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The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous

populations of neurons involved in autonomic and neuroendocrine regulation. The PVN

plays an important role in the sympathoexcitatory response to increasing circulating levels

of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs

(OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo

synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation

of AT1 receptors induces intracellular increases in reactive oxygen species (ROS),

leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve

activation promotes a series of metabolic disorders that characterizes the metabolic

syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia

and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin,

insulin, and Ang-II. This review will discuss the contribution of our laboratory and others

regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen

species along the subfornical organ and paraventricular nucleus of the hypothalamus.

We hypothesize that this mechanism could be involved in metabolic disorders underlying

MetS.

Keywords: paraventricular nucleus of the hypothalamus, angiotensin II, oxidative stress, metabolic syndrome

INTRODUCTION

The sympathoexcitation is linked to various diseases; circulating levels of Ang-II modulate
SFO angiotensinergic projection to pre-autonomic PVN neurons, which lead to increases in
sympathoexcitatory activity to the spinal cord via direct projections (Koshiya and Guyenet, 1996;
Badoer, 2001; Stocker et al., 2004) or indirectly projecting to pre-sympathetic neurons in the
RVLM (Koshiya and Guyenet, 1996; Badoer, 2001; Ito et al., 2002; Stocker et al., 2004). Increasing
evidence supports the premise that Ang-II in the PVN is involved in pathological conditions
originating from sympathoexcitation, such as hypertension, heart failure, diabetes, obesity, and
metabolic syndrome (Gutkind et al., 1988; Ito et al., 2002; Oliveira-Sales et al., 2009; Braga et al.,
2011). It has also been demonstrated that Ang-II increase reactive oxygen species (ROS) along the
subfornical organ–paraventricular nucleus of the hypothalamus–rostral ventrolateral medulla axis
[SFO-PVN-RVLM axis (Oliveira-Sales et al., 2008; Braga et al., 2011; Burmeister et al., 2011)].
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The main ROS within the central nervous system is
superoxide anions (O2−). Within the PVN, superoxide
accumulation within the PVN ultimately results in sympathetic
overactivity (Oliveira-Sales et al., 2009; Peterson et al., 2009;
Burmeister et al., 2011; Cardinale et al., 2012; Campos et al.,
2015). The aim of this mini-review is to discuss the role
of sympathoexcitation induced by Ang-II-dependent ROS
production in the pre-autonomic PVN neurons in modulating
the development and/or metabolic disorders that results in the
development and/or the maintenance of metabolic syndrome.

Anatomical and Functional Organization of
PVN
The paraventricular nucleus of the hypothalamus is anatomically
connected to other hypothalamic areas and to the brainstem,
playing a pivotal role in several homeostatic responses,
being an important integrative nucleus for autonomic and
neuroendocrine functions (Swanson and Sawchenko, 1980;
Stern, 2001; Cruz et al., 2008; Cruz and Machado, 2009; Reis
et al., 2010). Among the PVN functions are regulation of
food intake, adipose afferent reflex (AAR), responses to stress,
modulation of metabolic rate, thermoregulation, modulation
of sympathetic nerve activity, and cardiovascular function
(Swanson and Sawchenko, 1980; Stern, 2001; Benarroch,
2005; Cruz et al., 2008; Cruz and Machado, 2009; Reis et al.,
2010; Cassaglia et al., 2011; Zsombok et al., 2011; Zhang
et al., 2012; Ding et al., 2013; Xiong et al., 2014). The PVN
is comprised of magnocellular and parvocellular subnuclei,
which have different properties both neurochemically and

electrophysiologically (Swanson and Sawchenko, 1980;
Stern, 2001). The magnocellular subnucleus projects to the
posterior hypophysis and parvocellular subnucleus, which
include pre-autonomic neurons, send descending projections
to cardiovascular autonomic brainstem nuclei as well as
direct projections to the spinal cord (Koshiya and Guyenet,
1996; Badoer, 2001; Stocker et al., 2004; Cruz et al., 2008).
Therefore, electrophysiological and functional studies support
an essential role for the PVN in central blood pressure
control (Cruz and Machado, 2009; Cruz et al., 2010; Busnardo
et al., 2013) and sympathetic nerve activity (Koshiya and
Guyenet, 1996; Badoer, 2001; Stocker et al., 2004). Our
previous studies suggest that parvocellular pre-autonomic
neurons modulate baseline blood pressure through activation
of glutamatergic, GABAergic, purinergic, nitrergic, and
angiotensinergic mechanisms (Chen et al., 2003; Cruz and
Machado, 2009; Cruz et al., 2010; Busnardo et al., 2013).
Accumulating evidence support the idea that imbalance
between paraventricular inhibitory GABAergic and excitatory
glutamatergic and/or angiotensinergic neurotransmission in
the PVN, contribute to increase the pre-autonomic neuronal
drive mediating neurogenic hypertension (Gören et al., 2000;
Chen et al., 2003; Li and Pan, 2005; Li et al., 2006; Oliveira-Sales
et al., 2009). Magnocellular and parvocellular neurons from
PVN express receptors to a wide range of neurotransmitters
and neurohormones including leptin, insulin, neuropeptide
Y, Ang-II, GABA, glutamate, vasopressin, oxytocin, and

