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Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram

(ECG) gives an understanding of how the underlying cell and tissue level changes

manifest as rhythm disturbances in the ECG. We present a 2D whole heart model

(WHM2D) which can accommodate variations at the cellular level and can generate

the ECG waveform. It is shown that, by varying cellular-level parameters like the gap

junction conductance (GJC), excitability, action potential duration (APD) and frequency

of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias

can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus

pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction

blocks. WHM2D includes key components of the electrical conduction system of the

heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow

conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and

ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and

Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced

model of the Hodgkin-Huxley neuronmodel. The atrial and ventricular myocardial cells are

modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation.

WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias.

Keywords: 2D whole heart model, cardiac arrhythmias, AV blocks, WPW syndrome, reduced cell models

INTRODUCTION

Cardiac arrhythmias are disturbances in the normal cardiac activity manifested in terms of
morphological variations in the cardiac rhythm or beat frequency (Gaztañaga et al., 2012). They
range from simple, asymptomatic ones to major life threatening arrhythmias which can cause
sudden cardiac death (SCD). Globally cardiovascular disease forms nearly 50% of the non-
communicable diseases (37 million) and accounts for 17.3 million deaths per year, emerging as
the leading global cause of death (Mendis et al., 2011). The number is expected to increase to>23.6
million by 2030 (Mendis et al., 2011; Laslett et al., 2012). Cardiac arrhythmias are a major factor
(80%) of SCD, the most fatal ones being ventricular arrhythmias (Mendis et al., 2011). Basic
physiological mechanism of each type of cardiac arrhythmia is different and different factors cause
the onset of each.

Many whole heart models (ventricular models, atrial models, or whole heart) are designed
to simulate the electrocardiogram (ECG) and explain cardiac function in normal and
pathological conditions (Van Oosterom, 2001; Potse et al., 2013; Boulakia et al., 2010;
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Bishop and Plank, 2011; Sovilj et al., 2013, 2014; Casaleggio
et al., 2014; Krishnamoorthi et al., 2014). However, there are
very few models that show whole heart electrical activity with
realistic ECG waveform. A 12 lead ECG of ventricular activity
is simulated (Boulakia et al., 2010) based on bidomain approach
with heart-torso coupling using a two variablemodel proposed by
Mitchell and Schaeffer (2003). The results are shown in different
conditions including heart torso uncoupling, monodomain
approximations, different conductivities, and anisotropies. It
was concluded that heart-torso uncoupling does not affect
the shape of ECG, bidomain equations can be replaced by
monodomain approximations (both reduces computational
load), but cell heterogeneity and fiber anisotropy affect the shape
of ECG waveform (Boulakia et al., 2010). In another bidomain
approach, computational complexity is reduced by augmented
monodomain approach in which an augmentation layer is
defined to have conductivity more close to bath conductivity
than to interstitial conductivity and the results are shown to be
comparable to those obtained with bidomain equations (Bishop
and Plank, 2011).

A 2Dmodel of ventricles is developed with human ventricular
cell model proposed by Ten Tusscher and Panfilov (2006) to
assess changes in ECG under ischemic conditions. Ischemia is
characterized by increase in resting membrane potential and
shortening of APD. ECG is computed from the model and
shown that ST elevation corresponds to transmural ischemia
and ST depression corresponds to endocardial ischemia which
correlates with clinical findings (Benson et al., 2008; Lu et al.,
2010). Simplified 2D and 3D bidomain models of lesser
computational complexity are proposed by defining seven sub
regions corresponding to cardiac regions with characteristic
cell properties (SAN, atria, AVN, His bundle, bundle branches,
Purkinje fibers, and ventricles) and tissue conductivities (Sovilj
et al., 2013, 2014). The results produced are comparable in
both 2D and 3D simulations with very less computation time
for 2D model (6min for 1 s of cardiac activity). The 2D
model shows that variation of APD in ventricles produces QT
interval variations (Sovilj et al., 2014) and in 3D model ST
segment elevations and depressions are observed for myocardial
infarctions (Sovilj et al., 2013). A simple heterogeneous 2D
whole heart model based on discrete approach with GJC
distribution and APD heterogeneity shows that realistic ECG
can be computed with less computational load (Balakrishnan
et al., 2014). From the modeling approaches (Boulakia et al.,
2010; Balakrishnan et al., 2014; Sovilj et al., 2014) it has been
shown that a simplified approach and approximations can give
rise to a model with reduced complexity and can explain complex
cardiac phenomenon. Since ECG is a non-invasive method to
assess the electrical activity of heart, models that can simulate
arrhythmias in terms of the associated ECG changes have a
significant clinical utility. They offer a clear insight into the
mechanisms of arrhythmias and a better interpretation of ECG.

Most of the computational models are developed without the
associated ECG simulations to analyze different factors that cause
arrhythmia. There are models that explain the role of transmural
dispersion of action potential duration (APD) as a cause of
reentry (Clayton and Holden, 2004), the role of electrotonic

modulation in reentry with finite element approach (Bishop et al.,
2013) and myofibroblast density as a cause of arrhythmia in an
infarcted heart using an image based model (McDowell et al.,
2011). Biophysically detailed atrial models (Kneller et al., 2002;
Vigmond et al., 2004; Ridler et al., 2011) can simulate normal and
arrhythmic conditions and also response to ablation procedures.
Image based models represent the complex geometrical structure
of atria and also includes functional aspects such as fiber
orientation andAPDheterogeneity (Vadakkumpadan et al., 2009;
Ridler et al., 2011). 2D tissue models have been proposed to
analyze specific arrhythmia conditions like long QT syndrome
(Clayton et al., 2001) which can cause the risk of ventricular
arrhythmia and SCD. A detailed review of the ventricular
and atrial models are given in Trayanova (2012). Most of
the existing computational models only explain a few selected
types of arrhythmias like atrial fibrillation (Aslanidi et al.,
2011), ventricular fibrillation, re-entrant ventricular tachycardia
(Clayton and Bishop, 2014) and quite often not in the context of
ECG waveform. Furthermore, in most of these models, variation
in gap junctional conductance (GJC) is not taken into account.
A 1D multicellular model including the SAN (SA node), atrial
muscle, and AVN (AV node) is developed with fast and slow
pathways to analyze the functions of AVN (Inada et al., 2009). A
delay is introduced in AVN for providing adequate time interval
between atrial and ventricular contractions. The model (Inada
et al., 2009) shows that this is related to the low Na+ conductance
and poor electrical coupling because of lower GJC (gap junction
conductance)in AVN.When the fast pathway is blocked, impulse
reaches AV junction through slow pathway which can cause
re-entry into the atria as the impulse propagates retrogradely
through the fast pathway. The 1D model that consists of both the
pathways shows the effect of re-entry by varying the conductance
across the different types of cells in AVN (AVN consists of three
different types of cells- atrio-nodal, nodal, and nodal-His cells).
In a recent computational study of 2D network of myocardial
cells it is shown that the variation in GJC inside an ischemic area
can generate arrhythmic conditions (Casaleggio et al., 2014). By
varying the intercellular and intracellular parameters arrhythmia
conditions can be simulated in the model.

Cardiac arrhythmias are classified according their respective
causative factors: there are those that are caused by impairment
of the autonomic nervous system like normal sinus tachycardia
(heart rate (HR) is greater than 100 BPM) (Bauernfeind et al.,
1979), sinus bradycardia (HR is lesser than 60 BPM), respiratory
sinus arrhythmia (HR is modulated by the respiratory rhythm)
(Yasuma and Hayano, 2004), pre-excitation arrhythmia ( Wolf-
Parkinson-White (WPW) pattern (due to the accessory pathway
between atria and ventricles, ventricles are pre-excited) (Douglas
and Zipes, 2009), WPW syndrome (through the accessory
pathway, bundle of His, and AN node retrograde conduction can
occur and this can cause reentry tachycardia) (Sethi et al., 2007),
those that are caused by AV conduction blocks (Douglas and
Zipes, 2009) (First degree, Second degree Type I (Wenckebach),
Type II (Mobitz Type II), Complete heart block) and those that
are caused by sinus dysfunction (Strauss et al., 1976) (sinus pause
or sinus arrest). In the present study all the above mentioned
arrhythmias are successfully simulated.
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The size of a single cardiac myocyte is of the order of
a few microns while the size of the human heart dimension
is approximately 12 cm in length, 8 cm in wide, and 6 cm in
thickness (Betts et al., 2013). Approximately 6 × 1010 cardiac
myocytes are present in an adult human heart. Therefore,
computational modeling at cell level by discrete approach
requires enormous computational load even for the simulation
of 1 s of cardiac activity (Bordas et al., 2009). For analyzing
cardiac arrhythmias several seconds of simulations are required
and modeling at the resolution of human heart takes extensive
computation. In the present study a simplified discrete approach
is used in which whole heart is represented by a 2D network
of 24000 cells having representative cells from each type and
reduced cell models are used tomodel its dynamics (Balakrishnan
et al., 2014). Autorhythmic cells (SAN cells, AVN cells, bundle
of His cells and Purkinje cells) of the specialized conduction
system are modeled by Fitzhugh-Nagumo two variable model
(Fitzhugh, 1961) and (atrial and ventricular) myocardial cells by
Aliev-Panfilov two variable model (Aliev and Panfilov, 1996).

Computational models that incorporate structural integrity
(atrial and ventricular musculature with specialized conduction
system at the whole heart level) and functional parameters
including GJC across the cells, APD heterogeneity, variation in
the frequency of oscillations (pacing) of the various autorhythmic
cells through the specialized conductive system, variation of
refractory period (RP) in the generation of various arrhythmias
at the whole heart level (with respect to the ECG waveform)
are absent. The proposed two-dimensional whole heart model
(WHM2D) can explain many of the arrhythmias by varying the
GJC across the cells, APD of cells, excitability of the autorhythmic
cells, frequency of oscillation of the autorhythmic cells and RP of
cardiac cells. The set of simulations include both fatal and non-
fatal arrhythmias. This simple 2D model can be used for other
types of arrhythmias also by properly selecting the GJC across
the cells, APD of the cells, and RP of the cells in the concerned
region.

