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The fungus Candida albicans is the most common causative agent of human fungal

infections and better drugs or drug combination strategies are urgently needed. Here,

we present an agent-based model of the interplay of C. albicans with the host immune

system and with the microflora of the host. We took into account the morphological

change of C. albicans from the yeast to hyphae form and its dynamics during infection.

The model allowed us to follow the dynamics of fungal growth and morphology, of the

immune cells and of microflora in different perturbing situations. We specifically focused

on the consequences of microflora reduction following antibiotic treatment. Using the

agent-based model, different drug types have been tested for their effectiveness, namely

drugs that inhibit cell division and drugs that constrain the yeast-to-hyphae transition.

Applied individually, the division drug turned out to successfully decrease hyphae while

the transition drug leads to a burst in hyphae after the end of the treatment. To

evaluate the effect of different drug combinations, doses, and schedules, we introduced

a measure for the return to a healthy state, the infection score. Using this measure,

we found that the addition of a transition drug to a division drug treatment can improve

the treatment reliability while minimizing treatment duration and drug dosage. In this work

we present a theoretical study. Although our model has not been calibrated to quantitative

experimental data, the technique of computationally identifying synergistic treatment

combinations in an agent based model exemplifies the importance of computational

techniques in translational research.

Keywords: agent-based models, drug treatments, fungal infections, C. albicans, host-pathogen interactions

INTRODUCTION

Microbial pathogens are becoming increasingly resistant to existing antibiotics (WHO, 2014),
leading to an urgent need for novel drugs, and an improvement of treatment strategies.
Treatment of newly acquired infections in already hospitalized patients often enforces simultaneous
administration of different drugs. In order to reduce potential deleterious side effects, treatment
strategies must be carefully evaluated. In this study, we focused on the fungus Candida albicans,
the most common causative agent of human fungal infections (CDC, 2014). In order to assess drug
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effects on a progress of fungal infections, we developed an agent-
basedmodel that allowed us to investigateC. albicans interactions
with its host. We used this model to test combinatorial drug
treatments as a conceptual cost efficient way to generate
novel therapeutic strategies from existing drugs. Specifically,
we systematically evaluated drug combinations that target
multiple virulence aspects of the pathogen. We report synergistic
drug effects and an unexpected stabilization of a theoretical
medication upon specific treatment combinations.

C. albicans is commonly found in the human microflora
without causing any harm to its host. Alterations in either
the host immune system or the balance of the surrounding
microflora can stimulate fungal overgrowth and colonization of
epithelial surfaces by C. albicans. In turn, uncontrolled fungal
overgrowth can result in an invasion of epithelial surfaces by
C. albicans and dissemination of the fungus to internal organs
causing systemic candidiasis—often fatal to the host (Perlroth
et al., 2007). An important virulence factor of the fungus
is its ability to switch between two morphological forms—
the yeast and hyphal form. This morphological transition is
often considered as essential for C. albicans pathogenicity (Lo
et al., 1997). This specific virulence factor has been proposed
as a potential drug target to fight the fungus (Jacobsen et al.,
2012). Since the yeast-to-hyphae transition can be blocked by
exogenously supplied farnesol it has also been proposed that
farnesol may be used as a potential C. albicans-specific drug
(Décanis et al., 2011). Also, it has been shown that hyphae
are able to breach epithelial barriers (Phan et al., 2000), and
a return to the yeast state is considered as necessary for the
fungal dissemination within the bloodstream (Saville et al.,
2003). To generate an appropriate immune response to the
different states of C. albicans during colonization, it is critical
for the host to distinguish between yeast and hyphal cells.
Experimental results suggest that epithelial cells are in fact able to
recognize the hyphal form and initiate an appropriate response
tuned to the overall hyphal burden (Moyes et al., 2010). The
hyphae-induced danger response activates a protective immune
response, resulting in the release of a set of pro-inflammatory
cytokines like IL-1α, IL-1β, IL-6, or TNF-α and chemokines
such as IL-8 that act as chemoattractants and activators of host
phagocytic cells, such as macrophages and polymorphonuclear
neutrophils (PMNs) (Naglik and Moyes, 2011; Cheng et al.,
2012). PMNs are activated by cytokines such as IL-22 (Ouyang
et al., 2008), produced during C. albicans hyphae invasion by
T helper cells 17, activated in turn by specific cytokines: IL-
23, IL-1, IL-6 (Acosta-Rodriguez et al., 2007). While C. albicans
cells were shown to be able to escape a macrophage attack
(Ibata-Ombetta et al., 2001; Lorenz et al., 2004; Wellington
et al., 2014), PMNs are considered to be efficient in killing C.
albicans hyphal cells (Wozniok et al., 2008). Host, pathogen
and commensal microflora all interact simultaneously to form
a very dynamic environment. Which interactions within this
environment favor or suppress the development of candidemia is
impossible to resolve without formal analysis of the system. Here,
we present an agent-based model (ABM) of C. albicans infection
that describes the initial stages of the fungal invasion due to a
disrupted microfloral balance. The main components of ABMs

