
ORIGINAL RESEARCH
published: 15 December 2015

doi: 10.3389/fphys.2015.00375

Frontiers in Physiology | www.frontiersin.org 1 December 2015 | Volume 6 | Article 375

Edited by:

Gerald A. Meininger,

University of Missouri, USA

Reviewed by:

Michael A. Hill,

University of Missouri, USA

Luis Martinez-Lemus,

University of Missouri, USA

*Correspondence:

Arthur J. A. Leloup

arthur.leloup@uantwerpen.be;

Paul Fransen

paul.fransen@uantwerpen.be

Specialty section:

This article was submitted to

Vascular Physiology,

a section of the journal

Frontiers in Physiology

Received: 26 August 2015

Accepted: 23 November 2015

Published: 15 December 2015

Citation:

Leloup AJA, Van Hove CE, Heykers A,

Schrijvers DM, De Meyer GRY and

Fransen P (2015) Elastic and Muscular

Arteries Differ in Structure, Basal NO

Production and Voltage-Gated

Ca2+-Channels. Front. Physiol. 6:375.

doi: 10.3389/fphys.2015.00375

Elastic and Muscular Arteries Differ
in Structure, Basal NO Production
and Voltage-Gated Ca2+-Channels

Arthur J. A. Leloup 1*, Cor E. Van Hove 2, Annick Heykers 1, Dorien M. Schrijvers 1,

Guido R. Y. De Meyer 1 and Paul Fransen 1*

1 Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium,
2 Laboratory of Pharmacology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium

In the last decades, the search for mechanisms underlying progressive arterial stiffening

and for interventions to avoid or reverse this process has gained much attention. In

general, arterial stiffening displays regional variation and is, for example, during aging

more prominent in elastic than in muscular arteries. We hypothesize that besides

passive also active regulators of arterial compliance [i.e., endothelial and vascular smooth

muscle cell (VSMC) function] differ between these arteries. Hence, it is conceivable

that these vessel types will display different time frames of stiffening. To investigate

this hypothesis segments of muscular arteries such as femoral and mesenteric arteries

and elastic arteries such as the aorta and carotid artery were isolated from female

C57Bl6 mice (5–6 months of age, n = 8). Both microscopy and passive stretching

of the segments in a myograph confirmed that passive mechanical properties (elastin,

collagen) of elastic and muscular arteries were significantly different. Endothelial function,

more specifically basal nitric oxide (NO) efficacy, and VSMC function, more specifically

L-type voltage-gated Ca2+ channel (VGCC)-mediated contractions, were determined by

α1-adrenoceptor stimulation with phenylephrine (PE) and by gradual depolarization with

elevated extracellular K+ in the absence and presence of eNOS inhibition with L-NAME.

PE-mediated isometric contractions significantly increased after inhibition of NO release

with L-NAME in elastic, but not in muscular vessel segments. This high basal eNOS

activity in elastic vessels was also responsible for shifts of K+ concentration-contraction

curves to higher external K+. VGCC-mediated contractions were similarly affected by

depolarization with elevated K+ in muscular artery segments or in elastic artery segments

in the absence of basal NO. However, K+-induced contractions were inhibited by the

VGCC blocker diltiazem with significantly higher sensitivity in the muscular arteries,

suggestive of different populations of VGCC isoforms in both vessel types. The results

from the present study demonstrate that, besides passive arterial wall components, also

active functional components contribute to the heterogeneity of arterial compliance along

the vascular tree. This crucially facilitates the search for (patho) physiological mechanisms

and potential therapeutic targets to treat or reverse large artery stiffening as occurring in

aging-induced arterial stiffening.

Keywords: basal nitric oxide, voltage-gated calcium channels, elastic arteries, muscular arteries, arterial

compliance, arterial stiffness, diltiazem
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INTRODUCTION

Ventricular pressure waves travel along the arterial tree from
high-conductance, elastic arteries to high-resistance muscular
arterioles. Here, wave reflection leads to summation of forward-
and backward-traveling pressure waves with systolic blood
pressure increasing up to 14mm Hg between aortic root and
brachial artery (Safar, 2010). It is obvious that functional
and morphological properties of elastic and muscular arteries
differ considerably. Elastic arteries, such as the aorta and the
carotid artery, contain more elastin per unit area and have
important pulse-smoothing properties of the pressure wave
originating in the left ventricle. On the other hand, the muscular
arteries such as femoral or mesenteric arteries have a relatively
higher smooth muscle to elastin content, distribute the blood
according to moment-to-moment needs and are more capable of
vasoconstriction and dilation.