METHODS: A TWO-DIMENSIONAL WHOLE
HEART MODEL (WHM2D)

The proposed WHM2D, which is based on a simplified
representation of the 2D geometry of heart, comprises of all
essential cardiac cell types: SA nodal cells, atrial myocytes, fast
conducting inter-atrial cells, AV nodal cells, bundle of His cells,
Purkinje cells, and ventricular myocytes arranged as shown in
the Figure 1. The right side of the atrial region represents the
right atrium (RA) and the left side denotes the left atrium (LA).
SAN is placed at the center-upper part of the atrium. Two fast
conducting inter-atrial pathways are also shown in the Figure 1,
one conducting SA nodal signals to the right atrium and the
other toward the left atrium. The WHM2D is divided vertically
into two regions separated by a dark line (Figure 1): the upper
region representing the atria and the lower one representing the
ventricles. The low conductance band (dark line) separating atria
and ventricles prevent the direct propagation of impulse from
the atria to the ventricles other than via the AVN. An impulse

FIGURE 1 | A simplified schematic of the 2D structure of heart used in

the simulation studies.

from the atria reaches ventricles only via the AVN and the bundle
of His and then to the Purkinje fibers. To create asymmetry
between the right ventricle and the left ventricle, the bundle
fiber is positioned toward the right ventricle (left ventricle is
thicker than the right ventricle). GJC between bundle cells to
the myocardial cells is kept low to prevent direct spread of the
impulse from the bundle cells to the myocardial cells. The GJC
between the Purkinje cells and ventricularmyocardial cells is high
facilitating rapid spread of impulse into the myocardium.

Autorhythmic cells in the SAN produce impulses at the rate
of 79 BPM. The impulse spreads through the inter-atrial fibers
into the atrial myocardium. Once the impulse reaches the AV
junction it is delayed by the low GJC in this area, during which
time the signal spreads throughout the atrium. The spread of
the impulse in atrial myocardium is from the SAN to the AVN,
and then to LA and RA. Subsequently, the signal slowly spreads
through the bundle of His positioned in the middle of the
ventricles. Once the impulse reaches the Purkinje fibers which
are connected to the bundle cells, it propagates along the left and
the right branches of the Purkinje network. The GJC between
ventricular myocardial cells is also made high ensuring that
the impulse spreads through the myocardium at the highest
conduction velocity. Ventricular activation spreads from the apex
to the base of the heart showing that the ventricular contraction
process starts from the apex of the heart. Among Purkinje cells
the high GJC is mainly contributed by abundance of connexin
protein Cx40 which causes high conductance channels compared
to that in ventricular myocardial cells (Kanter et al., 1993). In the
WHM2Dmodel also GJC among the Purkinje cells is set to much
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higher values than that of the ventricular myocardium to obtain
a faster conduction and a sharp R wave.

Each cell in the myocardium is connected to six to eleven cells
(in atria 6.4 ± 1.7, ventricles 11.3 ± 2.2, Saffitz et al., 1994). In
the 2DWH model each cell is connected to its eight adjacent
neighbors through GJC. The value of the GJC varies according
to the type of the cell to which each cell is connected. A proper
distribution of the GJC inWHM2D causes a pattern of activation
propagation corresponding to normal sinus rhythm and results
in a normal ECG waveform. Differences in conductance values
in different directions can account for the fiber orientation
and anisotropy present in the cardiac musculature in different
regions of the heart (Kanagaratnam et al., 2002). The cells in
the specialized conduction system are placed in the WHM2D
by analyzing the anatomical and physiological factors. ECG is
computed from the model as per the method proposed by Virag
et al. (1998) and position of the cells and GJC can be modified
by the ECG signal. This makes it possible to perform inverse
computation and personalization of ECG.

Different cell types in the WHM2D model are modeled by
different low-dimensional cardiac cell models. Oscillatory cells in
the cardiac conduction system which include the SA nodal cells,
fast conducting atrial cells, AVN, cells of the bundle of His, and
Purkinje cells are modeled using Fitzhugh Nagumo (FN) two-
variable model (Rocşoreanu et al., 2000). SA nodal cells fire at
the highest frequency of 80 BPM, the AVN at 60 BPM; at the
end of the Purkinje network the intrinsic frequency reduces to
20 BPM. Atrial myocardial cells and ventricular myocardial cells
are represented with the Aliev-Panfilov (A-P) two-variable model
proposed for cardiac myocyte (Aliev and Panfilov, 1996). In
AVN, excitatory cells are represented with FNmodel in excitatory
mode.

The action potential for a single cell is described using the
following general equation

Cm
dv

dt
= −(Iion + Istim) (1)

where v is the voltage across the cell membrane, Cm is the specific
capacitance of the cell membrane, Iion is the sum of all the
individual ionic currents, Istim is the externally applied stimulus
current. In the WHM2D, since each cell is connected to eight
neighbors, Istim is the summation of all individual currents from
the eight cells. The individual current depends on the voltage
difference and GJC between the cells. This current represents
the discrete form of the diffusion current that flows into
medium.

Istim = (Vi− 1, j− 1 − Vi,j)Gi− 1, j− 1 + (Vi− 1, j − Vi, j)Gi− 1, j

+ (Vi− 1, j+ 1 − Vi, j)Gi− 1,j+ 1 + (Vi, j− 1 − Vi,j)Gi, j− 1

+ (Vi,j+ 1 − Vi,j)Gi,j+ 1 + (Vi+ 1,j− 1 − Vi,j)Gi+ 1,j− 1

+ (Vi+ 1, j − Vi,j)Gi+ 1, j + (Vi+ 1, j+ 1 − Vi,j)Gi+ 1, j+ 1

(2)

The equations describing the reduced cell models are given
below.

Reduced Models
FitzHugh-Nagumo (FN) Model

dv/dt = v(v− a)(1− v)− w+ Istim

dw/dt = b(v− γw) (3)

The fast variable vmodels the membrane potential of the cardiac
cell and the slow variablewmodels the recovery of the membrane
potential. The parameters γ , a, and b control the behavior of the
model (Fitzhugh, 1961; Rocsoreanu and Giurgi̧teanu, 2000).

The parameters γ , a, and b are assumed so that there exists
a unique equilibrium point (veq, weq) for each cell. Now the
equations are modified as follows

f (v) = v(v− a)(1− v)

dv/dt = f (v+ veq)− f (veq)− w+ Istim

dw/dt = b(v− γw) (4)

FN model is used in oscillatory as well as excitable mode by
varying the parameter veq. When veq is below the knee of the
v nullcline, the model exhibits excitability and when veq is
above the knee it exhibits oscillations. In cases of premature
beats and ectopic foci, excitable cells in the myocardium gains
autorhythmic behavior. It has been shown that down regulation
of inward rectifying current IK1 induces autorhythmicity in
ventricular cells (Miake et al., 2002). In FN model veq determines
whether the cell is excitable or autorhythmic for a fixed value
of a. Under pathological conditions, both excitability and
autorhythmicity of the cardiac cells can be affected by extrinsic
and intrinsic factors. In case of sinus pause or sinus arrest, auto-
rhythmicity of SA nodal cells is affected and the cells fail to
produce impulse for a short duration of time (Jordan et al., 1978;
Gregoratos, 2003). InWHM2Dmodel this is simulated by briefly
reducing veq of SA nodal cells.

In excitable mode, Istim represents the stimulation current
given for each individual cell. As each cell is connected to its eight
adjacent neighbors, if any of the neighbors is excited it can cause
an Istim to flow into the cell. For the oscillatorymodel, irrespective
of the value of Istim, the cell oscillates at the frequency at which
the entire structure oscillates. Otherwise it follows the stimulating
oscillations as it happens when SAN drives other autorhythmic
cells in the specialized conduction system of heart.

Aliev-Panfilov (A-P) Model
Myocardial cells in the WHM2D model are implemented by the
Aliev-Panfilov model proposed for cardiac stimulation.

dv/dt = kv(v− a)(v− 1)− vw+ I

dw/dt = γ (v,w)(−w− kv(v− a− 1))

γ (v,w) = γ0 +
µ1w

(v+ µ2)
(5)

The parameters k, γ , and a relate to the standard FN model
parameters and the parameters µ1 and µ2 are calibrated
according to the appropriate restitution curves (Aliev and
Panfilov, 1996). The additional parameter γ 0 termed as
refractoriness controls the action potential duration (APD)
(Hurtado and Kuhl, 2012).
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Setting the Parameters in the Atrial Region
In the atrial region, APD of the myocardial cells is varied using
the refractoriness parameter γ 0 in A-Pmodel. The longest APD is
in the area near the center of the SAN and decreases with increase
in distance from SAN center (Spach and Heidlage, 1995). In the
model, APD is smoothly varied from the SAN center throughout
the atria as defined in Equation (6).

γ 0atria(i, j) = γ 00a + γ 01atria(i)+ γ 02atria(j)

γ 01atria(i) = 5× 10−10 × (40− i)4

γ 02atria\(j) = 10−6 − 7× 10−11 × (j− 70)4

γ 00a = 0.0018 (6)

γ00a represents the longest APD of the atrial myocytes near SAN,
γ01atria(i) represents the variation of the refractoriness parameter
in the apex-base direction of the atria and γ02atria(j) denotes the
variation in the transmural direction. Refractoriness parameter
γ0atria is inversely proportional to the APD: it is maximum in the
region of SAN and decreases with distance from SAN.