are discrete autonomous agents that interact with each other or
their environment at discrete model time steps (ts) according to
a set of rules (Chiacchio et al., 2014). We used the computational
tool NetLogo (Wilensky, 1999) to stochastically simulate a 2-
dimensional ABM. Extending previous considerations (Tyc and
Klipp, 2011), we also implemented and analyzed the associated
immune responses by the host. The model contained C. albicans
agents that could switch between yeast and hyphal forms
embedded in the epithelial environment that also comprised
an actively growing microflora. We also included C. albicans-
dependent cytokine release that in turn induced PMNs and
macrophages recruitment to combat the pathogen. The model
permitted to explore the potential of different treatment strategies
in silico by systematically screening different combinations of
a hypothetical farnesol-derived drug that inhibits the yeast to
hyphae transition as well as an antifungal drug to determine
optimal treatment strategies.

MATERIALS AND METHODS

ABMs belong to the class of rule-based modeling techniques.
Different frameworks for the creation and simulation of ABMs
exist (Railsback et al., 2006), each with different advantages and
disadvantages. We chose NetLogo (Wilensky, 1999) to conduct
simulations.

In Netlogo, agents interact in a 2-dimensional world
composed of microcompartments (MCs), the so-called patches.
In our model, we assigned to each MC variables that could
influence the agent dynamics:

• cytokine—this variable reflected the strength of the
inflammatory signals coming from the given patch and
is represented by the overall cytokine level of the patch. When
high, 90% of cytokines could spread over the adjusting patches
by releasing an equal amount of cytokines from the patch in
every direction. Cytokines were released by the epithelium
upon contact with C. albicans hypha agents. The magnitude
of the cytokine release depended on the hyphal burden of the
MC (Moyes et al., 2010). In the model we didn’t distinguish
between different types of cytokines. Instead, we considered
all cytokines that modulate the immune response together in
this cytokines variable;

• nutrition—a Boolean value indicating whether nutrient was
available at the patch. On every time step an agent present on
the patch could consume the nutrient if nutrition was 1. After
being consumed nutrition was assigned the value 0 and it was
restored with a probability of 3% in the next time step;

• portal—was a point of entry to the system for phagocytic cells,
which became attracted to the system in a cytokine-dependent
way;

• invaded?—the Boolean value, invaded? holded value TRUE for
patches that were invaded by hyphae agents;

• patch-phagocytising-energy—a variable representing the
number of ts needed for a PMN or a macrophage to
completely phagocytise a hyphal agent or yeast agent.

Our model consisted of five classes of agents: the two static
C. albicans yeast and hyphal agents, and the three mobile
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agents including microflora, PMN and macrophage agents. All
the interactions of agents and patches that we implemented
in the model are depicted in Figure 1 and the full model
code is available as Supplementary Information. In the model,
C. albicans yeast and hypha agents, microflora, PMN and
macrophage agents were randomly distributed over the world at
the beginning of each simulation (Figures 1B,C).