Progressive large artery stiffening with aging is the
predominant cause of increased pulse pressure, a marker of
cardiovascular risk in the general population (Benetos et al.,
1993) and a predictor of cardiovascular events (Mitchell et al.,
1997). Some studies have demonstrated that arterial stiffness
increases progressively with age only in the elastic arteries, but
not in muscular arteries (Laurent et al., 1994; Ruitenbeek et al.,
2008; Borlotti et al., 2012; Zhang et al., 2013). To date, this
interesting discrepancy is mainly attributed to the observation
that age-associated geometrical changes are not homogenous
along the arterial tree (Benetos et al., 1993) and that elastin
fragmentation occurs predominantly in the elastic arteries,
where the stretch amplitude is high (O’Rourke and Hashimoto,
2007). A study that compared geometrical and functional (i.e.,
stiffness) parameters in the carotid and radial arteries of young
and elderly subjects reported that, during aging, both vessel types
undergo structural remodeling (increased internal diameter
and intima-media thickness) while stiffening occurs only in the
elastic arteries (Bortolotto et al., 1999). This observation points
to different regulations of arterial compliance in different vessel
types and a complex interplay between large and small arteries in
the development of arterial stiffness and hypertension (Laurent
et al., 2009).

In the recent years, the evidence is growing that not only
passive components determine arterial compliance. Indeed,
intrinsic vascular smooth muscle cell (VSMC) stiffness and
active vessel wall components (i.e., NO bioavailability and VSMC
tonus) affect arterial compliance as well (Sehgel et al., 2013). An
important active vessel wall component that regulates arterial
stiffness, especially with respect to aging, is endothelium-derived
nitric oxide (NO; Safar et al., 2001; Fitch et al., 2006; Bellien
et al., 2010; Vayssettes-Courchay et al., 2011; Isabelle et al., 2012).
Moreover, VSMC function shows age-dependent alterations.
Indeed, in both normotensive and hypertensive rats, voltage-
gated Ca2+ channel (VGCC) expression and the therapeutic
potential of VGCC blockers decreased with age (Fukuda et al.,

Abbreviations: eNOS, Endothelial nitric oxide synthase; L-NAME, N�w-nitro-L-

arginine methyl ester; NO, Nitric oxide; PE, Phenylephrine; VGCC, Voltage-gated

Ca2+ channel; VSMC, Vascular smooth muscle cell.

2014). Although the clinical interest in arterial stiffness as an
independent predictor of cardiovascular complications (Laurent
et al., 2006), has grown in the last decades, the fundamental
characteristics of active regulators of arterial compliance (i.e.,
basal NO efficacy and VGCC-mediated contractions) in different
vessel types have never been reported.

In the present study, we investigated whether basal NO
activity and VGCC-mediated contractions differed between the
smaller, muscular arteries (femoral and mesenteric arteries) and
the larger, elastic conduit vessels (aorta and carotid artery) of
C57Bl6mice. To the best of our knowledge this is the first study to
report differences in basal NO production and VGCC-mediated
contraction curves in elastic and muscular mouse arteries. We
speculate that the different physiological behavior of elastic and
muscular arteries at young (adult) age are linked to the well-
known observation that arterial stiffness develops differently with
aging.

MATERIALS AND METHODS

Animals
The studies were approved by the Ethical Committee of the
University of Antwerp, and all experiments were performed
conform to the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health
(NIH Publication No. 85–23, revised 1996). Female C57Bl6 mice
(n = 8, food and water ad libitum, 12/12 light-dark cycle) were
used at the age of 5–6 months.

Preparation of the Arterial Segments
Mice were sacrificed by perforating the diaphragm under
anesthesia (sodium pentobarbital, 75mg kg−1, i.p.). The thoracic
aorta, carotid, femoral, and first order mesenteric artery were
dissected systematically and stripped of adherent tissue. Vessel
segments (width <2mm) were mounted in a four-channel wire
myograph (DMT, Denmark) and immersed in Krebs Ringer
solution (37◦C, 95% O2/5% CO2, pH 7.4) with (in mM): NaCl
118, KCl 4.7, CaCl2 2.5, KH2PO4 1.2, MgSO4 1.2, NaHCO3 25,
CaEDTA 0.025, and glucose 11.1. When possible, aortic, femoral,
carotid and first order mesenteric artery segments of one mouse
were mounted in parallel. In total, 4 aortic, 6 femoral, 8 carotid,
and 8 mesenteric segments were investigated.