Setting the Parameters in the Ventricular
Region
From the simulation studies it was understood that in order
to obtain a smooth T wave, the repolarization should begin
simultaneously from all parts of the ventricular musculature that
is from the endocardium, epicardium, base, and the apex. The
regions that are depolarized last are the epicardium and apex
regions. If repolarization must start simultaneously in all regions,
the APD of the apex and epicardium must be smaller than that
of the epicardium and base regions. For achieving this, the APD
is modified by three parameters: the maximum APD duration,
transmural variation and apex-base variation. γ 0ventr is varied
as a function of position of the cell in the matrix as given in
Equation (7).

γ0ventri(i, j) = γ00v + γ01ventr(i)+ γ02ventr(j)

γ01ventr(i) = 3× 10−10 × (160− i)4

γ02ventr(j) = 10−6 − 7× 10−14 × (j− 50)6

γ00v = 0.0015; (7)

γ00v is the maximum APD of the ventricular myocytes, γ01ventr(i)
is the apex-base variation and γ02ventr(j) is the transmural
variation in ventricles.

A comparison of the variation of refractoriness parameter in
apex-base direction, transmural direction and the 2D distribution
in the model for atria and ventricles are shown in Figure 2. As
the spread of the repolarization wave is different for atria and
ventricles, the 2D distribution of the aforementioned parameters
should also be different in atria and ventricles. The maximum
variation is less for atria compared to ventricles. This is because
Ta (atrial repolarization) wave for atria has negative polarity
with lesser amplitude than P wave, but the T wave (ventricular
repolarization wave) has positive polarity and requires large
variation of APD to initiate repolarization from all regions of
ventricles.

Computation of ECG from the WHM2D
ECG signal is computed from the WHM2D by the method
described by Virag et al. (1998) as shown in Figure 3. In the
2D network of cardiac cells, each pair of adjacent cells forms an
electric dipole of length “d” and current density “I” (1Vm × G).
The potential recorded at V1, V2, or V3 is equal to the summation
of the contribution of each dipole in the network.

The potential projected from a dipole to the measuring point
is calculated as follows (Equation 8).

V(i, j) =
(1Vm × G)× d2 × cos(θ)

4πR2
(8)

Where 1Vm is the potential between two adjacent cells which
forms a dipole,G is the conductance between them, d is the length
of the dipole, and θ represents the angle between the position
vector R and the dipole D. The contributions V(i,j), of each
dipole in the vertical, horizontal and two diagonal directions are
calculated (Equation 9).

V(k) =

200∑

i=1

120∑

j=1

Vver(i, j)+ Vhor(i, j)+ Vdiag1(i, j)+ Vdiag2(i, j) (9)

The standard ECG limb leads and augmented leads can be
computed from the summated voltages at three points (Virag
et al., 1998) as shown in Equation (10).

LeadI = V2− V1; LeadII = V3− V1; LeadIII = V3− V2

Vo =
(V1+ V2+ V3)

3

aVR =
3× (V 1 − V o)

2
;

aV L =
3× (V2 − Vo)

2
;

aVF =
3× (V3 − Vo)

2
(10)

RESULTS

Normal ECG
Normal ECG is initiated by the spontaneous impulse produced
by the autorhythmic cells in the SAN at the rate of 73 BPM.
This impulse depolarizes the cells in atrial myocardium through
the internodal pathways and reaches AVN. Spread of the
depolarization impulse in the atrial myocardium results in P
wave. The impulse is delayed in the AVN and bundle of
His, which produces the delay (PR interval) between atrial
depolarization and ventricular depolarization. The only electrical
connection between atria and ventricles is through AVN. From
AVN the impulse passes through the bundle of His cells and
reaches Purkinje fibers which branches to the left and right
ventricles. From the Purkinje cells, the impulse spreads to the
ventricular myocardium (Figure 4).

WHM2D consists of 24000 cells (200 × 120 matrix) out
of which 9600 cells (80 × 120) are allotted for the atria
(vertically divided equally into right atrium and left atrium)
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FIGURE 2 | (A) Variation of the refractoriness in atria along the base-apex direction, (B) variation of the refractoriness in atria along the transmural direction, across the

entire wall of the atrial musculature; it is not symmetric between the right atrium and left atrium. (C) 2D Variation of refractoriness in atria. (D) Variation of the

refractoriness in ventricles along the base-apex direction. (E) Variation of the refractoriness in ventricle along the transmural direction, across the entire wall of the

ventricular musculature; it is not symmetric as left ventricle is thicker than right ventricle. (F) 2D Variation of refractoriness in ventricles.

FIGURE 3 | (A) Connection of each cell in the 2D matrix. Each cell is connected to eight neighbors. 2D cell network size is 200× 120. (B) Measurement of ECG signal

from the 2D network. R shows the position vector between the computed point and the source. θ denotes the angle between the position vector R and the dipole D.

and rest for the ventricles. Within the atria, SA nodal cells,
cells in the inter-nodal pathways and AVN are connected by
high GJC. Atrial myocardial cells are connected to the cells in
the internodal pathways. The impulse spreads asymmetrically
in right and left atria as the fiber orientation and distribution
of GJC is different. The distribution of the connexin proteins
Cx40 and Cx43 is different in the LA and RA regions. It
has been shown that the right atrial conduction velocity is

inversely proportional to the ratio Cx40/(Cx40 + Cx43), but
linearly related to Cx43/(Cx40 + Cx43) (Kanagaratnam et al.,
2002). Even though the density of Cx40, which has a high
unitary conductance, is higher in RA than in LA (Vozzi et al.,
1999), the conduction velocity is less in RA. This is because in
RA, the gap junctions form heteromeric gap junction channels,
comprising Cx40 and Cx43, a channel type that has low
unitary conductance (Kanagaratnam et al., 2002). There are also
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FIGURE 4 | Upper trace shows ECG signal generated from the model and lower one shows the spread of impulse in the WHM2D. The red line on the

ECG signal shows the instance of the spread of wave propagation in the 2D model (A) atrial depolarization (P wave), (B) ventricular depolarization (QRS complex).

Atrial repolarization is happening at the same time and obscured by the high amplitude QRS complex. (C) Ventricular repolarization (T wave).

differences in fiber orientation between the RA and LA (Wang
et al., 1995; Valderrábano, 2007). This causes the spread of the
impulse more in horizontal direction in the LA than in RA
(Figure 4A).

Atrial repolarization (Ta) wave is usually not seen in the
ECG waveform as the repolarization process coincides with
the time of ventricular depolarization. The small repolarization
wave is obscured in the presence of higher amplitude QRS
complex. But it can be observed in patients with arrhythmias
when the impulse from the atria is completely blocked from
entering the ventricles. The amplitude of the Ta wave is 1/10th
of the P wave and the phase of the Ta wave is opposite to
that of the P wave (Holmqvist et al., 2009). In the simulation,
a moderate APD variation as per Equation (6) is introduced
in the atrial musculature so that the amplitude of the wave
is reduced and the polarity is made opposite to that of the P
wave. The existence of heterogeneity of APD is well-established
in ventricles (Antzelevitch et al., 1999). In atrial musculature
also heterogeneity is observed and has been analyzed for atrial
reentry and fibrillation studies. The longest APDs are found in
the area where the atrial excitation is initiated (SAN), while there
is progressive shortening of the APD with increasing distance
from the sinus node. The authors also state that the variation
of the APD must be smooth without discontinuities, since
discontinuities cause atrial fibrillation and reentry arrhythmias
(Spach and Dolber, 1986). The refractoriness parameter γ 0 of
the atrial myocyte is smoothly varied from the SAN across the

boundaries (Hurtado and Kuhl, 2012) as per Equation (6). The
2D distribution of the refractoriness parameter γ 0 is shown in
Figure 2A.

The lower 120 × 120 region of the WHM2D represents the
ventricles (Figure 1). The impulse reaches the bundle of His
cells through the AVN. The other end of the bundle fibers are
connected to the Purkinje fibers. In the depolarization process,
the impulse travels down through the bundle of His fibers in the
septum to the Purkinje fibers. The Purkinje network branches
to the left and the right, penetrating through the ventricular
myocardium. Once the impulse reaches the Purkinje network,
it starts spreading into the myocardium. Thus, the propagation
starts from the apex of the heart and spreads upwards to the base
region instantaneously as the GJC values are higher among the
Purkinje cells than between the myocytes and Purkinje cells. This
results in a sharp R peak. The S wave of the QRS complex is
produced because of the asymmetry between the right and left
ventricles (Figure 4B).

Wilson et al. (1931) hypothesized that concordance of the
polarity of T wave with R wave may be explained by assuming
that at least in some part of the ventricles the depolarization
and repolarization waves travel in opposite directions. Electro-
physiological studies (Antzelevitch et al., 1999) show that
ventricular myocardium is not homogeneous and that there
exists at least three types of ventricular cells,—epicardial, mid
myocardial, and endocardial cells,—with different values of APD.
Noble et al (Noble and Cohen, 1978) showed that the APD
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from tissue slices dissected from the apex is longer than those
from the base of the sheep ventricle. They concluded that such
a difference could account for a positive polarity of the T wave
in mammals. These studies showed that there is heterogeneity
in APD in the apex- base direction and transmural (from
epicardium to endocardium) direction. The contribution of each
of these heterogeneities to the positive T wave is not clear.

From the simulation studies it was understood that, for
obtaining a smooth T-wave, the repolarization should begin
simultaneously from all parts of the ventricular musculature—
endocardium, epicardium, base, and apex. This is made possible
by the APD heterogeneity implemented in the model as per
Equation (7). The regions that are depolarized last are the
epicardium and base regions, compared to endocardium and
apex regions, as they are far away from the site of initiation of
depolarization. For repolarization to start simultaneously in all
regions, the APD at the base and epicardiummust be shorter than
that at the endocardium and apex regions (Figure 4C).

