2S may stimulate NO production in endothelial cells
to promote neoangiogenesis (Altaany et al., 2013) (Figure 1).
However, some authors report that eNOS can be directly
inhibited by H2S (Kubo et al., 2007b), and this effect can
underlie neuroprotective effects of H2S in neonatal brain hypoxia
(Wang et al., 2013b). Since post-ischemic upregulation of
eNOS triggers cerebral angiogenesis accompanied by increased
BBB permeability, ischemia/hypoxia-induced vascular plasticity
might be regulated by the altering production of NO and
H2S in different phases of ischemia and reperfusion in
order to provide adequate proangiogenic microenvironment
and to prevent dramatic alterations in the BBB structural
integrity. Thus, H2S and NO produced within the neurovascular
unit may attenuate vasogenic brain edema formation and
protect the brain by enhancing cerebral blood flow and
neoangiogenesis.

H2S can produce vasorelaxation due to inhibition of RhoA-
dependent signaling cascades in SMC (Nalli et al., 2015). The
same is true for NO action (Sawada et al., 2001). Taking into
consideration that inhibition of RhoA downstream molecular
machinery (i.e., Rho-associated coiled-coil forming protein
kinases) leads to the upregulation and activation of eNOS (Noma
et al., 2012), one can propose that H2S may also exert NOS-
stimulatory effects under (patho)physiological conditions (Kram
et al., 2013). However, this effect has not been demonstrated in
brain cells so far. Similarly, H2S-induced up-regulation of heme
oxygenase expression has been observed in various non-cerebral
tissues (Zhang et al., 2013; D’Araio et al., 2014;Wang et al., 2015),
however, evidence for such an effect in brain cells is missing.

More importantly there is increasing body of evidence that
H2S can react directly with NO (Yong et al., 2010; Filipovic
et al., 2013; Eberhardt et al., 2014; Dux et al., 2015). Nitroxyl
(HNO), as a one-electron reduced sibling of nitric oxide, has

been proposed as a main mediator of this direct reaction between
NO and H2S. Our research team has shown that nitroxyl,
formed in the reaction of H2S and NO, can activate TRPA1
channels by oxidizing critical cysteine residues which leads
to Ca2+ influx and subsequent calcitonin gene-related peptide
(CGRP) release from sensory nerve ending. This could contribute
to systemic blood pressure regulation as well as regulation of
cerebral blood flow (Eberhardt et al., 2014). The importance of
this H2S+NO/HNO/TRPA1/CGRP signaling cascade has been
recently established in the context of meningeal blood flow and
pathology of migraines (Dux et al., 2015).

Thus, the cells of the neurovascular unit (endothelial cells,
astrocytes) produce NO and H2S whose biological effects
support intercellular communications, gliovascular control,
cell proliferation and development (Figure 1). Compromised
production or action of NO and H2S may be associated with the
development of various neurodegenerative and cerebrovascular
disorders.

H2S AND NO IN THE ALZHEIMER’S TYPE
OF ANGIOPATHY

Vascular Aβ Deposition
Under normal conditions, NO protects endothelial cells and
adjusts cerebrovascular function to the actual blood flow needs
in active brain regions. NOS activity in endothelial cells prevents
APP overexpression andAβ synthesis (Katusic andAustin, 2014).
In AD, Aβ impairs endothelial function due to inhibition of
eNOS activity caused by alterations in intracellular calcium
homeostasis and protein phosphorylation pattern (Gentile et al.,
2004). Deposition of Aβ, thickening and hyalinization of the
media of small and medium-size vessels, and apoptosis of
endothelial and smooth muscle cells correlate with reduced
NOS expression in cerebral vessels (de la Monte et al., 2000).
Deficiency of NOS results in increased Aβ production and
neuroinflammation development (Austin et al., 2013). These
alterations are accompanied with development of oxidative stress
(Lamoke et al., 2015). Oxidative stress is a key contributor to
development of cerebral amyloid angiopathy, vessel constriction,
and cerebral amyloid angiopathy-related microhemorrhages
(Han et al., 2015). Thus, permanent inhibition of eNOS in
endothelial cells results in vascular dysfunction and impairment
of cerebral microcirculation (Lin et al., 2014), and leads
to further progression in Aβ tissue deposition. Endothelial
eNOS affects transport of Aβ through the blood-brain barrier,
therefore, dysregulation of eNOS activity or expression would
lead to promotion of amyloid deposition in the brain tissue
as it was previously shown in Provias and Jeynes (2014)
(Figure 2).