Microflora, yeast, and active hyphae agents could consume
the nutrition of the MC potentially at every time step, if
available. Each agent had an attribute called energy—a variable
with a numerical value, which increased upon nutrient uptake
and decreased over time to reflect the metabolic state and
consumption of the accumulated energy by the cells. When
the agent did not consume nutrient, its energy value decreased
and it could become negative when the situation prolonged.
Microflora agents with a negative energy status died and were
removed from the system. We set thresholds for cell division
so that microflora outcompetes yeast in an unstressed scenario
and stable populations can form. When the energy status of a

microflora agent passed this threshold it divided and one new cell
was created next to the parental cell. Similarly, every yeast agent
divided when its energy status exceeded a threshold, giving rise to
one parental cell and one daughter cell. Every time a yeast agent’s
energy fell below a threshold, the yeast turned into an active
hyphae agent. An active hyphae agent induced inflammatory
responses by increasing the cytokine value of the patch. An
active hyphal agent could switch back to a yeast agent when it
accumulated enough energy (Saville et al., 2003). Upon sparse
nutrient availability, caused by a high density of other agents in
the system, the energy level of an active hyphae agent eventually
dropped below zero. The active hyphae agent with negative
energy became inactive and ceased damaging epithelial cells.
Inactive hyphae agents no longer increased the cytokine value of
the patch. To prevent the accumulation of inactive hyphae in the
system, MC were set to be able to engulf inactive hyphae agents,
corresponding to the process of induced endocytosis (Naglik
et al., 2011). Inactive hyphae could also be phagocytised by
immune agents, a process we describe later on. PMN agents and

FIGURE 1 | Model description and framework. (A) Graphical representation of the model implemented in NetLogo. Arrows indicate transitions from one agent

type to another, barred lines indicate negative interactions, lines ending in circles indicate positive interactions. (B,C) Snapshots of the model at t = 0 ts and t = 5000

ts. Portals, (orange squares), provide an access for the phagocyte entering the system from the bloodstream. Agents (yeast: red; active hyphae: yellow; inactive

hyphae: gray; microflora: green; PMNs: blue; macrophages: pink) are randomly spread over the world at the beginning of the simulation. At t = 5000 ts C. albicans

yeast and hyphal agents as well as microflora have colonized the patches. Cytokine values are indicated by levels of green.
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macrophage agents entered the system through nine distinctive
patches we named portals indicating access to the blood stream
(Figure 1B, marked in orange, Ray et al., 2009). The rate of
recruitment of both immune agent types to the system increases
with the mean cytokine level over all MCs. A low basal rate
was used to ensure basal immune cell recruitment even in the
absence of infection. Once an immune cell had passed through
the portal, the phagocyte moved along the cytokine gradient with
an additional random turn between −45◦ and +45◦ at each ts.
To prevent explosion of the system by the immune cells, PMN
agents had a 3% chance per ts to be removed from the system.
Macrophages were removed eventually through killing by hyphal
cells.

Both phagocytic agents, PMNs and macrophages, were able to
engulf C. albicans agents upon contact. The phagocytosis of the
agent began right after its engulfment. If a PMN agent established
contact with a C. albicans agent, the PMN killed the C. albicans
agent within 4 ts. A PMN that was currently occupied with
phagocytosis could not engulf other agents.

In contrast to PMNs, macrophages could engulf up to 80
C. albicans yeast and hyphal agents. Inactive hyphal agents
were removed from the system by phagocytosis and they were
preferentially engulfed by macrophages although PMNs could
also spontaneously engulf inactive hyphal agents. Fungi engulfed
in macrophages could not take up nutrients in our model and
died when their energy level reached 0. Engulfed inactive hyphae
did not cause harm to the macrophage and were removed from
the system after phagocytosis was completed. If a macrophage
agent engulfed a yeast agent, the yeast immediately turned
into an active hypha within the macrophage independently of
its current energy value. This process reflected one of the C.
albicans immune system response evasion mechanisms: hyphal
cells within a macrophage continue to grow and C. albicans
hyphae with a certain length (set to 20µm here) are able to
escape macrophages (McKenzie et al., 2010). To account for this
in the model, each hyphal agent had an additional attribute age
corresponding to the hyphal length. Hyphal length was increased
by one unit at each ts, independent of the engulfed state. To escape
a macrophage, a hypha needs to grow 20 units. During the hyphal
growth within the macrophage the energy level of the engulfed
hyphae agent continued to decrease until it dropped below 0
and the agent became inactive and essentially removed from the
system. However, if the hyphal agent managed to grow beyond
a threshold length it would break through the macrophage
agent. If this happened, any C. albicans agent that was inside
the macrophage was immediately released to neighboring MCs
(Lorenz et al., 2004). A yeast agent engulfed by a PMN agent
could not turn into a hyphal agent. In the model, PMN agents
always succeed in killing C. albicans yeasts and hyphae (Wozniok
et al., 2008).