After a short equilibration period of 30min, the segments
were gradually stretched (200, 100, 50, or 25µm increments)
from 0mN/mm to tensions according stresses above 13.3 kPa
(100mm Hg). After this passive stretch protocol, the segments
were set at the internal circumference according to the
13.3 kPa stress (normalization factor = 0.9; Slezak et al.,
2010). The internal circumference of the different arteries was
calculated as [(2∗1µm stretch) + (4∗r) + (2∗r∗5)] with r,
the radius of the wire (20µm). Then, transducers were re-
set to zero tension in order to measure active tension upon
addition of 50mM K+ or 10µM phenylephrine (PE). High
K+—solutions were prepared by replacing NaCl with equimolar
KCl. Contractile tension was measured and reported in mN/mm
(Van Hove et al., 2009).
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Vascular Reactivity
Basal NO activity can be determined with high accuracy and
sensitivity by measuring the inhibitory action on contractions
induced by α1-adrenoceptor stimulation with PE and by
measuring shifts of the depolarization-mediated window
contraction curves (Fransen et al., 2012a,b; van Langen et al.,
2012, 2013). Therefore, contractions by PE and shifts of window
contraction curves were measured before and after inhibition of
basal NO formation by endothelial NO synthase (eNOS) with
300µM N�-nitro-L-arginine methyl ester (L-NAME). Window
contraction curves were constructed from K+ concentration-
response curves. The extracellular K+ was gradually increased
by isosmotic replacement of Na+ for K+ and the segments were
stepwise clamped to more depolarized membrane potentials.
The first derivative of the concentration-contraction curves
revealed the window contraction curves, which correlate well
with window L-type Ca2+ influx as measured in isolated VSMC
(Fransen et al., 2012a). After attaining maximal contractions
with 50mM K+, relaxations were induced with increasing
concentrations of the L-type Ca2+ channel blocker diltiazem
(3∗10−9–3∗10−5 M). To avoid any vasomotor interference
due to prostanoids, 10µM indomethacin was present in all
experiments.

Histology
Segments, which were mounted in the myograph for 7–8 h, were
in-situ fixed with 4% paraformaldehyde for 24 h, dehydrated
and embedded in paraffin. Histological analysis was performed
on serial cross sections (5µm) stained with orcein to visualize
elastine. The images were acquired with the Universal Grab 6.1.
(IDL) software (Exelis, Boulder, CO) using an Olympus BX40
microscope (Tokyo, Japan). The relative amount of elastin (%)
was determined by calculating the number of elastin pixels vs.
total number of wall pixels (ImageJ).

Data Presentation and Statistical Analysis
All results are expressed as mean ± sem with n representing
the number of mice. Concentration-response curves were fitted
with sigmoidal concentration-response equations with variable
slope (GraphPad Prism), which revealed maximal responses
(Emax) and the logarithm of the concentration resulting in 50%
of the maximal excitatory or inhibitory effect (EC50 or IC50)
for each vessel segment. Data of the different vessels were
compared by One-way or Two-way ANOVA with Bonferroni
multiple comparison post-test (GraphPad Prism). A 5% level of
significance was selected.

RESULTS

Morphological and Functional Analysis of
Elastic and Muscular Arteries
The internal circumference extrapolated to 100mmHg increased
from about 700/750µm for femoral and mesenteric artery
to 1550 for carotid artery and 3230µm for aorta (Table 1).
The amount of elastin per surface area (Figure 1A) was
significantly larger (p < 0.001, n = 4) in the elastic

TABLE 1 | The internal circumference at 100mm Hg and slope of the force

per lamella vs. stretch relationship for aorta (n = 4), carotid artery (n = 6),

femoral artery (n = 8), and first order mesenteric artery (n = 8).