The amplitude and duration QRS complex is determined
by the GJC among the ventricular cells. S wave in the QRS
complex occurs because of the asymmetry between the left and
the right ventricle. PR interval depends on the GJC of the AVN
and bundle cells, also on the duration of the APD of the atrial
myocardium. ST interval is determined by the maximum APD
of the ventricular myocardial cells. The positive polarity and
the shape of the T wave depend on the dispersion of APD
heterogeneity of the ventricular myocardial cells. Simulation of
normal ECG signal and corresponding propagation in the 2D
model is given in Supplementary Material Video 1.

Cardiac Arrhythmias
The following arrhythmias are simulated in the present model:
normal sinus tachycardia, sinus bradycardia, respiratory
sinus arrhythmia, Wolf-Parkinson-White (WPW) pattern,
WPW syndrome, first degree block, second degree Type I
(Wenckebach) block, Type II (Mobitz Type II) block, complete
heart block and sinus pause.

Variations in HR can be caused by neural, chemical, hormonal
modulations in the body and prominently by the influence
of the autonomous nervous system (ANS) (Malliani, 2012).
Normal sinus tachycardia, sinus bradycardia, and respiratory
sinus arrhythmia can be considered as the impairment of
the ANS which regulates HR by balancing two opposing
systems: sympathetic system which stimulates the heart and
parasympathetic system which inhibits it. Impulse from ANS
reaches the heart through the pre- ganglionic nerve fiber which
synapses with a secondary neuron within the ganglion and
sends impulses to the cardiac cells through the post-ganglionic
nerve fiber which delivers impulses directly to the cardiac
cells (Thomas, 2011). The effect of parasympathetic stimulation
through the cholinergic receptors is to reduce the rate of SAN
pacing, slow down the conduction at AVN, increase the APD of
AVN cells and reduce the contractility of the excitable myocytes.
Sympathetic system releases norepinephrine which activates the
adrenergic receptors (α1 or β1), accelerates SAN pacing, increases
conduction velocity and shortens APD of the AVN cells (Levy,
1984; Dubin, 2003).

Normal Sinus Tachycardia
HR in the normal resting state can be considered as a prognostic
factor (Fox et al., 2007; Gopinathannair and Olshansky, 2009)
and across the animal species high HR is associated with
increased mortality (Levine, 1997). Sinus tachycardia (ST),
a clinically common condition, is generally defined as the
arrhythmic condition when the HR is greater than 100 BPM.
Broadly it can be classified into normal sinus tachycardia
(NST) and andinappropriate sinus tachycardia (IST). NST has
an underlying cause that may be of physiologic, pathologic,
and/or pharmacologic origin. IST on the other hand, denotes a
breakdown in the mechanism that regulates tachycardia (Yusuf
and Camm, 2005). IST can sometimes be associated with upright
posture, called the postural orthostatic tachycardia syndrome
(POTS) or sinus node reentry tachycardia (SNRT). The exact
cause of IST is not clear. For example, it is not known whether
it is connected to abnormality in SAN or abnormal autonomic
function (Bauernfeind et al., 1979; Nwazue et al., 2014).

Normal Sinus Bradycardia
Sinus bradycardia is the condition when the heart rate is less
than 60 BPM. If it is asymptomatic it is considered as a sign
of physical fitness. Otherwise, symptomatic sinus bradycardia
is a life threatening condition and needs medical care (Dreifus
et al., 1991). SAN area is densely innervated by the post-
ganglionic cholinergic and adrenergic fibers and therefore ANS
stimulation can alter the rate of pacing of SA nodal cells (Pauza
et al., 2000). In the resting condition, HR is governed by
the parasympathetic system. Vagus nerve activation can inhibit
sympathetic activation at the pre-synaptic level (Olshansky
et al., 2008), and can reduce SA nodal pacing rate by direct
hyperpolarization. Certain studies show that vagally mediated
sinus bradycardia can reduce the development of fatal ventricular
arrhythmias in the absence of hypotension as the cell irritability
is reduced by increasing the refractory period and threshold
for electrically induced ventricular fibrillation (Myers et al.,
1974).

Tachycardia and bradycardia arrhythmias are simulated by
varying the parameter b which determines the frequency of
the FN cells in the specialized conduction system. All the
pacemaker cells in the heart are innervated by sympathetic
and parasympathetic fibers and the chronotropic effect is
different in each type (Jones et al., 1978). In order to simulate
tachycardia and bradycardia conditions, increasing or decreasing
the SA nodal pacing rate alone does not vary the overall
heart rate. Corresponding changes must be made in the
pacing rates of subsidiary pacemaker cells also to produce
the tachycardia and bradycardia arrhythmias. In WHM2D
model sinus bradycardia is implemented by decreasing the
pacing rate of the SA nodal cells and increasing the APD
of AV nodal and other autorhythmic cells. Sinus tachycardia
is implemented by increasing the rate of the SA nodal
pacing and decreasing the APD of the AV nodal cells
(Figure 5).

The modifications of pacing rates for the autorhythmic cells
in the conduction system for tachycardia and bradycardia are
shown in the Table 1.
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FIGURE 5 | (A) Normal ECG, (B) Bradycardia simulated by decreasing the frequency of oscillations of the pacemaker cells, (C) Tachycardia simulated by increasing

the frequency of oscillations of the pacemaker cells, (D) Respiratory sinus arrhythmia simulated by modulating the frequency of the pacemaker cells with the

respiratory rhythm.

TABLE 1 | Parameters chosen for simulating ECG (normal), sinus

tachycardia and sinus bradycardia.

Parameters used Normal ECG Sinus Sinus

tachycardia bradycardia

Heart Rate 73 BPM 110 BPM 60 BPM

SA nodal frequency (Highest) 79 BPM 115 BPM 64 BPM

AV nodal frequency (Highest) 65 BPM 80 BPM 56 BPM

Bundleof His (Highest) 63 BPM 60 BPM 43 BPM

Purkinje fibers (Highest) 53 BPM 49 BPM 39 BPM

Atrial conductance 0.004 µS 0.005 µS 0.003 µS

Ventricular conductance 0.08 µS 0.08 µS 0.08 µS

AV conductance 0.1 µS 0.2 µS 0.08 µS

Respiratory Sinus Arrhythmia (RSA)
In RSA the vagal control is withdrawn during the inspiration
phase; sympathetic control becomes more prominent during that
phase which increases the HR. During the expiration phase, vagal
control is reinstated and the rate is back to normal (Yasuma and
Hayano, 2004). RSA is a cardio-respiratory phenomenon where
the heart rate fluctuation depends on respiratory frequency and
depth of ventilation (Hirsch and Bishop, 1981). Central nervous
system controls the heart rate by the complex, mutually opposing
interaction between sympathetic and parasympathetic systems.
The pacing rate of SAN is determined by the interaction between
these two systems. Respiratory rhythm modulates the activity of
cardiac vagal pre-ganglionic neurons. Inflation of lungs during
the inspiratory phase may inhibit the cardiac vagal efferent
nerve fibers which carry information from CNS to cardiac cells
(Horner et al., 1995). There are different explanations for the
occurrence of RSA. It is shown that the pulmonary gas exchange
is increased by RSA as increased HR during inspiration increases
alveolar ventilation and capillary perfusion rate (Hayano et al.,
1996). Many studies cannot confirm the specificity of vagal tone
irrespective of sympathetic activity as RSA magnitude is also
affected by beta-adrenergic tone (Grossman and Taylor, 2007).
In spite of all the controversies, RSA is used as a non-invasive

measure of vagal tone to assess the complexities of autonomous
nervous system and heart rate variability (HRV) studies. The
exact origin of RSA is still debated with many unresolved issues
including the interaction of respiratory and circulatory centers
and the role of other parts of the brain in RSA (Yasuma and
Hayano, 2004).

In order to simulate RSA in the 2D model, the frequency
parameter of the SA nodal cells is modulated by the respiratory
frequency (f = 0.2Hz). The parameter B which determines the
pacing frequency of SAN is defined as,

B = b+ sin(2π ft) (11)

b-parameter determining the frequency of SAN (73 BPM)
f = 0.2Hz—respiratory frequency

The variation in heart rate (HRV) is an indirect measure
of the function of ANS. If an appropriate model of ANS is
developed, it can be used to couple with the WHM2D to
analyze various aspects of ANS. ECG simulated is shown in
Figure 5D and the corresponding spread of the impulse is shown
in Figure 6A. Simulation of respiratory sinus arrhythmia and
corresponding propagation in the 2D whole heart model is given
in Supplementary Material Video 2.

Sinus Pause
Due to its higher firing rate, SAN occupies the privileged position
as the pacemaker of heart, though there are autorhythmic cells
in AVN and Purkinje network also. The automaticity of cells
in the AVN and Purkinje fibers is suppressed by the overdrive
mechanism (Issa et al., 2012). These cells are depolarized much
faster than their intrinsic rate as SAN drives them (Mangoni
and Nargeot, 2008). Because of this overdrive mechanism there
occurs a delay before these cells take up the role of pacemaker
of heart in the event of a missed impulse from the SAN. Sinus
node dysfunction (SND) is a common disorder that can range
from sinus bradycardia to sinus arrest (complete standstill of
SAN function). Usually this is diagnosed in elderly patients and
the symptoms can be shortness of breath, palpitations, or syncope
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FIGURE 6 | (A) Respiratory sinus arrhythmia. SA nodal frequency is modulated by the respiratory rhythm (0.2Hz). (B) Junctional Rhythm with no P wave. SAN is

dysfunctional and the atrial cells are not stimulated. A lower rate rhythm produced from the AV junction stimulates the ventricles and QRS complex is produced.

(Gregoratos, 2003). The causes of SND can be intrinsic, where
the electrophysiological properties of SA nodal cells are altered,
or extrinsic, where disturbances in the ANS which controls
the pacing properties play a role (Strauss et al., 1976; Jordan
et al., 1978), as well as antiarrhythmic drugs (Yeh et al., 1991;
Mallet, 2004). In most cases of SND, atrial tachyarrhythmias are
associated with SND and it is not clear whether atrial substrate
remodeling near the SA nodal region can down regulate the
channel properties so as to reduce the automaticity of SA nodal
cells (Chang et al., 2013).