We also took into account the ability of active hyphal agents
to invade epithelial tissues. To reflect this in the model, every
active hyphal agent with an age attribute greater than 3, which
means it is in a hyphal agent state for more than 3 ts, was able to
invade a MC beneath. In the model, the complete penetration of
the epithelial barrier by active hyphae agents took 10 ts. During
this time the patch increased its cytokine release.We didn’t model

the steps afterwards, which would reflect fungal dissemination
through the bloodstream.

The parameters of themodel were chosen such that microflora
and fungal agents could coexist in non-stimulated conditions
(Figure 2A), and such that disruption of microflora would lead
to fungal overgrowth and hyphae formation, that would in turn
be counteracted by activation of an immune response. The
parameters are given in Supplementary Table 1.

SCORING DEVIATIONS FROM THE
REFERENCE STATE

To evaluate the state of the system for a given drug treatment
scenario, we introduced an infection score: a score based on
the number of microflora and hyphal agents in the system. It
describes the relative difference between the system with intact
microflora and the treated system. The score is composed of three
terms:

IStotal =
1

3

(

ISmicroflora_end + IShyphae_end + IShyphae_total
)

The last term, “IShyphae_total,” accounted for the severity of C.
albicans infection and the inflammation over the entire course
of simulation in terms of hyphae load, beginning at t = 0
ts, throughout the drug treatment, its termination and system’s
recovery phase. “IShyphae_end” represented the state of the system
in terms of hyphae load toward the end of the simulation,
namely after the system has recovered or equilibrated. Similarly,
“ISmicroflora_end” represented the state of the system in terms of
healthy microflora toward the end of the simulation. The scores
are given by the following expressions:

ISmicroflora_end =

∑tend
t=tstart

microflora (treatment, t)
∑tend

t=tstart
microflora

(

reference, t
)

IShyphae_end =

∑tend
t=tstart

hyphae (treatment, t)
∑tend

t=tstart
hyphae

(

reference, t
)

IShyphae_total =

∑tend
t=0 hyphae (treatment, t)

∑tend
t=0 hyphae

(

reference, t
)

where t = 0 and tend indicate the start (0 ts) and the end of
the simulation time (8000 ts), respectively, and tstart is a time
point where a successful treatment is considered to have returned
the system to the basal state (here: 7000 ts). Agent(conditions,t)
indicates the number of the respective agents under the respective
simulation conditions at the specified time point.

RESULTS

C. albicans Colonization of Epithelial Cells
Represented by ABM
We created the agent-based model (ABM) to analyze the
population dynamics of C. albicans and its interactions with
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FIGURE 2 | The commensal colonization by C. albicans. The commensal state is characterized by a high amount of microflora agents, a low C. albicans

population, and a low degree of inflammation. (A) Dynamics of C. albicans yeast, hyphae and the microflora when simulating the default model. (B) Number of

patches with low (0–40), medium (40–80), and high (80+) cytokine values.