noradrenaline (Stanley and Leibowitz, 1984; Saphier and
Feldman, 1991; Lenkei et al., 1997; Håkansson and Meister,
1998; Zsombok et al., 2011). Therefore, it is suggested that
an imbalance in synaptic function that modulates the pre-
autonomic or neurosecretory neuron results in cardiovascular
and neuroendocrine dysfunctions that, in turn, contribute to the
development and potentiation of sympathoexcitatory response
observed in hypertension, heart failure, atherosclerosis, diabetes,
and obesity.

SFO-PVN-RVLM Pathway for Circulating
Ang-II is Involved in the Cardiovascular
Regulation
Some circulating lipophobic substances, incapable of crossing
the blood brain barrier (BBB), such as glucose, insulin, leptin,
noradrenaline, and angiotensin II have their receptors expressed
in neurons of the circunventricular organs (CVOs), which have
an incomplete BBB (Lenkei et al., 1997; Boundy and Cincotta,
2000; Braga et al., 2011; Cassaglia et al., 2011; Lob et al., 2013;
Prior et al., 2014). One of the major CVOs receiving information
from the peripheral circulation is the subfornical organ (SFO).
Anatomical and functional evidence suggest that SFO is a
pivotal nucleus in modulating pressor and dipsogenic actions
of circulating Ang II (Bains et al., 1992; Li and Ferguson, 1993;
Sakai et al., 2007; Braga et al., 2011). Genetic and physiological
evidence shows that circulating Ang-II is involved in de novo
synthesis of Ang II within the SFO, which is an integrative
mechanism of fluid and cardiovascular homeostasis (Bains et al.,

1992; Li and Ferguson, 1993; Sakai et al., 2007; Burmeister et al.,
2011). Angiotensin II AT1 and AT2 receptors (AT1R; AT2R)
are expressed in neurons and astrocytes of the PVN (Lenkei
et al., 1997; Coleman et al., 2009; Oliveira-Sales et al., 2009)
and angiotensinergic connections between the SFO and PVN
is describe to control drinking and sympathetic nerve activity
(Gutkind et al., 1988; Bains et al., 1992; Li and Ferguson, 1993;
Anderson et al., 2001; Sakai et al., 2007; Burmeister et al.,
2011). In that regard, several studies show that angiotensinergic
connections between SFO and PVN are involved in the
generation and maintenance of elevated baseline blood pressure
in hypertensive rats (Gutkind et al., 1988; Burmeister et al., 2011).
For example, studies by Miyakubo et al. (2002) demonstrated
that excitatory response elicited by Ang-II in SFO neurons
projecting to PVN was higher in spontaneous hypertensive rats
(SHR) than in normotensive Wistar Kyoto rats (WKY). The
brain Ang-II neurocircuitary also involves pre-autonomic PVN
neurons projecting to rostral ventrolateral medulla (RVLM).
The RVLM which tonically controls sympathetic vasomotor
activity (Guyenet et al., 1989). Studies by Ito et al. (2002)
indicate that RVLM vasomotor neurons in SHR, but not in
the WKY rats, are tonically excited by PVN driven angiotensin
II projections. Furthermore, several studies support the idea
that Ang-II along the SFO-PVN-RVLM axis is a significant
neuronal pathway involved in the maintenance of neurogenic
hypertension (Ito et al., 2002; Oliveira-Sales et al., 2009; Braga
et al., 2011).
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Ang-II Induced ROS Accumulation Along
the SFO-PVN-RVLM Axis Contributing to
the Pathogenesis of Hypertension
Accumulating evidence support the idea, that Ang-II-induced
oxidative stress within the PVN contributes to the pathogenesis
of hypertension. In addition to increasing blood pressure
and sympathetic nerve activity, central infusion of Ang-
II leads to elevated levels of neurotransmitters (glutamate
and norepinephrine), AT1R, pro-inflammatory cytokines,
phosphorylated IKKbeta, NF-kappaB subunits, and superoxide
in the central nervous system (Erdös et al., 2006; Oliveira-Sales
et al., 2009; Peterson et al., 2009; Burmeister et al., 2011).

There is now growing evidence suggesting that inflammation
and central Ang-II-induced ROS production are involved in the
pathogenesis of neurogenic hypertension. For example, in Ang-
II-treated rats, bilateral microinjection of NFkappaB blocker into
the PVN induces a local decrease in NFkappaB p65 subunit
activity, proinflammatory cytokines, ROS, AT1-R, as well as in
blood pressure (Cardinale et al., 2012).