Sinus pause or arrest is mainly caused by the SND in which
the excitability functions of the SA nodal cells are suppressed.
The ion channels involved in the pacemaking property of
the SA nodal cells can be affected by genetic defects, aging,
medication, and influence of ANS. SA nodal remodeling also
happens due to atrial tachyarrhythmia, surgical trauma, and
myocardial infarction (Wolbrette and Naccarelli, 1998). Sinus
pause is manifested in ECG as missing ECGwaves, which can last
for< 1 s or for longer durations leading to weakness and syncope.
If the pause exceeds 3 s, the patient needs pacemaker support
and it comes under class IIa recommendation for permanent
pacing under SND (Epstein et al., 2008). After sinus pause, a
junctional or ventricular escape rhythm may occur. Sinus pause,
if asymptomatic, can be ignored but if symptomatic it may
be because of the degeneration of SA nodal cells, myocardial
infarction, antiarrhythmic drugs (beta-blockers calcium channel
blockers, digitalis), high blood potassium (hyperkalemia), low-
level thyroid hormone in the blood (hypothyroidism), sleep
apnea and thorough investigation is required to find the exact
cause (Gregoratos, 2003).

In the FN model the excitable parameter veq determines
whether the cell is in excitable or autorhythmic mode

(Equation 4). If veq is greater than 0.16 the cell behaves as an
oscillatory cell producing its own oscillations and when veq is
less than 0.16 it requires external stimulation to produce an
action potential. In sinus pause the excitable parameter veq is
reduced below 0.16 for duration of 0.3 s by modulating veq by
a square wave of 0.15Hz. This can simulate sinus pause in the
WHM2D as shown in Figure 7. Simulation of sinus pause and
corresponding propagation in the 2D whole heart model is given
in Supplementary Material Video 3.

AV Conduction Blocks
Atrio-ventricular (AV) node is the only electrical connection
between the atria and ventricles through which the impulse
from the atria can pass into the ventricles (Miyazaki, 2014).
Anatomical mapping of the conduction system by Tawara (2000)
in various mammalian heart studies revealed the exact position
of the AVN, bundle of His and its associated branching. Tawara
(2000) described AVN as a compact spindle shaped network of
cells arranged in a node which is connected to the His bundle
at the descending end, while the other end is connected to the
atrial musculature. AV node consists of three regions, atrio-nodal
(AN) region, which is connected to the atrial musculature, central
nodal (N) region and Nodal-His bundle (NH) region, which
connects to the His bundle. N and NH regions contain ovoid cells
which possess automaticity and allow the AVN to be the backup
pacemaker of the heart when SA node fails to produce impulses at
the normal heart rate. As per the microelectrode recordings from
the rabbit AV junction, APD increases from the AN to the NH
region (Anderson et al., 1974).

Physiologically, AV junction plays important roles in the
normal functioning of the heart. It works as a delay unit, where
the impulse is delayed before reaching the ventricles allowing
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FIGURE 7 | Sinus Pause. Figures in the top row denote ECG waveforms, while the images in the bottom row represent the corresponding state of activation of the

2DWH model. (A) The red dot shown in the ECG waveform indicates the paused state of the model depicted in the bottom row. The corresponding image below

shows that there is no activity in the model (B) after sinus pause a junctional escape occurs which drives the ventricles in the anterograde pathway and the

atriainretrograde pathway. Since atrial activity is occurring during ventricular depolarization, P wave is obscured in QRS complex. (C) After junctional escape a normal

sinus rhythm originates from the SAN.

enough time for the ventricles to get filled before the systole
ends. In the absence of SA nodal impulse, the AVN takes up
the pacemaker function of the heart, providing rhythmic pulses
at the rate of 60 BPM. In case of atrial fibrillation, atrial flutter,
or supraventricular tachycardia, where the atrial contractions
are at a much higher rate (> 150 BPM) than normal, AVN
acts as a filter providing concealed conduction where only few
impulses are passed into the ventricles, preventing ventricles
from beating at the same rate as atria. In case of abnormal
function, AVN produces different degrees and types of AV block
and AVN re-entrant tachycardia (AVNRT). Re-entry circuitry is
mainly because of the existence of a slow and a fast pathway of
conduction in the AV junction. PR interval in the ECG signal
denotes the delay between the atrial and ventricular contractions.
If it exceeds 0.2 s the condition is termed as first degree block
and it prolongs further for second degree blocks with dropped
beats. In second degree, there are two subtypes of blocks: type
1 (Wenckebach) and type II (Mobitz). Third degree blocks are
characterized by total blockage of impulse from atria to ventricles.
Many functional and mathematical models (Heethaar et al.,
1973; Jørgensen et al., 2002; Inada et al., 2009; Climent et al.,
2011) have been proposed to explain the concealed conduction
in AVN. But computational models that describe the structure
and electrophysiological properties of these cells, and explain the
contributions of AVN to the ECG signal are nearly absent.

First degree block
The delay between the atrial and ventricular contraction is
assessed by the PR interval of the ECG waveform. P wave
is produced by the spread of impulse throughout the atrial
myocardium. The cardiac impulse is delayed in the AVN and
bundle of His before reaching the ventricular musculature. PR

interval is contributed by conduction time from sinus node to
ventricles which includes the time taken for the spread of impulse
in the atria, the delay in AVN and bundle of His. In normal
functioning of the heart, PR interval is between 0.12 and 0.2
s. If the PR interval is greater than 0.2 s with no failure in AV
conduction, the condition is termed as first degree AV block
(Barold et al., 2006). This prolongation of the PR interval is
fixed throughout the ECG recordings. The causes for first degree
AV block with normal QRS complex can be conduction delay
in the intra-atrial pathways, AVN, bundle of His, or in Infra-
Hisian system, but in the majority of cases it results from atrial
or AVN conduction delay (Graybiel et al., 1944). The word
“block” is a misnomer since there is only a delay in conduction,
and not a total block. This condition is therefore considered
to be a benign condition if PR interval is <0.03 s (Perlman
et al., 1971). But over long periods it has been shown that first
degree block can be a sign of clinical prognosis (Holmqvist and
Daubert, 2013) as different studies proved that it can lead to AF
or higher degrees of block. Patients with PR interval >0.3 s with
a hemodynamic compromise is recommended for pacemaker
implantation (Epstein et al., 2008; Barold and Herweg, 2012).
Electrophysiological recording of ventricular pulses after atrial
stimulations show that first degree block is mainly due to
conduction delay in AVN (Damato et al., 1969; Rosen et al.,
1971).

In the WHM2D, AVN is composed of two types of cells,
oscillatory cells that pace at 60 BPM which set the pace in the
absence of SA nodal pacemakingaction and excitable cells. The
APD of the AV nodal cells has a positive gradientfrom the AN
region to the NH region (Anderson et al., 1974). The GJC of
AV cells to the neighboring atrial musculature is made low to
make sure that a delay is produced in the AVN and conduction
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is not affected by the stimulation from adjacent atrial myocytes.
Different types of conduction blocks can occur in AVN: first
degree block where the PR interval is greater than 0.2 s, second
degree block (of two types: type I and type II) and third degree
block. Delay between atrial and ventricular contractions can be
varied by varying the GJC in the AV nodal and bundle of His
cells. Physiologically the absence of connexin40 is reported to
cause conduction blocks in AN node and bundle of His (Jansen
et al., 2010). The variation of GJC in AVN and bundle of His and
the corresponding change in AV delay (PR interval) in shown in
the Table 2. Compared to reduction of GJC in AVN, reduction
in bundle of His is found to cause more variations in PR interval
(Schrickel et al., 2009).

Second degree block
Second degree AV block can be classified into Mobitz types I
and II. Mobitz type I is also called as Wenckebach block which
is characterized by progressive PR prolongation, finally resulting
in a missed beat. The ratio of original and conducted beats
is X:X-1 i.e., out of X atrial contractions (P waves) only X-
1 ventricular contractions (QRS complexes) occur. PR interval
remains constant in Mobitz type II block (Zipes, 1979) and the
ratio of atrial pulses to conducted beats from atria is X:1 i.e., out of
X atrial contractions (P waves) only one ventricular contraction
(QRS complexes) occurs. In both conditions, atrial impulse is
blocked in different ratios. If the condition is prolonged for a
longer duration finally it can result in third degree block where
the atrial pulses are totally blocked from entering the ventricular
conduction system.

Wenckebach phenomenon (Mobitz Type I). Second degree type
1 AV block was observed by Karel F. Wenckebach in 1899
from the radial pulse even before the advent of ECG or the
discovery of SAN and AVN (Upshaw and Silverman, 1999).
Type 1 second degree block, which is termed as Wenckebach
block, can occur at any anatomical junction in the cardiac
musculature where there is delay normally present or potentially
possible (Decherd and Ruskin, 1946). It can occur at any of
the sites like sino-atrial junction situated at the exit site of
the sinus impulse from SAN to the atrium, atrio-ventricular
junction (within AVN, within bundle branch, bundle-Purkinje

TABLE 2 | PR interval variations corresponding to the variations in GJC

[micro Siemens (µS)] among AV nodal cells and bundle of His cells.

Gap Junction Gap Junction conductance PR interval (s)

conductance in AVN (µS) in bundle of His (µS)

0.09 0.9 0.18

0.08 0.9 0.183

0.07 0.9 0.186

0.06 0.9 0.202

0.05 0.9 0.226

0.04 0.9 0.237

0.04 0.6 0.279

0.01 0.5 0.307

junction), ectopic atrial junction, ectopic ventricular junction
(Schamroth, 1967). Irrespective of the site of its occurrence the
fundamental characteristics of Wenckebach phenomenon are
typical. It is manifested in ECG as the progressive prolongation
of AV conduction time and is terminated by a P wave
blocked from entering the ventricles. Clinical reasons for
Wenckebach block are digitalis poisoning, infective myocarditis,
myocardial infarction, or lesions in the conduction system
(Decherd and Ruskin, 1946) when it is occurs at the normal
sinus rate. Wenckebach phenomenon is also considered as
a protective homeostatic mechanism as it converts the rapid
supraventricular rates into safe and physiologically effective
ventricular contraction rates (Dubin, 2003). It is also produced
when right atrium is stimulated at rates much greater than SA
nodal rates (Lister et al., 1965; Damato et al., 1972).