H2S can also inhibit Aβ production in the cells due to
suppression of γ-secretase activity (Nagpure and Bian, 2014) and
an inhibit Aβ deposition, most likely, due to suppression of fibril
formation (Rosario-Alomar et al., 2015). However, eNOS activity
can be stimulated by H2S in endothelial cells (Chen et al., 2014)
via calcium ions release from intracellular stores (Kida et al.,
2013). Thus, cerebral amyloid angiopathy-associated changes in
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eNOS expression and activity might be linked to dysregulated
production of H2S. Indeed, in AD, CBS activity, and H2S
production are reduced in the brain (Eto et al., 2002), and plasma
H2S levels are negatively correlated with the severity of AD
(Giuliani et al., 2013), thus, neuroprotective and angioprotective
properties of H2S are reduced (Figure 2). Therefore, it is not
surprising that restoration of H2S levels can exhibit beneficial
effects in AD (Fan et al., 2013; Kamat et al., 2013). Of note, similar
effects have been observed for NO-donors currently tested as
novel drug candidates in AD (Chegaev et al., 2015).

Perivascular Inflammation
Cerebral amyloid angiopathy is also associated with development
of perivascular inflammation, microglial and astroglial activation,
cytokines, and chemokines production. In addition, brain tissue
hypoperfusion results in hypoxic alterations overlapping with
Aβ-induced neurodegeneration. NO and H2S are well-known to
exhibit anti-inflammatory effects, but dysregulated production
of these gaseous transmitters at the sites of inflammation
may promote degenerative changes. CBS producing H2S is
localized to astroglial cell lineage and is up-regulated in reactive
astrocytes (Kimura, 2015). Elevated expression of iNOS in brain
endothelial cells is a known common feature of Alzheimer’s
type of vascular pathology associated with hypoxic injury
(Sanchez et al., 2012; Figure 2). However, little is known about a
putative role of H2S in perivascular inflammation in AD, despite
this gaseous substance may exhibit neuroprotective effects due
to anti-inflammatory activity (Giuliani et al., 2013). Similar
effects have been demonstrated for CO (Cuadrado and Rojo,
2008).

Cerebral Hypoperfusion and Endothelial
Dysfunction
Alzheimer’s type of neurodegeneration starts from chronic
cerebral hypoperfusion. It is interesting to note that metabolism
of an allosteric activator of CBS—S-adenosyl-l-methionine
(SAM)—is altered in chronic cerebral hypoperfusion (Wu et al.,
2014). Thus, it is tempting to speculate that disturbances in
SAM cycle would affect CBS activity leading to impaired H2S
synthesis in the affected brain regions. Moreover, AD progression
in humans is associated with decreased levels of SAM in the
cerebrospinal fluid (Linnebank et al., 2010), while SAM has been
proved to serve as cognitive-enhancing agent in AD animal
model (Montgomery et al., 2014). Previously, such data have
been recognized as evidence of altered methylation patterns seen
in AD, but probably the summarized picture should include
diminished activity of CBS in SAM-deficient brain.

Homocysteine is one of the most important risk factors of
AD inducing endothelial dysfunction, angiopathy, and memory
deficits. Toxic effects of homocysteine and the product of its
spontaneous oxidation, homocysteic acid, are linked to activation
of NMDA receptors, induction of intracellular calcium ion
imbalance and oxidative stress (Boldyrev, 2009; Boldyrev et al.,
2013). Homocysteine metabolism actually links NO and H2S
pathways in AD (Figure 2). Both NO and H2S protect vascular
and neuronal cells from homocysteine-induced injury (Dayal
et al., 2014; Wei et al., 2014). Elevated plasma homocysteine

level leads to reduction in nitric oxide bioavailability due to
suppression of NOS activity (Lai and Kan, 2015). At the same
time, homocysteine can be converted to l-cysteine and H2S due
to activity of CBS and CSE, however, toxic concentrations of
homocysteine suppress CBS and CSE activities in the brain along
with increased expression of NMDA receptors in neuronal cells
(Kamat et al., 2015a). These effects are linked to excitotoxicity
and blood-brain barrier disruption. Thereby, activity of H2S- and
NO-generating enzymes is decreased in AD, and homocysteine-
mediated toxicity results in endothelial cell loss and progression
of neurodegeneration (Figure 2). Recent findings suggest that
exogenous H2S supply may normalize dysregulated expression
of NMDA receptors, CBS, and CSE in renovascular diabetic
remodeling (Kundu et al., 2015). H2S is able to restore decreased
levels of eNOS, CD31, VE-cadherin, and endothelin-1 expression
in brain endothelial cells subjected to the toxic action of
homocysteine in vitro (Kamat et al., 2015b) and in vivo (Kamat
et al., 2013), however whether or not this effect can be reproduced
in cerebral amyloid angiopathy remains to be elucidated.