the host cells during the commensal colonization of the
epithelium. The topology of the model is depicted in Figure 1A.
The human epithelial tissue was represented in the ABM by
a 2-dimensional grid made up of 4225 microcompartments
(MCs). Agents that represent C. albicans and immune cells
were randomly distributed over the grid at the beginning
of every ABM simulation (Figure 1B). During the model
simulation each MC regularly spawned nutrition, which was
consumed by present microflora agents or C. albicans agents
(in either yeast or hyphal form). The host immune response
was incorporated in the model in the form of PMN and
macrophage agents. Immune cells appeared in the system upon
sensing inflammatory signals diffusing through the epithelium
due to higher hyphal load. In the ABM, inflammatory signals
reflected the cytokine release by each MC and represented
the hyphal burden on the MC. Immune cells could enter the
system through nine MCs, referred to as portals providing access
to the blood stream (Ray et al., 2009) (Figure 1B, marked
in orange), and move toward the infected site by sensing
the cytokine gradient within the system (Figure 1C, green
gradient).

The model parameters were tuned such that the microflora
outcompetes C. albicans population during a commensal
state and C. albicans was maintained on low levels with
a predominant yeast form (Figure 2A) (Peleg et al., 2010;
Cottier and Pavelka, 2012). For details, see Materials and
Methods.

Simulations of the System with Intact
Microflora
Growth of themicroflora andC. albicans population were limited
by nutrient availability. In a commensal state, the microflora
agents, which competed with C. albicans agents for nutrients,
prevented C. albicans overgrowth. To simulate a healthy state
we chose the number of microflora agents to be nearly twice
as high as the total number of C. albicans agents (Figure 2A;
Supplementary Table 1). In the setting with intact microflora,
most MCs contained low cytokine levels (Figure 2B), which led
to only a residual recruitment of immune cells.

Our choice of parameters allowed for the simulation of a
commensal colonization by C. albicans, characterized by a high
amount of microflora agents, a low C. albicans population, and a
low degree of inflammation. Only low fluctuations in population
sizes were observed over repeated simulations (Figure 2A),
showing the robustness of the model and the reproducibility of
results. We used this model as the healthy reference state of the
system for all further analysis.

Model Dynamics Upon Disruption of
Microflora
Under certain conditions, a disruption of the microflora may
result in fungal overgrowth, followed by fungal infections. Using
our ABM we simulated the use of a hypothetical antibiotic
that reduces the proliferation rate of the microflora agents
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(microflora drug; MD). We applied the MD treatment only
after an initial commensal state had established, i.e., at time
t = 1000 ts (Figure 3A). A constant dose of MD treatment
led to a sudden decrease of the microflora population, followed
by its extinction after approximately 4700 ts (Figure 3A). The
decrease in microflora population size was accompanied by
a strong increase in C. albicans yeast agents (Figure 3B).
Saturation-like dynamics were observed due to the limited
nutrient resources. The increasing fungal population resulted in
nutrient depletion and a starvation signal, which subsequently
induced hypha formation (Gow et al., 2012; Figure 3D). Hyphal
cells in turn stimulated the cytokine release by the epithelium,
leading to inflammation and phagocyte recruitment (Figure 3C).
Accordingly, the distribution of patches cytokine values is shifted
toward more high-cytokine patches (Figure 3E).

We analyzed the effect of different durations of the MD
(summarized in Table 1). Upon termination of the treatment,
each population slowly returned to the initial state (treatments
ending at t = 1500 ts, 2000 ts, or 2500 ts are depicted
in Figures 3A–D). The dynamic of this return was highly
sensitive to the duration of drug treatment: the longer the drug

application, the higher the amount of hyphal C. albicans agents
and the slower the regeneration of the microflora. Moreover,
the regeneration process showed a higher variability in the host
response (Figure 3C) if the drug was applied for longer periods,
indicating the instability and the lower predictability for this
process for long MD treatments.

TABLE 1 | Microflora-suppressant drug treatment scenarios.

Microflora-suppressant drug (MD) IStotal

treatment start (ts) treatment end (ts)

1000 1500 0.7878

1000 2000 0.6486

1000 2500 0.5109

Outcome of different durations of the antibiotic drug treatment on the reference model

with start and end time points of the treatment. For each treatment the corresponding

infection score IStotal was calculated. An IStotal close to 1 is an indicator for an intact

microflora without fungal infection. The microflora’s ability to recover from the treatment

was highly dependent on the treatment length, reflected by the IStotal decrease for longer

treatments.