Several hypotheses have been proffered to explain
Wenckebach periodicity in AVN. Hoffman’s hypothesis
(Hoffman et al., 1959) of decremented conduction states that
decreased ionic current causes action potential to be delayed
progressively along the path of conduction. Rosenblueth (1958)
states that the discrete conduction delay which develops at the
junction between cells in the N region and NH cells forms the
basis of Wenckebach periodicity.

Wenckebach periodicity can happen because of reduced
conductivity, changes in the refractory period of the adjacent
cells, high atrial pacing rates, change in the excitability of the
nodal cells due to channel dysfunctions, medication, or increased
vagal activity (Zipes et al., 1983). Because of any of these factors
if AP of the preceding cell encroaches into the refractory period
of the succeeding AV nodal cells it can cause Wenckebach
periodicity. Most of the causes for Wenckebach periodicity are
reversible. If the condition is asymptomatic and does not cause
a hemodynamic compromise, no treatment is required; but if
symptomatic, treatment, including pacing, is required (Epstein
et al., 2008).

In Figure 8, Wenckebach periodicity is explained on the
lines proposed by Hoffman’s hypothesis (Hoffman et al., 1959)
of decremented conduction. If the second stimulus occurs
within the relative refractory period (RRP) of the preceding
action potential, because of any of the aforementioned reasons,
Wenckebach periodicity occurs. When AV nodal cells are
stimulated in RRP, the cells would not have regained the normal
resting condition. Action potential produced at this state has the
following characteristics: it has slope and peak lesser and the
APD is also increased (Zipes et al., 1983; Alex et al., 2006), and
the conduction velocity is lower. This causes the third stimulus
to strike earlier on the down slope of the AP still in RRP and
produces a weaker potential with more extended APD than the
second one. This causes the fourth stimulus to arrive during the
early refractory period (ERP) which does not produce any AP
causing a block at this point. This explains the blockage of a
beat with periodicity of 4:3, i.e., out of four pulses only three are
passed through. Clinical studies reveal that there exist a number
of factors that produce AV conduction sequences inWenckebach
block. They are duration of total refractoriness (ERP + RRP),
duration of RRP, contour of the recovery curve, conduction time
after complete recovery, atrial rate (P-P interval) (Decherd and
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FIGURE 8 | (I) Theory of Wenckebach mechanism (4:3): Stimulus 1 causes a normal action potential (AP), stimulus 2 which falls within the RRP (Relative refractory

period) causes reduction in the amplitude, reduction in the slope of the upstroke and increase in the duration of AP. Stimulus 3 also falls in the early RRP which

produces a further weaker signal with longer APD and this causes stimulus 4 to fall within the ERP (early refractory period) where the cells do not respond to the

stimulus. (II) (A) Atrial pulses; (B–D) Shows gradual reduction in the amplitude of the third signal due to decrease in gap junction conductance and finally in (E) fourth

pulse failed to stimulate the ventricular myocardial cells causing Wenckebach block 4:3. (F) 4:3 Wenckebach block.

Ruskin, 1946). Sino-atrial Wenckebach second degree block is
also reported and studied to assess its prognostic value. It has
been considered as a precursor for the development of high
degree sinus exit block (Dąbrowski et al., 2007).

The same phenomenon can occur at high atrial rates and
supraventricular tachyarrhythmia also.

In both cases atrial rate is high and this causes a phase shift
to be produced among adjacent cells at any anatomic junction
causing the impulse to fall in the RRP and then into the ERP

causing a pulse to be blocked from reaching the ventricles. But
if the phase variations induced are higher because of higher
atrial rate and poor coupling across the junctions, it causes type
II block causing the pulse to be passed at the ratio X:1. The
above conditions are considered as a homeostatic protection
mechanism of the AVN which occurs at higher atrial firing rates.
But if Wenckebach phenomenon occurs at the normal pacing
rates this is mainly because of the increase in APD due to the
pathology of the AV nodal cells.
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In WHM2D, Wenckebach periodicity is obtained by varying
the excitability and refractory period of the AV nodal cells. The
same phenomenon can occur by varying these parameters for
bundle fibers and Purkinje fibers. By varying these parameters
specific to the cell with moderate GJC (if strong coupling exists
the effect of these variations are not seen), it introduces phase
shift in the adjacent cells as the rate of recovery of these
cells are different. This causes a reduction in the conduction
time and the refractory period is prolonged. When one of
the atrial pulses falls in the ERP of the cell it results in a
block. The ratio (3:2, 4:3, or 5:4) depends on the phase shift
induced by the variation in the excitability and difference in the
intrinsic frequency of oscillations of the cells at the junction.
In the WHM2D the Wenckebach periodicity is observed in
different instances of simulation. It is observed when the excitable
parameter veq is varied for the adjacent cells in the cardiac
conduction system, among the cells in the AVN (at the junction
between the oscillatory and excitable cells in the AVN), at the
junction between AVN and bundle of His and at the junction
between the bundle of His and Purkinje cells. It is also observed
when the APD of these cells is varied in the junction between
two different types of cells, by varying the GJC across the
cells while simulating RSA and WPW syndrome. These small
changes in APD, GJC, and frequency of oscillations induce

phase variations among adjacent oscillators and Wenckebach
periodicity is observed (Figure 9). Simulation of Wenckebach
block (4:3) and corresponding propagation in the 2D whole heart
model is given in Supplementary Material Video 4.

Mobitz Type II block. Even though Mobitz in 1924 classified
second degree AV block into type I and type II based on the PR
interval before and after the blocked P wave, still the distinction
between the genesis and prognosis of these two type blocks is
not very clear (Langendorf and Pick, 1968; Barold and Hayes,
2001). Type I block, where progressive PR prolongation ends up
in a blocked P wave, is assumed to be a functional abnormality
and considered reversible (Silverman et al., 2004). Type II block
is characterized by constant PR interval with sudden dropped
beats in the ratio of X:1, where X is the number of atrial
pulses and corresponding to X pulses only one ventricular
complex is transmitted. This is assumed to be caused because
of structural abnormality and generally believed to occur below
AVN (Silverman et al., 2004). But some studies show that it can
occur above AVN also (Spear and Moore, 1971), and in such
cases QRS complex is narrow (Issa et al., 2012). Compared to
Type I, Type II requires attention, and mostly recommended
for pacemaker as the structural changes that produced block are
irreversible (Epstein et al., 2008).

FIGURE 9 | Second Degree block Type 1 (Wenckebach block) (A) 3:2 block with normal heart rate, (B) 4:3, (C) 3:2 with high atrial rate, (D) varying AV

block 3:2,2:1, (E) 5:4, (F) 9:8.
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FIGURE 10 | Second Degree Type II Block (Mobitz) (A) Type II (2:1) with atrial rate 79BPM, (B) Type 2 (2:1) with atrial rate 87 BPM, (C) Type 2 (2:1) with

atrial rate 124BPM, (D) Type 2 (3:1) with atrial rate 98BPM, (E) Type 2 (3:1) with atrial rate 115BPM, (F) Type 2 (4:1) with atrial rate 98BPM, (G) Type 2

(4:1) with atrial rate 122BPM, (H) Type 2 (4:1) with atrial rate 128BPM.

FIGURE 11 | Second degree block (A) 2:1 block, (B) Wenckebach type I (3:2) block, (C) Mobitz Type II block.

Mobitz Type II block is simulated in the model by varying
the GJC across junction between two different types of cells.
Type II blocks of different percentages are obtained by decreasing
GJC at the junction between AV nodal cells and bundle cells
or bundle cells and Purkinje cells or in the bundle cells. In

this case uncoupling among the cells is done by decreasing
the conductance value. Simulation of second degree type II
(Mobitz) block and corresponding propagation in the 2D whole
heart model is given in Supplementary MaterialVideo 5. Various
percentages of second degree type II block is shown in Figure 10.
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Figure 11 shows the spread of impulse corresponding to 2:1
block, Type I, and Type II second degree blocks.

Three oscillator model
To have an easy understanding of the difference between Type
I and Type II second degree blocks, we also consider a simple a
three oscillator model. Three Fitzhugh-Nagumo (FN) oscillators,
representing SAN, AVN, and His bundle cells are connected
bidirectionally with GJC as shown in Figure 12. In Table 3 the
values used for coupling the oscillators, excitability parameter
associated with each oscillator and frequencies of oscillation
are given. The oscillators are set to frequencies of higher
atrial rate and normal atrial rate. In both the cases, second
degree blocks are observed for varying values of excitability
and coupling strength. In a three oscillator model, it is easy
to pinpoint the parameters which actually cause the block.
The first section shows high atrial rate and Wenckebach
periodicity is observed by varying the excitability parameter
of the bundle of His cells. As the excitability is reduced
the percentage of block is also increased. Type II block is
obtained by varying the coupling strength. As the coupling
strength is decreased higher percentage of block is obtained. This
concept complies with the physiological data, as Wenckebach
periodicity is not a structural abnormality and can be caused
by some temporary phenomenon that varies the excitability of
the cells. But Type II can be related to structural changes like

FIGURE 12 | Three oscillator model.

uncoupling incase of infarctions and they need more attention
than type I block (Silverman et al., 2004). The same concept
is implemented in the 2DWH model to reproduce Type I and
Type II blocks.