Nitrosation and Sulfhydration of Vessel
Proteins in AD
Less attention has been paid to alternative molecular mechanisms
of H2S functioning in the central nervous system. By analogy
to NO which induces reversible nitrosation of target proteins,
H2S may induce reversible protein modification (persulfidation,
or alternatively S-sulfhydration; Gadalla and Snyder, 2010).
Presumably, CSE (or other enzymes?) generates H2S to
persulfidate the targets. Current evidence suggests that protein
persulfidation adheres closely to the generally acknowledged
paradigm for S-nitrosation by NO. Whereas, nitrosation appears
to diminish cysteine reactivity, persulfidation seems to enhance
it. Persulfidation may mediate various reported physiological
actions of H2S, i.e., relaxation of blood vessels through the
endothelial-derived relaxing factor activity of H2S involves
opening of ATP–sensitive potassium channels (Yang et al.,
2008), which are substrate for posttranslational modifications.
Persulfidation and tyrosine nitration have been reported to
occur at different subunits of KATPchannels, SUR2B, and Kir6.1,
respectively, and pretreatment of the cells with H2S donor
NaHS results in the suppression of NO-induced nitration
(Kang et al., 2015). KATP channels protect endothelial cells
(Chen et al., 2015), control release of NO and eicosanoids
further acting on smooth vessel cells to produce vasorelaxation
(Minamino and Hori, 2007). Besides that, Kir6.1 is a pore-
forming subunit in astroglial plasma membrane KATP channels
(Thomzig et al., 2001), which are involved in the intercellular
communication within the neurovascular unit (Velasco et al.,
2000; Sun and Hu, 2010). Thus, coordinated action of H2S
and NO on KATP channels expressed in endothelial, astroglial
and vascular smooth muscle cells may be an important
regulatory mechanism of cerebral vasomotor activity impaired
in AD.

Among the proteins modified by S-nitrosation, ryanodine
receptors (RyR) are well-known targets, and NO-mediated S-
nitrosation of RyRs mediates calcium release in neuronal cells
(Kakizawa et al., 2013). In physiological conditions, RyRs are
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activated by cyclic adenosine diphosphate-ribose (cADP-ribose),
a product of catalytic activity of NAD+-glycohydrolase/CD38
(Higashida et al., 2007). RyR2 and RyR3 are expressed in
astrocytes, and RyR-dependent signaling has also been reported
in vascular endothelium where three RyR isoforms have been
identified. RyR3 are important for astrocytes migration (Matyash
et al., 2002). RyR3 appears to be more broadly expressed, with
predominance in neurons, and the three subtypes are expressed
in large cerebral arteries as well as in the cerebral microcirculation
(Dabertrand et al., 2013). Key role of RyR in Aβ production and
learning and memory performances has been proposed (Oulès
et al., 2012). In AD, there is a dysregulated expression of RyR,
particularly in RyR2 splice variants (Bruno et al., 2012) and
RyR3 (Liu et al., 2014a). Currently, there are no data on NO-
mediated nitrosation or H2S-mediated sulfhudration of RyR in
AD. However, the wide spectrum of S-nitrosated proteins seen in
AD (Zahid et al., 2014; Zaręba-Kozioł et al., 2014) and very recent
data on the inhibitory action of H2S-donor on RyR activity do not
rule out this possibility (Tomasova et al., 2015).

Mitochondrial Dysfunction in Endothelial
Cells
Brain endothelial cells have much higher density of mitochondria
comparing to endothelial cells in other tissues (Oldendorf et al.,
1977), and mitochondrial activity is extremely important
for the regulation of endothelial cell metabolism (Salmina
et al., 2015). Therefore, production of NO and H2S in or
their action at mitochondria of endothelial cells should be
considered in the context of AD pathogenesis. As expected,
mitochondrial failure associated with energy shortage, calcium
ion imbalance, and reactive oxygen species overproduction
has been repeatedly confirmed in AD. These processes
link mitochondrial dysfunction to neurodegeneration and
neuroinflammation as well as to the blood-brain barrier
dysfunction and impairment of cerebral endothelium repair
(Sochocka et al., 2013).