Artery Internal circumference

(µm)

Slope (force per lamella vs.

stretch)

(mN/mm)

Aorta 3230 ± 70µm (###, $$$,

&&&)

9.9 ± 3.4 (##, $$$, &&&)

Carotid artery 1540 ± 50µm (***, $$$,

&&&)

16.9 ± 0.6 (**, $$$, &&&)

Femoral artery 710 ± 20µm (***, ###) 30.6 ± 0.8 (***, ###, &&&)

Mesenteric artery 750 ± 50µm (***, ###) 39.8 ± 1.6 (***, ###, $$$)

**, ***P< 0.01, 0.001 vs. aorta; ##, ###P< 0.01, 0.0001 vs. carotid artery; $$$ P < 0.001

vs. femoral artery; &&& P < 0.001 vs. mesenteric artery.

aorta (51.3 ± 1.9%) and carotid artery (47.8 ± 0.9%) as
compared to the muscular mesenteric (14.4 ± 1.4%) and
femoral arteries (11.8 ± 1.4%), which is compatible with the
elastic, respectively, muscular nature of the vessels. Similarly,
the number of lamellae, which are the concentric cylindrical
building blocks of the arterial wall (Wagenseil et al., 2009),
decreased from 4 in the aorta to 2 in the carotid and 1 in the
femoral and mesenteric artery. Passive stretch of the arteries
elevated force per lamella more gradually in the elastic than
the muscular arteries. In the latter, a small increase in diameter
(stretch) resulted in a substantial increase of force per lamella
(Figure 1B). Thereby, the slope of the force per lamella-stretch
relationship (Figure 1C) increased from 10 to 40 mN/mm for
the aorta to the mesenteric artery. The muscular nature of
the femoral and mesenteric artery was further confirmed by
determining active tension per lamella (force per mm) evoked
with 10µM PE or 50mM K+. The tension per lamella was
significantly higher in the muscular arteries than in the carotid
artery or the aorta (Figures 2E,F). The degree of muscularity
decreased from mesenteric ≥ femoral artery > carotid artery >

aorta.

Analysis of Basal NO Release in Mouse
Arteries
As shown in Figure 2, both in the absence (L-NAME) and
in the presence of basal NO release (control), 10µM PE
induced a different time-dependent tension increase in the
elastic (Figures 2A,B) compared to the muscular (Figures 2C,D)
vessels. Whereas in the elastic arteries, the tension gradually
increased for more than 10min, the tension in the muscular
arteries typically rose to a maximum at 50–150 s, then slightly
decreased at further time intervals and reached “steady-state” at
10min. Figure 2E summarizes the “near” steady-state tensions
(at 600 s) for the different vessel segments. After inhibition of NO
production with 300µM L-NAME, the PE-induced tension per
lamella increased in the aorta by 218 ± 53% (n = 4, P < 0.001)
and in the carotid artery by 276 ± 67% (n = 6, P < 0.001).
In the femoral artery, tension per lamella significantly declined
to 78 ± 5% (n = 6, P < 0.001), whereas tension was not
affected in the mesenteric artery segments (105 ± 6%, n = 5,
P > 0.05). When segments were depolarized with 50mM K+
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FIGURE 1 | (A) Transverse sections through segments of the aorta, the carotid artery, the mesenteric artery, and the femoral artery from the same mouse. The

segments were mounted in the myograph for 8 h and transverse sections were stained with orcein to show the elastin layers in the different blood vessels. (B) Force

per lamella as a function of stretch for the aorta (ao, n = 4), the carotid artery (ca, n = 6), the femoral artery (fa, n = 8), and the mesenteric artery (ma, n = 8). (C) Slope

of the linear part of the different force-stretch relationships shown in (B). All slopes were significantly (***P < 0.001) different from each other.

(Figure 2F), basal NO release inhibition increased the maximal
tension per lamella only in the carotid artery to 124 ± 7%
(n = 6, P < 0.05). In the aorta (110 ± 8%, n = 4)
and in the mesenteric artery (81 ± 4%, n = 5) it was not
significantly affected whereas in the femoral artery segments it
significantly decreased to 78 ± 7% (n = 6, P < 0.01). When
both contractile stimuli were compared, basal NO inhibited
the maximal contraction of aortic and carotid artery segments
significantly (P < 0.001) more for PE–than for depolarization-
induced contractions (Figures 2E,F).