Because of the variations in intrinsic factors like reduction in
GJC or the variation in the refractory period of the adjacent cells
causes the impulse to fall in the ERP and can result in a block.
In addition to this when the atrial rate is too high also impulses
are conducted in the ratio X:1, where X is the number of atrial
pulses and corresponding to X atrial contractions, ventricular
contraction takes place only once.

f (v1) = v1(v1− a1)(1− v1)

dv1/dt = f (v1+ veq1)− f (veq1)− w1+ γ12(v2− v1)

dw1/dt = b1(v1− cw1)

f (v2) = v2(v2− a2)(1− v2)

dv2/dt = f (v2+ veq2)− f (veq2)− w2+ γ21(v1− v2)

+ γ23(v3− v2)

dw2/dt = b2(v2− cw2)

f (v3) = v3(v3− a3)(1− v3)

dv3/dt = f (v3+ veq3)− f (veq3)− w3+ γ32(v2− v3)

dw3/dt = b3(v3− cw3) (12)

where veq1 denotes the excitability of SA nodal cells
veq2 denotes the excitability of AV nodal cells
veq3 denotes the excitability of bundle of His cells
γ12 Coupling strength from SAN to AVN
γ21 Coupling strength from AVN to SAN
γ23 Coupling strength from AVNtobundle of His cells
γ32 Coupling strength from bundle of His cells to AVN

The values of the excitability and coupling strength for various
conditions are given in Table 3.

TABLE 3 | Three oscillator model showing parameters selected for Type I and Type II (Second Degree) blocks.

BPM (b) Excitability (Veq) Coupling strength (γ ) Phenomena observed

SAN AVN Bundle of His SAN AVN Bundle of His SAN AVN Bundle of His
veq1 veq2 veq3 γ 12 γ 32

γ 21 γ 23

182 70 40 0.23 0.12 0.23 0.003 0.04. 0.005 0.05 Wenckebach (4:3)

0.23 0.12 0.2 0.003 0.04 0.005 0.05 Wenckebach (3:2)

0.23 0.12 0.16 0.003 0.04 0.005 0.05 Wenckebach (2:1)

0.23 0.12 0.12 0.003 0.04 0.02 0.05 Mobitz (3:1)

0.23 0.12 0.12 0.003 0.04 0.02 0.03 Mobitz (4:1)

0.23 0.12 0.12 0.003 0.04 0.02 0.02 Mobitz (6:1)

0.23 0.12 0.12 0.003 0.04 0.02 0.01 Mobitz (8:1)

76 56 34 0.23 0.13 0.2 0.004 0.04 0.005 0.05 Wenckebach (4:3)

0.23 0.13 0.18 0.004 0.04 0.005 0.05 Wenckebach (3:2)

0.23 0.13 0.14 0.004 0.04 0.005 0.04 Wenckebach (2:1)

0.23 0.13 0.12 0.004 0.04 0.005 0.007 Mobitz (5:1)

0.23 0.13 0.12 0.004 0.04 0.005 0.01 Mobitz (4:1)

0.23 0.13 0.12 0.004 0.04 0.005 0.02 Mobitz (3:1)

The bundle of His is a collection of heart muscle cells specialized for electrical conduction that transmits the electrical impulses from the AV node.
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FIGURE 13 | 2:1 Block (A) 2:1 Mobitz Type II Block (normal atrial rate 69BPM), (B) 3:1 Mobitz Type II Block obtained by increasing the atrial rate

(105BPM) with the same GJC parameters, (C) 2:1 Mobitz Type I (Wenckebach) Block atrial rate 78BPM) (B) 3:2 Mobitz Type II (Wenckebach) Block

obtained by increasing the atrial rate (117 BPM) with the same parameters.

2:1 AV block
Second degree block is classified into two types, type I (X:X-
1) and type II (X:1). 2:1 (50%) block without impaired
hemodynamics may belong to type I which can be a functional
abnormality and does not require treatment. But 2:1 type II
block can be a precursor of complete block as it results from
structural impairment and may require immediate attention.
Exercise testing is done to differentiate these two types as exercise
increases the sympathetic drive and reduces the vagal tone (Issa
et al., 2012). As a result, if the block is Wenckebach type (type I),
conduction increases to 3:2 (67%) or 4:3 (75%) or even higher.
But the block existing is type II, conduction decreases to 3:1
(33%) or 4:1 (25%) or even to lower rates.

In the WHM2D the same phenomenon is observed. When
ECG is simulated by reduced GJC (0.1 µS) among the bundle
cells, 2:1 block is observed with normal atrial rate (69 BPM)
and when the atrial rate is increased to 105 BPM, 3:1 block is
observed. and it was confirmed that the block present belongs
to Mobitz type II. In another case of 2:1 block as observed with
high conductance among His bindle cells (0.9 µS) and with atrial
rate 78 BPM. With the same parameters atrial rate is increased
to 117 BPM and 3:2 block is obtained confirming that the block
present in the model is type I Wenckebach block (Figure 13).

Third degree block
Complete AV block occurs when atrial pulses are blocked from
entering the ventricles. This can happen at different anatomic
areas: at the AV node, bundle, or bundle branches. In complete
(third degree) block AV dissociation occurs and therefore both
atria and ventricles contract asynchronously. Atrial contractions
continue to occur at the normal rate. However, since pacemaker
cells exist in the ventricular system also, the ventricles start pacing
at their own rhythm (30-40 BPM). PR interval appears varying
in the ECG signal recorded as the synchronism is lost between
atria and ventricles, but PP interval and RR interval will remain
fixed. If the complete block exists for a few days, with reduction

in cardiac output, it is recommended for Class I pacemaker
implantation (Epstein et al., 2008). The causes of third degree
block can be myocardial infarction, calcification of aortic valve,
infections, neuromuscular diseases, collagen vascular diseases,
congenital defects in conduction system and drugs like digoxin,
amiodarone, verapamil (Khan, 2005). It also occurs when surgical
correction is done for congenital heart problems (Gross et al.,
2006).

In the model, for simulating complete heart block condition,
GJC is made very low at the junction between AVN and bundle
of His or among the bundle cells. Atrial impulses are produced at
the normal rate. If the block is at the AV junction, escape impulses
are produced from the His bundle cells (60-40 BPM) or if the
block is at the bundle cells, ventricles contract corresponding to
impulses from the Purkinje system (40-20 BPM) (Figure 14).

Wolf-Parkinson-White (WPW) Syndrome
In normal functioning of the heart, impulses from atria are
passed through AVN, the only electrical connection to the
ventricles. But in pre-excitation syndromes, bypass tracts (BT)
or accessory pathways emerge between atria and ventricles, in
addition to AVN. Because of BTs, ventricles will be excited
before impulses from atria reach ventricles through AVN, as
there is no conduction delay in the accessory pathway. BTs are
formed as remnants of continuity between atrial and ventricular
myocardium during the embryological development of AV
annuli (Sethi et al., 2007; Issa et al., 2012). Even though this
anomaly is present at birth, the onset of arrhythmic conditions
varies and except for the appearance of delta wave and a short
PR interval in the ECG, some people do not present any
symptoms. In that case it is known as WPW pattern, and if this
bypass tract causes supraventricular tachyarrhythmia because of
reentry into the atria, then it is termed as WPW syndrome
(Deal et al., 1985). BTs are thin strands of working myocardial
cells which allow bidirectional (anterograde and retrograde) and
unidirectional (anterograde or retrograde) conduction (Issa et al.,
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FIGURE 14 | Complete heart block (A) Atrial activity fails to stimulate ventricular activity as the GJC at the junction between the AVN and bundle cells

is low (1pS), (B) As the co-ordination is lost ventricles are firing its own, (C) Both atrial and ventricular contractions are happening simultaneously too.

FIGURE 15 | Wolf Parkinson White syndrome (A) Anterograde conduction through the bypass tract triggers ventricles earlier (B) Retrograde

conduction though the bundle fibers and AV node causes retriggering of the atria. (C) Retriggering in atria causes tachyarrhythmia.

2012). Other arrhythmias like atrial tachycardia, atrial fibrillation
and AVN re-entry tachycardia (AVNRT) can coexist with WPW
syndrome. Electrophysiological mapping is done to distinguish
WPW syndrome with AVNRT. When the refractory period of
the AVN, bundle cells, as well as that of the cells in the accessory
path way, is reduced, it results in atrial fibrillation by continuous
triggering of the atria by anterograde conduction through
the accessory pathway and retrograde conduction through the
bundle fibers and AVN. When the cells are repetitively triggered

causing multiple conduction into the ventricles in case of
atrial tachyarrhythmia, it can also trigger ventricular fibrillation
(Douglas and Zipes, 2009). When the accessory pathway does not
limit the number of impulses triggering the ventricles from the
atria due to atrial fibrillation, patients with WPW syndrome may
develop ventricular fibrillation (VF) which can result in sudden
cardiac death (SCD) (Prystowsky et al., 1987). For patients with
WPW syndrome, electrophysiological testing is done to assess
the refractory period of the myocardial cells in the accessory
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pathway. If they are shorter to avoid the risk of development of
VF and SCD, catheter ablation of AP is done with radiofrequency
current (Kuck and Schlüter, 1991; Kuck et al., 1991).

In WHM2D, an accessory pathway is introduced connecting
the atria to the bundle of His through ventricular musculature,
bypassing the AVN. The cells in the accessory pathway are
implemented by the FN two-variable model in the excitable
mode. High GJC is assigned to the cells in the path so that the
accessory pathway has faster conduction compared to than that
of AVN. Because of high GJC, impulses through the accessory
path reach ventricles faster than through the AVN. When the
refractory period of the cells in the accessory pathway is longer,
ECG appears normal except for the small change in the PR
interval and the appearance of a delta wave in the onset of
the QRS complex. When the refractory period is made shorter
for the cells in the accessory pathway and AVN, impulses that
propagate via retrograde conduction through bundle fibers can
reach AVN causing retriggering. This further triggers the cells
in the accessory pathway as they can also be retriggered by the
fast pulses from atria and the process goes on (Figure 15). This
can cause the onset of atrial tachyarrhythmia. If this condition
prolongs for longer durations, it can cause VF (Prystowsky et al.,
1987). Simulation of WPW pattern and WPW syndrome and
corresponding propagation in the 2D whole heart model is given
in Supplementary Material Video 6 and Video 7.