FIGURE 3 | Simulation of the model upon MD treatments. Duration of the MD treatment (see Table 1 for more details) affects the ability of the system to recover.

Model simulations with MD applied at t = 1000 ts and removed at either t = 1500 ts, 2000 ts, or 2500 ts. (A) Number of microflora agents, (B) yeast agents, (C) PMN

and macrophage agents, and (D) hyphae agents. (E) Cytokine levels counted for all MCs upon continuous application of the MD drug.
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The presented ABM describes the early stages of epithelial
infection; it does not include fungal dissemination. Although
the model simulations indicated the system’s ability to recover
from fungal infections, one has to keep in mind that the
model’s time scale is arbitrary and likely surpasses the onset
of fungal dissemination. Hence, we aimed to identify strategies
that reduced both the duration and severity of fungal infection.
We introduced an infection score to quantify the severity of the
fungal infection:

IStotal =
1

3

(

ISmicroflora_end + IShyphae_end + IShyphae_total
)

The quantity IStotal combined three measures each comparing
infection to a healthy reference: the amount of microflora
agents at a reference interval after infection and treatment
(ISmicroflora_end, did the microflora recover in comparison to the
uninfected and untreated reference?), the amount of hyphae
at the same reference interval (IShyphae_end, was the infection
cleared?), and the amount of hyphae during the whole simulation
period (IShyphae_total, how severe was the infection?). Since we
always compared the infected and treated case to the uninfected,
healthy case, an IStotal value of 1 indicated that the considered
system has an intact microflora without C. albicans infection. A
treatment was considered as optimal if the resulting score was
reliably close to 1 depicting a successful cure of the C. albicans
infection. A score smaller or greater than 1 indicated a disruption
in the microfloral balance, having either more or less C. albicans
agents in the treated system than in the healthy reference system,
respectively (compare Figures 3A–D; Table 1). Both cases were
considered unfavorable and indicated a renewed imbalance in the
microflora. For details of the computation of IStotal see Materials
and Methods.

Model Dynamics Upon Drug Application
Against Fungal Cells
To simulate a treatment of the MD-induced infection, we applied
two hypothetical drugs that did not directly kill C. albicans
cells but either inhibited their growth (division drug; DD) or
prevented the transition from yeast to hyphal state (transition
drug; TD). We tested the efficiency of both drugs in clearing
the fungal infection. The drugs were applied separately or in
combination for different durations and dosages, after the initial
onset of MD (summarized in Table 1).

Drug Treatment 1: Inhibition of Fungal Growth
The application of the division drug (DD) led to an increased
amount of energy required for a yeast agent to divide. For
instance, a DD drug dosage of 2 means that the yeast cell needed
twice as much energy to separate into two daughter cells as
under normal conditions. The DD mechanism here aimed at
summarizing possible effects of fungistatic drugs that require
cells to consume additional energy for adaptation and survival
before division is possible, for example fluconazole (Charlier
et al., 2006). Our model simulations indicated that treatment of
C. albicans infection with DD alone could be successful if the
dosage and duration were sufficient. Longer treatment durations

required lower dosage, and vice versa, to receive an optimal
IStotal—an indicator of a successful treatment (Figure 4A). High
dosages combined with high durations led to IStotal greater
than 1 indicating that the system contained less hyphae than
the healthy reference state, causing new imbalances in the
microflora. The simulation variability (deviation in IStotal values
from repeated simulations) increased as treatment duration and
dosage increased (Figure 4A). Although extended treatments
with higher doses tended to approach optimal IStotal, such
treatments also tended to have variable treatment outcomes
(indicated by higher standard deviations in Figure 4A). This was
an important result from our model simulations. It demonstrates
that extended antifungal treatments with high drug doses will
likely result in an unpredictable and possibly deleterious state
characterized by the complete extintinction of the target—C.
albicans in our case. Such state could lead to an increase in
another microbial agent while microflora reaches a new balance.
Side effects like these become highly variable when dosage and
period of drugs administration are increased.