Window Contraction Curves Evoked by
Depolarization
K+ concentration-contraction and window contraction curves of
segments of the different blood vessels before and after inhibition
of eNOS with L-NAME are illustrated in Figure 3. With eNOS
active, isometric contractions per lamella at 50mM K+ were
1.01 ± 0.11 mN/mm for the aorta, 1.02 ± 0.07 mN/mm for the
carotid artery, 4.98 ± 0.26 mN/mm for the femoral artery, and
3.03 ± 0.40 mN/mm for the mesenteric artery. Blocking eNOS

with L-NAME increased the contraction in the elastic arteries
to 1.08 ± 0.06mN/mm (p > 0.05) in the aorta and to 1.25 ±

0.06mN/mm (p < 0.05) in the carotid artery and decreased the
contractions in the muscular arteries to 3.42 ± 0.41mN/mm for
the femoral artery and to 2.28± 0.49mN/mm for the mesenteric
artery.

Relative force development at different K+ concentrations
(Figure 3A) and the respective window contraction curves
(Figure 3B) revealed that in the presence of basal NO release
(absence of L-NAME), elastic arteries (aorta and carotid
artery) displayed a lower sensitivity to depolarization than
muscular arteries (femoral and mesenteric artery). Their window
contraction curves were significantly shifted to the right with
respect to the curves of the muscular arteries. Inhibition of
basal NO release with L-NAME shifted the K+ concentration-
contraction (Figure 3C) and window contraction (Figure 3D)
curves to lower K+ concentrations in the elastic arteries only.

The respective half maximal effective K+ concentrations in
the different conditions and for the different arterial segments
are indicated in Table 2. Inhibition of basal NO release with
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FIGURE 2 | Tension per lamella as a function of time after addition of 10µM PE in the absence (eNOS active, open circles) and presence (eNOS

inhibited, red) of 300µM L-NAME in the aorta (A), the carotid artery (B), the femoral artery (C), and the mesenteric artery (D). The maximal tension/lamella

of aorta (ao), carotid artery (ca), femoral artery (fa), and mesenteric artery (ma) after 600 s tension development by 10µM PE (E) or 50mM K+ (F) was calculated.

White, eNOS active; red, eNOS inhibited; *, **, ***P < 0.05, 0.01, 0.001 eNOS inhibited vs. eNOS active.

L-NAME only decreased the EC50 for K
+ of the elastic arteries,

whereas the EC50 of the muscular arteries was not affected.

Mouse Artery Relaxation Properties
Induced by the L-type Ca2+ Channel
Blocker Diltiazem
After attaining maximal contraction with 50mM K+, relaxation
of the vessel segments was elicited by adding increasing
concentrations of the L-type Ca2+ channel blocker diltiazem
(1∗10−9 to 3∗10−5 M). In all blood vessels diltiazem caused
maximal relaxation indicating that the contraction by high
K+ was completely due to L-type Ca2+ channel mediated
Ca2+ influx, as we have shown before for the aorta (Fransen
et al., 2012b). Figure 4 shows the diltiazem concentration-
relaxation curves in the presence of the eNOS inhibitor L-NAME

TABLE 2 | EC50-values of K+ (mM) in aorta (n = 4), carotid artery (n = 6),

femoral artery (n = 6), and mesenteric artery (n = 5) segments in the

presence and absence of basal NO release (inhibited with 300µM

L-NAME).

Artery eNOS active eNOS inhibited

Aorta 31.3 ± 1.4 23.9 ± 1.1 ###

Carotid artery 33.9 ± 0.6 25.4 ± 0.6 ###

Femoral artery 24.5 ± 0.7 ***, $$$ 25.3 ± 0.6

Mesenteric artery 26.5 ± 1.0 *, $$$ 28.0 ± 0.6 **

*, **, ***P < 0.05, 0.01, 0.001 vs .aorta; $$$P < 0.001 vs .carotid artery; ###P < 0.001

eNOS inhibited vs. eNOS active.

(Figure 4A) and the respective log(IC50) values for diltiazem in
the absence and presence of L-NAME (Figure 4B). Segments of
the femoral and the mesenteric artery were significantly more
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FIGURE 3 | Relative isometric contractions of the aorta (ao, n = 4), the carotid artery (ca, n = 6), the femoral artery (fa, n = 6), and the mesenteric

artery (ma, n = 5) by increasing K+ concentrations (depolarization) in the presence and absence of basal NO (A,C, respectively). Basal NO release was

inhibited by incubation with 300µM L-NAME. The first derivative of the individual concentration-response curves of (A,C) are displayed in (B,D) and correlate with

window contraction curves because of L-type Ca2+ influx (Fransen et al., 2012a,b). The dashed lines correspond with the EC50 of K+ or the maximal change of

relative tension per concentration of K+ with eNOS active, whereas the arrows between (B) and (D) indicate the shifts of the concentration-contraction curves after

inhibition of eNOS with L-NAME for aorta (ao), carotid artery (ca), and mesenteric artery (ma). A shift was absent in fa.

sensitive to diltiazem than segments of the aorta and the carotid
artery. In the presence of basal NO release (absence of L-NAME)
the affinity for diltiazem increased non-significantly (p = 0.08)
in the aorta and significantly in the carotid artery, but not in the
femoral or the mesenteric artery (Figure 4B).