CONCLUSION

Computational modeling at the whole heart level with ECG
simulation can give powerful insights into understanding of the
electrophysiological function of heart in normal and arrhythmic
conditions. Computational modeling of the electrical activity
of heart presents several key challenges: the complex 3D
geometry of heart, spatial representation at the resolution
of the heart, heterogeneity of the cells (autorhythmic cells
and excitable cells), heterogeneity in action potential shape
and duration, non-linearity of the ODE describing the ionic
currents and the number of variables involved, stiffness of the
membrane dynamics (time scale different for different phases
of the action potential—fast upstroke (phase 1) and slowly
varying plateau (phase 2) and repolarization process (phase 3),
rotational anisotropy of fiber orientation in different regions,
inhomogeneity of gap junction conductance in different regions
etc. The complexity of the model and the computational load
can become impractically high if all these factors are taken
into consideration while modeling. The choice of the modeling
approach, dimension and structure of the model should be
determined by the purpose of the model, level of quantitative
details required and should involve an intelligent balance
between the computational load and modeling objectives. The
simplified approach used in the model is sufficient to capture the
cell dynamics and able to explain many of the fatal and non-fatal
arrhythmias.

Very few computational models correlate with ECG and
arrhythmias. The one dimensional model for AV conduction
using rabbit cell model explains fast and slow conduction in

AV node and the filtering properties of AVN in case of atrial
fibrillation (Inada et al., 2009). But the arrhythmic conditions
are not explained in the context of whole heart activity. The
2DWH model explains all conduction abnormalities and the
filtering properties of AV node using reduced models with APD
variations and GJ coupling. The bidomain model of ventricles
developed by Boulakia et al simulates 12 lead ECG with APD
heterogeneity and anisotropy of muscle fibers (Boulakia et al.,
2010). Since atria are not included in the model, P wave is not
present and the model is stimulated by external activation signal.
Even though there is evidence of heterogeneity throughout the
ventricular myocardium (Noble and Cohen, 1978; Antzelevitch,
2001), APD heterogeneity (transmural) is assumed only for left
ventricles. The only arrhythmia that was explained by the model
is bundle blocks in both left and right branches. 2DWH model
explains cardiac activity at the whole heart level and all the
intrinsic properties of the cardiac electrical activity is taken into
account. The autorhythmic cells in the specialized conductive
system takes care of the rhythmic activity of the cardiac cycle, GJ
coupling, and APD heterogeneity modulates the spread of AP in
the myocardium and variation in the APD and poor GJ coupling
results in arrhythmia conditions.

Source model based interactive software ECGSIM, which
simulates ECG signal for different arrhythmic conditions, does
not consider the GJC for the propagation of signal in the
myocardium. Various intervals and segments of ECG in normal
and abnormal conditions cannot be correlated with GJC or APD
heterogeneity (van Oosterom and Oostendorp, 2004; van Dam
et al., 2010; van Oosterom et al., 2011).

There are several issues associated with the reaction diffusion
systems which are used to evaluate the electrical activity
using bidomain or monodomain approaches. They are the
complexity of the domain (geometric complexity of heart), spatial
representation at the resolution of heart which determines the
spatial discretization process (usually cellular automata is used)
and stiffness of the membrane dynamics (which limits the step
size to be very small). Also the conductivity tensor used in the
diffusion equation depends on the spatial position, rotational
anisotropy and inhomogeneity of electrical conductivities
present in the medium (Ying, 2005). This creates problems in
the computation of the bidomain model as the solutions may
not converge if the anisotropy is strong and the conductivity
tensor is rapidly changing. Conductivity tensor is assumed to
be homogeneous in the model and the individual distribution
of GJC cannot be taken into account. Enormous computational
load is required to generate realistic ECG waveforms in normal
and arrhythmia conditions using bidomain approaches as
homogenization is assumed to the discrete nature of cardiac cells
andmost of the arrhythmias are generated at cell level (changes in
frequency of autorhythmic cells, APD variations) or intercellular
interactions (variation on anisotropy, GJC).

The proposed WHM2D can be used to analyze the generation
of arrhythmias, both fatal and non-fatal in relation to the
ECG signal generated. Arrhythmias are classified based on
the changes in the ECG signal. It is a standard approach
for assessing the cardiac function. Based on the experimental
studies on several animal species the spread of impulse in the
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normal propagation of ECG and causes of each arrhythmia are
understood. In the 2D model the relationship of each type of
arrhythmia to the parameters (GJC, APD, rate of oscillation
of SA Node) is demonstrated in detail. In the arrhythmias
tachycardia, bradycardia, and respiratory sinus arrhythmia the
rate of the oscillators in the conduction system are varied
according to the control factor from ANS. In sinus pause, the
temporary impairment of SA nodal cells causes the electrical
activity to come to stand still for a few seconds. When the
causes are withdrawn recovery occurs with a junctional escape
and thereafter normal activity continues. Atrio-ventricular
conduction blocks are also simulated with a clear discussion
of the underlying mechanism. Simulated activation sequence
of WPW syndrome shows the conduction through accessory
pathways and how atrial fibrillation is triggered when APD of
these cells become shorter.

Use of computational models gives more insight into the
mechanisms by which arrhythmias are generated. Ideally, a
model should as simple as possible to explain the complex
dynamics of the heart. This simple 2D model can explain many
of the complex arrhythmia microscopically as we can see the
cellular dynamics and macroscopically as changes in ECG and
2D propagation (Balakrishnan et al., 2014). In comparison to
the available computational models with ECG generation the
proposed WHM2D can simulate many more fatal and non-fatal
arrhythmias with less computational complexity. It takes only
30min of computation time for simulating 1 s of cardiac activity
in a desktop machine with i5 Intel processor @ 2.8 GHz. Most
of the cardiac models are based on ionic models and realistic
geometries at the resolution of normal heart. They take too
much time, and extensive hardware and software resources for
simulating few seconds of cardiac activity. Cardiac arrhythmia
research project (CARP) takes 6.4 h for simulating 200ms of
cardiac activity in a 64 processor machine (Mitchell, 2010).
Many architectures based on GPU are developed to reduce the
computation time required for simulating bidomain equations
(Bordas et al., 2009; Yu et al., 2010).

Limitations of the model: Ideally a whole-heart model must be
a 3D model since the real heart is three-dimensional. Therefore,
2D whole heart model carries certain inherent limitations. One
feature of activation propagation dynamics possible in a 3D
model—a propagating wave that can circulate around the heart—
is inherently disallowed in a 2D model. But the objective of the
present study is to explore how much of cardiac dynamics can
be captured with a simple 2D model. The sizes of the atria and
ventricular chambers in the model are not exactly to scale of
the real heart. In the future, some of the anatomical features
of the WHM2D (location of SA node and AV node, the exact
geometry of the Purkinje network etc) can be formally optimized
to achieve a closer fit to the ECGwaveform. Uniform connectivity
is assumed for every cell in the model (each cell is connected to
its adjacent eight neighbors through GJC which varies according
to the type of the cell). However, the number of neighbors of a
cell depends on the cell type in the real heart. Since the model
uses reduced two-variable cell models the ionic current variations
that underlie arrhythmogenesis cannot be taken into account.
But simplified whole heart models of the kind proposed here

are useful in providing valuable insights into cardiac dynamics.
They reveal the components that are crucial for achieving various
aspects of ECG waveform, distinguishing them from those that
are not indispensable.

Future work involves the study of pacing effects in the
model which can explain how the arrhythmia conditions can be
corrected by stimulating pulses. Another interest is to explain the
phenomenon of cardiac memory which is caused by the external
electrical activation and persists long after the presentation of
stimulus is terminated (Rosenbaum et al., 1982). Work has been
done to support the hypothesis that the adaptive dynamic cardiac
gap junction is responsible for the intriguing phenomenon of
cardiac memory using a 2D network (Chakravarthy and Ghosh,
1997; Krishnan et al., 2008; Sachdeva et al., 2010). We wish to
demonstrate cardiac memory in the WHM2D by incorporating
adaptive gap junctions and external pacing.
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Video 1 | Simulations of normal ECG from the 2DWH model. The generation

of ECG along with the propagation of cardiac impulse in the 2D model is shown.

Video 2 | The generation of respiratory sinus arrhythmia along with the

propagation of cardiac impulse in the 2D model is shown. Here the SA node

impulse generation is modulated with respiratory rhythm.

Video 3 | Sinus Pause occurs when the SA nodal pulses are not generated

for a short duration of time (greater than 2 s) The generation of sinus

pause along with the propagation of cardiac impulse in the 2D model is

shown.

Video 4 | Simulation of second degree type I (Wenckebach block) is shown

along with the propagation of cardiac impulse. 4:3 block is simulated by

varying gap junction conductance in AV node.

Video 5 | Simulation of second degree type II (Mobitz block) is shown

along with the propagation of cardiac impulse. 3:1 block is simulated by

decreasing gap junction conductance in His bundle.

Video 6 | Simulation of Wolf-Parkinson-White (WPW) pattern is shown

along with the propagation of cardiac impulse. An accessory pathway other

than AV node is created which bypasses AV node. Since the action potential

duration of cells in the bypass tract and AV node are longer retriggering is not

happening. Except for the small change in QRS ECG is normal.

Video 7 | Simulation of Wolf-Parkinson-White (WPW) syndrome is shown

along with the propagation of cardiac impulse. An accessory pathway other

than AV node is created which bypasses AV node. The action potential duration of

cells in the bypass tract and AV node are made shorter and retriggering occurs in

atria producing AVNRT.
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