Drug Treatment 2: Inhibition of Hyphae Formation
The transition drug (TD), the second drug that we tested,
inhibited hyphal formation and was motivated by studies that
proposed this morphogenic switch as a target for novel drugs
(Jacobsen et al., 2012). In our model, a TD dosage of 1 denotes
that only 1% of yeasts were able to undergo hypha formation.

Contrary to the results with a DD treatment, model
simulations with different strengths and durations of TD
alone showed that this treatment was less efficient than DD
(Figure 4B). The best IStotal that could be achieved with TD
treatment was 0.66, whereas an optimal IStotal would be close
to 1. Long treatments with high TD doses led to a decrease
in IStotal instead of the expected return of the system to the
healthy state. Contrary to DD, upon TD treatment the variability
across simulation repeats were consistently small regardless of the
strength and duration of the treatment. Inspection of individual
simulations of the model revealed that the application of TD
indeed led to a lower hyphae burden during treatment. However,
yeast cells accumulated during TD treatment, causing a new
outbreak of fungal infection after the treatment ended. Although
treatment with TD alone had to be regarded as unsuccessful in
our model simulations, the stability of this treatment appeared
interesting: It was independent of dose and duration unlike the
DD treatment.

Multi-Drug Treatment
Although TD was not effective as a single treatment, we reasoned
that its mode of action might contribute to stabilizing the
efficiency of a combined treatment. To determine possible
synergistic effects, we systematically screened a large number of
combinatorial treatments and compared their results in terms
of median IStotal values and their standard deviations among
different simulations. Based on our initial screening of the model
parameters when testing sensible drug doses and treatment
durations, we decided to use three different doses for each of
the two drugs and varied treatment lengths between 3500 ts
and 6000 ts for DD and between 500 ts and 1000 ts for TD,
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FIGURE 4 | Simulation of the model upon drug treatments. Efficiency of drug treatment scenarios in terms of infection score. The distribution of infection scores

IStotal is indicated by violin plots in the top panels, with the median marked in red and the optimal value of 1 indicated by a horizontal orange line. Respective

treatment scenarios are indicated in the bottom panels, indicating treatment duration by bar length and dosage by bar coloring. C. albicans infection was always

induced by the application of MD (starting at t = 1000 ts, ending at t = 2000 ts). (A) Analysis of the DD efficiency. Only when longer treatment was applied the system

was more likely to recover from the infection by t = 7000 ts. An increased drug dosage introduced variability to the drug performance. (B) Analysis of the TD efficiency.

Irrespective of the drug dosage and duration, the system was never able to recover from the simulated fungal infection indicating low effectiveness of the TD. (C)

Analysis of the combinatorial DD and TD treatments. Successful treatment strategies were tested by scoring the performance of DD and TD as a multi-drug treatment.

Presented are the top 20 treatments scenarios for which median IStotal values were close to 1 (see Table 2 for parameters). The remaining treatment scenarios tested

are listed in Supplementary Table 2. Addition of TD to DD treatment has a synergistic effect. Complementation with TD decreased the IStotal variability and improved

the median IStotal value when compared to the performance of DD alone with the same dose and duration (compare e.g., treatment scenarios 5 and 6, or 8 and 9).

also considering different treatment start times. A full list of
combinatorial treatments and their associated IStotal values is
available as Supplementary Information. Here, we focus only on
those treatments that led to optimal values of IStotal, i.e., close to 1
(Figure 4C), indicating that the treatment was successful and the
treated system has renewed microflora showing no more signs of
C. albicans infection.

Although the DD single treatments were among the best
treatment scenarios tested, the addition of TD allowed for even
lower DD drug dosages or shorter DD treatment durations,
effectively reducing the total amount of DD that had to be
administered (Figure 4C). Moreover, combinatorial treatments
showed a reduced variability across repeated simulations
(reflected by low deviation of associated IStotal values), indicating
a higher predictive value of these treatments. The tested
treatment scenarios contained two cases with particularly
low deviations from the optimal score (treatments 6 and
9; Figure 4C). Although the median score of these two
simulations is slightly lower than 1, they show very low
standard deviations. Although treatment 6 requires an earlier
treatment start, its duration is just about 2/3 of treatment 9
due to the synergistic effect of the two drugs in this treatment
scenario.