DISCUSSION

In this study, we determined the properties of elastic and
muscular arteries that may contribute to differential regulation
of arterial compliance along the vascular tree. Isometric
contractions elicited by α1-adrenoceptor stimulation and by
depolarizing the membrane potential differed between the elastic
arteries (carotid artery and aorta) and the muscular arteries
(femoral andmesenteric artery).Wewere able to show that elastic
arteries produced more basal NO, which shifted the window
contraction curves to higher K+ concentrations and were less
sensitive to the L-type Ca2+ channel blocker diltiazem than
muscular arteries.

Elastic vs. Muscular Arteries: Passive and
Active Mechanics
Arterial walls are complex tissues composed of different cell
populations and extracellular matrix, capable of structural and
functional changes in response to direct injury, atherogenic
factors, or long-term hemodynamic alterations (Safar, 2010; Safar
et al., 2011). The arterial media contains concentric cylindrical

lamellae, which serve as building blocks of the vessel wall
(Wagenseil et al., 2009). These include two fenestrated sheets of
elastin, separated by VSMC, collagen, and extracellular matrix.
In mice, the arterial wall of the aorta and carotid artery was built
up by 4, respectively, 2 lamellar units, whereas the femoral and
mesenteric artery walls contained only 1 lamellar unit. Elastin
and collagen are the principal components to determine the
passive mechanical properties of the aortic wall. Per unit surface
area, the carotid artery and aorta contained more elastin than
the femoral and mesenteric artery confirming the elastic nature
of the former arteries, and the muscular nature of the latter.
As a consequence, stretching the segments of elastic arteries
elicited less force per lamella than stretching muscular arteries
and α1-adrenoreceptor stimulation with PE or VGCC opening
with high K+ caused higher active force per unit surface in
the muscular than in the elastic arteries. In line with these
observations are the major physiological functions of elastic and
muscular arteries, respectively, pulse-smoothening and blood
distribution (Safar, 2010).

Elastic vs. Muscular Arteries: Basal NO
Release
A prominent finding of this study is that only elastic arteries
released basal NO with important consequences for basal tonus
and Ca2+ influx via L-type Ca2+ channels. Previously, it was
already demonstrated that the femoral artery exerted more force
in response to the α1 adrenergic agonist phenylephrine or to K+

elevation as compared to the carotid artery and it was assumed
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FIGURE 4 | Relaxation of 50mM K+-elicited contractions by the VGCC blocker diltiazem in aorta (ao, n = 4), carotid artery (ca, n = 5), femoral artery

(fa, n = 6), and mesenteric artery (ma, n = 5). (A). Diltiazem concentration-relaxation curves in the presence of 300µM L-NAME to inhibit basal NO release (B)

Log(IC50) of diltiazem for inhibition of the isometric contractions induced by 50mM K+ in the absence (eNOS active, white) and presence (eNOS inhibited, red) of

300µM L-NAME to block basal NO release. *, **, ***P < 0.05, 0.01, 0.001.