Ang-II acting on the AT1R induces activation of NADPH
oxidase through protein kinase C (PKC). The NADPH oxidase
is the major source of superoxide anion. This enzyme is
composed of catalytic membrane (gp91phox and p22phox) and
cytoplasmic (p40phox, p47phox, and p67phox) subunits, which
transfer electrons to molecular oxygen, producing reactive
oxygen species as superoxide (Chabrashvili et al., 2002; Lassègue
and Clempus, 2003).

Oxidative stress is characterized by an imbalance between the
production of ROS and antioxidant systems (Betteridge, 2000).
Numerous studies support the concept that ROS production is
increased in different nuclei in the brainstem and hypothalamus
(Oliveira-Sales et al., 2009; Peterson et al., 2009; Braga et al.,
2011; Burmeister et al., 2011; Campos et al., 2015). The role
of oxidative stress in the development and/or maintenance of
neurogenic hypertension has recently been reported in several
animal models of hypertension, including the renovascular
two-kidney–one-clip model [2K1C (Oliveira-Sales et al., 2008,
2009; Burmeister et al., 2011; de Queiroz et al., 2013)].
Studies by Lob et al. (2013) showed an increase in the
superoxide production in the SFO after chronic angiotensin
II infusion, which was blunted by SFO-targeted injections
of an adenovirus encoding cre-recombinase for reducing of
p22 (phox), Nox2, and Nox4 mRNA expression. In addition,
studies by Yuan et al. (2013) showed that superoxide dismutase
1 (SOD1), an antioxidant enzyme, was overexpressed in the
PVN, attenuating augmented sympathetic activity, and cardiac
sympathetic afferent reflex, while improving the myocardial and
vascular remodeling in spontaneous hypertensive rats (SHR).
The expression of the isoforms Nox1, Nox2, and predominant
Nox4 mRNA were found in the PVN under basal conditions.
Furthermore, Nox4-generated superoxide within the PVN
contributes to the sympathoexcitation and cardiac dysfunction
observed in mice that experienced heart failure (Infanger et al.,
2010).

It has been suggested that upregulation of ROS in the
RVLM and PVN contributes to increased blood pressure and

SNA in renovascular hypertensive rats, with ROS preceding
the increase in blood pressure in Ang-II-dependent model
of hypertension (Kitiyakara and Wilcox, 1998; Botelho-Ono
et al., 2011; Burmeister et al., 2011; de Queiroz et al., 2013)
mRNA expression studies revealed that AT-1 and NADPH
oxidase subunits were greater in the RVLM and PVN in
renovascular hypertensive rats (Oliveira-Sales et al., 2009;
Campos et al., 2015). In addition, studies by Burmeister
et al. (2011) documented that a significant increase in the
superoxide production in the PVN of renovascular hypertensive
mice leads to activator protein-1 (AP-1) activation, a nuclear
transcription factor, resulting in hypertension, while inhibition
of AP-1 activity in the prevented renovascular hypertension.
Furthermore, microinjection of superoxide dismutase mimetic,
4 hydroxy-2, 2, 6, 6-tetramethyl piperidinoxyl (Tempol) into
the RVLM and PVN decreased the mean arterial pressure and
renal sympathetic nerve activity in renovascular hypertensive
rats, supporting the idea that upregulation of ROS in central
cardiovascular areas, such as RVLM and PVN, contributes to
elevated arterial pressure and sympathetic activity (Oliveira-
Sales et al., 2009). Interestingly, microinjection of an adenovirus
(Ad) encoding superoxide dismutase (AdCuZnSOD) in the
PVN not only decreased the local superoxide accumulation
into the PVN, but also prevented hypertension. Together, these
observations led to the proposal (Braga et al., 2011) that the
formation of Ang-II-induced ROS along the SFO-PVN-RVLM
axis is an important mechanism involved in the pathogenesis of
neurogenic hypertension.

Ang-II, Obesity and Diabetes Cross-Talk in
the PVN
Diet and lifestyle associated to genetic factors are involved in the
development of metabolic syndrome (MetS). Metabolic changes
such as dyslipidemia, glucose intolerance, hyperinsulinemia,
hyperleptinemia, systemic inflammation, and chronic increase
in the SNA, which characterize MetS, also augment the risk of
developing diseases such as obesity, diabetes, atherosclerosis, and
arterial hypertension. The PVN, as described above, is a key
central nucleus participating in the regulation of cardiovascular
and sympathetic activity (Koshiya and Guyenet, 1996; Badoer,
2001; Stocker et al., 2004; Cruz et al., 2008). It is involved in
the sympathetic overactivity in rats with hypertension (Gören
et al., 2000; Chen et al., 2003; Li et al., 2006; Oliveira-Sales
et al., 2009), obesity (Xiong et al., 2012; Ding et al., 2013),
and insulin resistance [commonly seen in the form of diabetes
(Cassaglia et al., 2011; Zhang et al., 2012)]. In addition, several
reports suggest that ROS activation contributes to insulin
resistance observed in diabetic rats accompanied by obesity
and hypertension (Folli et al., 1997; Xiong et al., 2012; Zhang
et al., 2012; Cruz et al., 2013; Ding et al., 2013; de Kloet et al.,
2013)