Mitochondria represent the “cross-road” for the gaseous
transmitters within the cells. Mitochondrial location was
demonstrated for CSE, CBS (due to translocation in stressed
cells), 3MST, and NOS. H2S inhibits mitochondrial production
of reactive oxygen species, supports oxidative phosphorylation
and prevents apoptosis (Guo et al., 2012; Szabo et al., 2014).
Dose-dependent effects for H2S activity on mitochondrial
function was demonstrated: low concentrations (below 1µM)
stimulate mitochondrial respiration, while high concentrations
(higher than 3µM) inhibit mitochondrial respiration. Such
effects of H2S require adequate levels of Krebs cycle activity,
therefore a co-ordinatory role of intramitochondrially produced
H2S in the connection of citric acid cycle and oxidative
phosphorylation has been proposed (Módis et al., 2013). NO is
involved in the regulation of multiple aspects of mitochondrial
functioning due to its ability to bind heme iron centers,
to nitrosylate proteins (i.e., complex I) to inhibit electron
flux, and to take part in reactive oxygen species formation
(Stefano and Kream, 2015). Activation of mitochondrial KATP

channels in cerebral endothelial cells leads to NOS activation,
NO production, and vasodilation (Katakam et al., 2013)

whereas insulin resistance-associated impairment of KATP

channels alters above-mentioned mechanism (Katakam et al.,
2009).

In AD, aberrant KATP channels activity and endothelium-
mediated vasodilation was reported many years ago (Chi et al.,
1999). At present, these data could be interpreted as an indirect
effect of NO or H2S insufficiency resulting in mitochondrial
impairment. Of note, CO is also known to induce uncoupling
of mitochondrial respiration dependent on the activation of
mito BKCa channels and inhibition of glycolysis independent
of mito BKCa channels (Kaczara et al., 2015). Thus, all three
gaseous transmitters demonstrate different behavioral patterns
in mitochondria: stimulation or inhibition of mitochondrial
respiration by H2S, uncoupling of mitochondrial respiration by
CO, and inhibition of respiration by NO.

Mitochondrial biogenesis in endothelial cells is one of the
requirements for effective angiogenesis, and is usually associated
with the suppression of glycolysis. NO stimulates mitochondrial
biogenesis in many cell types (Nisoli et al., 2004; Miller et al.,
2013), H2S maintains mitochondrial DNA copy number that
is important for mitochondrial biogenesis (Li and Yang, 2015),
thereby exogenous H2S supports mitochondrial biogenesis in
brain cells subjected to hypoxia/ischemia (Pan et al., 2014).
Thus, suppression of mitochondrial biogenesis seen in AD (Rice
et al., 2014; Burté et al., 2015) might be, at least partially,
caused by reduced levels of endogenous NO and H2S. On
the other hand, accumulation of S-nitrosocysteines due to
NO-mediated nitrosation of mitochondrial proteins may have
direct toxic effect especially under the conditions of oxidative
stress: NAD+ depletion, ATP deficit, mitophagy induction in
endothelial cells similarly to previously obtained data (Diers
et al., 2013). However, it should also be considered that H2S may
efficiently suppress homocysteine-induced mitophagy in cerebral
endothelial cells (Kamat et al., 2015b), thereby acting also as a
functional antagonist of NO.

Aberrant Angiogenesis and Neurogenesis
in AD
Compromised angiogenesis takes place in AD, and plays a
role in the progression of neurodegeneration. Aβ promotes
neoangiogenesis and hypervascularity (Biron et al., 2011) that
is supported by the elevated levels of proangiogenic factors—
angiogenin and tissue inhibitor of matrix metalloproteinase-4—
in the plasma of patients with AD (Qin et al., 2015). However,
the present data are controversial since other authors found
decreased serum levels of angiogenin in AD (Kim and Kim do,
2012). In both studies, there was a correlation between the levels
of angiogenin and the severity of cognitive impairment, probably
due to assessment of disease manifestations at different phases
of progression. Other studies found that angiogenin stimulates
NO synthesis and release from endothelial cells (Trouillon
et al., 2010), whereas H2S increases angiogenin expression
in endothelial cells (Geng et al., 2015). Thus, it is tempting
to speculate that this machinery—[H2S → angiogenin →

NO]—is dysregulated in AD, thereby contributing to abnormal
angiogenesis.
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H2S and NO themselves serve as potent angiogenic molecules
acting individually or in the combination with other angiogenic
factors to promote endothelial progenitor cells migration,
proliferation (Lee et al., 2009; Kimura, 2015; Lu et al., 2015;
Figure 1). H2S activates KATP channels that possess angiogenic
properties being involved into the cell response to the action
of VEGF, and contribute to NO release from endothelial cells
(Umaru et al., 2015). The Kir6.1 subunit of KATP channels,
which is target for NO-induced nitration (Kang et al., 2015), is
required for the angiogenic activity of VEGF (Umaru et al., 2015).
Thus, the possibility arises that decreased and/or imbalanced
production of H2S and NO observed in AD does diminish the
angiogenic potential of factors acting through KATP channels.