that this was due to PE-induced stimulation of α-adrenoreceptors
on endothelial cells in the carotid artery (Crauwels et al., 2000).
In aortic segments, however, the high basal output of NO is
also present in the absence of α-adrenoreceptor stimulation
(Fransen et al., 2012b; van Langen et al., 2012). Therefore, we
suggest that even in non-stimulated conditions the elastic, but not
muscular arteries, produce large amounts of basal NO. This basal
NO attenuates PE-induced contractions significantly and causes
significant shifts of the voltage-dependent window contraction
curves, especially at moderate depolarizations (Fransen et al.,
2012b). At 50mM K+, however, contraction is not affected by
NO and the high basal NO release in elastic arteries is masked
(Fransen et al., 2012b). The role of basal NO release in the
elastic vs. muscular arteries was also evident from the shifts of
the window contraction curves. In aorta, inhibition of basal NO
release with L-NAME sensitized the window contraction curves
to external K+ (depolarization; Fransen et al., 2012b). This shift
to lower external K+ also occurred in the carotid artery, but not
in the muscular arteries, confirming the results obtained with
α1-adrenoceptor stimulation with PE. Because of discrepancies
between basal and stimulated NO release, one can speculate
about the physiological relevance of the high basal release of
NO in elastic arteries. We hypothesize that a major function
of this high basal release of NO in the elastic arteries is to
avoid stiffening of the arteries in order to maintain their blood
pulse-smoothening properties (Peng et al., 2003). We and others
have previously shown in rat and in mouse that inhibition of
eNOS with L-NAME or knock-out of eNOS caused hypertension
and a significant increase of carotid-femoral pulse wave velocity
(Isabelle et al., 2012; Leloup et al., 2014). On the other hand,
treatment of old mice with sodium nitrite, as a diet-derived
source of NO, caused de-stiffening of large elastic arteries and
normalization of aortic pulse wave velocity (Sindler et al., 2014).
Moreover, the high basal NO release and the shift of the window
contraction curve to higher extracellular K+ result in a lower
sensitivity of the contractile properties of elastic arteries to small
variations of their resting membrane potential as indicated by the
K+ concentration (membrane potential)-contraction curves. The
absence of basal NO activity in muscular arteries, on the other

hand, makes contraction of medium to small-sized arteries to
vary considerably with small alterations of membrane potential,
allowing stringent regulation of arterial diameter and blood flow
according to moment-to-moment needs. It should be mentioned
that in the femoral artery, both PE-and 50mM K+-induced
contractions decreased with basal NO release inhibition with L-
NAME. Furthermore, in mesenteric artery, there was a reverse
shift of the window contraction curves with L-NAME. These
effects, however, also occurred in the absence of L-NAME, were
time-dependent (data not shown) and, hence, were not due to
changes in NO bioavailability.

Elastic vs. Muscular Arteries: Sensitivity to
Diltiazem
In the absence of basal NO production or presence of L-
NAME, the sensitivity of all blood vessels to K+ was similar.
Nevertheless, even then, the muscular arteries were significantly
more sensitive to the L-type Ca2+ channel inhibitor diltiazem,
which has a high affinity for window contractions (Fransen
et al., 2012a; Michiels et al., 2014). These results suggest the
occurrence of different populations of L-type Ca2+ channels in
the elastic and the muscular arteries. This is in line with the
non-homogeneous L-type Ca2+ channel population distribution
in the cardiovascular system. Thereby, some isoforms display
hyperpolarized window currents and enhanced state-dependent
block by nifedipine (Liao et al., 2004, 2007; Zhang et al.,
2010).

In conclusion, muscular arteries such as femoral and
mesenteric arteries and elastic arteries such as the aorta and
carotid artery differ in their passive and active contractile
properties. To the best of our knowledge, this is the first
study to report that elastic arteries display significantly higher
basal NO efficacy and large shifts of the window contraction
curves to depolarized potentials as compared to muscular
arteries. In the absence of basal NO, voltage-dependent VGCC-
mediated contractions were similar in elastic and muscular
arteries. However, the K+-induced contraction was inhibited by
the VGCC channel blocker diltiazem with significantly higher
sensitivity in muscular arteries, suggestive for different VGCC
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isoform populations in both vessel types. We speculate that
the observed differences in basal NO production in elastic
and muscular arteries contribute to the differential effects
of aging on both vessel types. This is supported by studies
showing significant improvement of arterial compliance after
treatment with enhancers of endothelial function (Sindler et al.,
2011; Santos-Parker et al., 2014). The major limitations of
this study are the lack of direct measurement of elasticity,
basal NO production, and VGCC isoforms in elastic and
muscular arteries. Earlier studies both in mice and humans
already demonstrated different elastic and muscular artery
stiffness. On the other hand, assessment of basal NO production
is technically difficult due to the low NO concentrations
and the different spliced variants of the calcium channel
have not yet been studied in detail, and certainly not in
different vascular beds, hampering PCR-based VGCC isoform
determination. Addressing these challenges during future
research will contribute to directly demonstrate the relationship
between basal NO production, VGCC isoforms, and arterial
stiffness.
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