It is known that activation of the renin-angiotensin system
may lead to insulin resistance in the vasculature (Folli et al.,
1997); Ang-II impairs insulin receptor intracellular signaling,
inhibiting insulin receptor substrate-1 (IRS-1) phosphorylation
and phosphatidylinositol (PI) 3–kinase activation (Folli et al.,
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FIGURE 1 | Angiotensin II (Ang-II) induces sympathetic nerve activation (SNA) by increasing reactive oxygen species (ROS) along SFO-PVN axis

underlying Metabolic Syndrome (MetS) symptoms (see text). Modified by de Queiroz et al. (2013) and Benarroch (2005). SFO: subfonical organ; PVN,

paraventricular nucleus of the hypothalamus; RVLM, rostral ventrolateral medulla; AT1R, AT1 Ang-II receptor; RAS, renin angiotensin system.

1997; Cizmeci and Arkun, 2013). In addition, it has been
documented that AT1R receptor expression is increased in
the PVN of rats with diabetes and insulin resistance (Zhang
et al., 2012; Sun et al., 2014). Furthermore, Ang-II activates
NADPH oxidase via AT1 receptors, increasing superoxide
anion accumulation in the PVN, thereby contributing to
enhanced sympathetic activity in diabetic and insulin resistance
rats (Patel et al., 2011; Zhang et al., 2012; Sun et al.,
2014).

Sympathetically-mediated interactions between PVN and
white adipose tissue via AAR are important for the maintenance
of total body fat and energy balance (Xiong et al., 2012; Ding
et al., 2013). AAR is increased in obese hypertensive rats
(Xiong et al., 2012, 2014; Ding et al., 2013) and inhibition
of PVN decreases SNA and mean arterial pressure, while
abolishing AAR in hypertensive obese rats (Xiong et al., 2012).
Furthermore, studies by Ding et al. (2013) showed that NADPH
oxidase-derived superoxide anions in the PVN modulates AAR,
while PVN microinjection of tempol decreases baseline renal
SNA, blood pressure, and attenuated the AAR. Thus, Ang-
II induces ROS in the PVN may be a significant central
mechanism modulating AAR. Studies by de Kloet et al. (2013)
observed that deletion of AT1 receptors in the PVN not
only reduced the local expression of corticotrophin-releasing
hormone (CRH), oxytocin, and tumor necrosis factor α (TNF-
α, a pro-inflammatory cytokine), but also decreased systolic
blood pressure in mice rendered obese by high fat diet. This
suggests that AT1 receptors in the PVN regulates the central

metabolic changes that promotes metabolic and cardiovascular
disorders.

CONCLUSION

In the last years, our laboratory has been investigating the
mechanisms underlying neurogenic hypertension and our results
strongly suggest that this pathological condition is caused
by Ang-II-dependent ROS accumulation along the SFO-PVN-
RVLM axis (Peterson et al., 2009; Botelho-Ono et al., 2011;
Braga et al., 2011; Burmeister et al., 2011; de Queiroz et al.,
2013). Accumulating evidence suggest that hyperactivity of
the angiotensin system within the PVN is involved not only
in hypertension, but also in diabetes and obesity existing as
comorbidities (Oliveira-Sales et al., 2008, 2009; de Kloet et al.,
2010, 2013; Braga et al., 2011; Xiong et al., 2012, 2014; Cizmeci
and Arkun, 2013; Ding et al., 2013). This mini-review supports
the hypothesis illustrated in the Figure 1 that the increase in the
circulating levels of Ang-II activates angiotensinergic neurons in
the SFO, which projects to pre-autonomic neurons expressing
AT1 receptors in the PVN. The stimulation of AT1 receptors
in the PVN and RVLM induces intracellular signals activating
NADPH oxidase through protein kinase C. NADPH oxidase
activity increases ROS formation, contributing to overactivity of
pre-autonomic PVN neurons, resulting in sympathoexcitation
through an indirect pathway (angiotensinergic projections to
RVLM) and/or directly projections to the spinal cord, thereby
mediating increase in plasma renin-angiotensin system, insulin,
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glucose, leptin, lipolysis as well as vasoconstriction. All these
metabolic changes are involved in the symptoms of MetS.
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