Angiogenesis is important not only for reparative processes in
adult brain, but also for supporting neuroplasticity.Multiregional
dysregulation of neurogenesis, impaired neuronal migration
and maturation are common in AD (Hamilton et al., 2010).
The vascular microenvironment within the neurogenic niche
is integrated by signaling molecules secreted from endothelial
cells in the brain vasculature or by direct contact with these
cells (Goldberg and Hirschi, 2009). Endothelial-secreted factors
from the brain vasculature regulate proliferation, survival/self-
renewal, differentiation, andmigration of neural stem/progenitor
cells within the neurogenic niches. There are many paracrine
effectors of the brain vasculature on neurogenesis, such as VEGF,
EGF, bFGF, Notch ligands. It is known that H2S directly activates
VEGF receptor 2 (VEGFR2), thus providing pro-angiogenic
effect (Tao et al., 2013).

Recent finding suggest that constituent release of VEGF from
neural stem/progenitor cells highly expressing VEGFR2 in the
neurogenic niches supports their functional activity (Ara et al.,
2010; Kirby et al., 2015). Therefore, local production of H2S could
potentiate these paracrine and autocrine regulatory processes
supporting neurogenesis and angiogenesis. H2S and l-cysteine
are also known to promote proliferation of neural stem cells
(Wang et al., 2013a; Liu et al., 2014b). RyR2 expressed in neural
stem/progenitors embryonic cells take part in neurogenesis (Yu
et al., 2008). At the same time, endogenous production of
NO downstream of RyR activation is required for the positive
regulation of proliferation of hippocampal neural progenitor
cells derived from embryonic mice (Yoneyama et al., 2011).
However, impairment of neural stem cells proliferation due to
NO-mediated nitration of the EGF receptor and suppression
signaling through the ERK/MAPK pathway was reported
(Carreira et al., 2014). Together, targeting H2S and NO as
putative local regulators of neurogenesis within the neurogenic
niches may represent a novel approach for restoration of brain
cell proliferation and differentiation in AD (Figure 2).

CONCLUSION

Being produced by the cells of the neurovascular unit, H2S, and
NO act mainly as functionally additive molecules contributing to
the regulation of the local blood flow, maintenance of endothelial
integrity, and controlling intercellular communications.
Synergistic action of physiological levels of NO and H2S is
apparent in their neuroprotective, angiogenesis promoting
activity as well as in the gliovascular control providing adequate
blood supply to the active brain zones. Therefore, amyloid-
induced suppression of NO and H2S production in endothelial
and astroglial cells results in impairment of endothelial function
and cerebral microcirculation. Also, acting at the same direction,
NO, and H2S suppress Aβ production and deposition in cerebral
microvessels. However, antagonism in the action of two gaseous
transmitters is evident in their ability to modify proteins:
NO-induced nitrosation usually suppress the activity of target
proteins, whereas H2S-induced sulfhydration leads to activation
of target proteins. Contrary to H2S that maintain mitochondrial
DNA copy number, NO stimulates mitophagy in endothelial
cells. However, it should be noted that data obtained with NO
and H2S in complex biological systems should be considered
very carefully because of dose-dependent action of both the
gaseous mediators on cell metabolism and functioning: the
final outcome could be diametrically opposite depending on the
actual concentration. That is why our current understandings on
the role of NO and H2S in (patho)physiological conditions are
very far from the resultant conclusions.

It is clear that Alzheimer’s type of neurodegeneration
dramatically affects H2S and NO synthesis and their interactions
resulting in dysregulated vasomotor function, brain tissue
hypoperfusion and hypoxia, development of perivascular
inflammation, promotion of Aβ deposition, and impairment
of neurogenesis/angiogenesis (Figure 2). Better understanding
of key cellular, molecular, and pathobiochemical mechanisms
of H2S and NO action will provide new directions for the
development of high-performance technologies for neural
regeneration and neuroprotection with potential impact in
clinical medicine.
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