The two drugs target different processes that altogether
affect hyphae population namely by inhibiting the increase in
yeast cells (DD) and inhibiting hyphae formation (TD). In our
model, TD alone leads to an adverse state as yeast cells can

accumulate and form hyphae upon treatment termination. The
synergism emerges when TD is applied early on to prevent
hyphae formation while an addition of DD to the treatment will
prevent yeast cells to accumulate—a state otherwise deleterious
upon the end of TD treatment. Comparison of treatment 5 with
treatment 6 as well as treatment 8 with treatment 9 indicates the
overall improvement in IStotal value for similar DD doses when
TD is added.

Exemplary, we have quantified the synergy of treatment
scenarios 6, 7, and 8 according to their deviation from Bliss
independence (Bliss, 1939). For this quantification, we use the
improvement of IStotal from the untreated value (see alsoTable 1)
as effect and compare this to the treated

IStotal : futreatment = (1− IStreatment
total )/(1− IS

ref

total
).

We calculate the expected additive effect as

fa12 = fa1 + fa2 − fa1 · fa2

with fax = 1 − fux and compare this to simulation results. We
found that for treatment scenario 6, the effect of the combined
treatment is stronger than expected from an additive model (see
Table 3), whereas for scenarios 7 and 8, we observed only very
slight deviations from the expected additive effect. Hence, we
found that the synergistic or additive interaction of the two drugs
discussed here is a matter of dose and timing.
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TABLE 2 | Overview on the 20 best treatment scenarios as shown in Figure 4C.

# Division drug Transition drug IS micro IS hyphae1 IS hyphae2 IS total

Dose Start End Dose Start End Mean Median SD Mean Median SD Mean Median SD Mean Median SD

1 1.1 1100 4900 0 0 0 0.96 0.95 0.08 0.91 0.86 0.28 1.13 1.11 0.17 1 0.96 0.17

2 1.5 1100 4900 0 0 0 0.96 0.95 0.08 0.91 0.85 0.27 1.23 1.2 0.22 1.03 1 0.19

3 2 1100 3900 0 0 0 0.98 0.97 0.08 0.96 0.86 0.31 1.29 1.2 0.28 1.07 1.01 0.22

4 2.25 1100 3900 0 0 0 0.95 0.96 0.08 0.89 0.81 0.26 1.16 1.12 0.23 1 0.96 0.18

5 2.5 1100 2900 0 0 0 0.97 0.97 0.09 0.94 0.86 0.32 1.12 1.07 0.27 1.01 0.96 0.22

6 2 1100 2900 99 1100 1000 0.93 0.93 0.07 0.84 0.78 0.19 1.03 0.99 0.16 0.94 0.91 0.13

7 2 1500 4500 99 1500 450 0.95 0.95 0.07 0.87 0.82 0.21 1.15 1.14 0.15 0.99 0.96 0.14

8 2 1500 4500 90 1500 450 0.97 0.98 0.06 0.94 0.93 0.19 1.15 1.15 0.13 1.03 1.02 0.12

9 2 1500 4500 0 1500 450 0.95 0.94 0.06 0.86 0.79 0.23 1.11 1.08 0.14 0.98 0.94 0.14

10 2 1500 4500 99 1500 600 0.94 0.94 0.07 0.84 0.82 0.19 1.13 1.12 0.15 0.98 0.95 0.15

11 2 1500 4500 90 1500 600 0.95 0.95 0.07 0.9 0.84 0.25 1.14 1.12 0.18 0.99 0.97 0.16

12 3 1500 2500 99 1500 450 1 1 0.09 1.02 0.92 0.33 1.2 1.11 0.3 1.06 0.98 0.23

13 3 1500 2500 90 1500 450 0.96 0.96 0.07 0.87 0.84 0.18 1.06 1.06 0.17 0.97 0.96 0.14

14 3 1500 2500 0 1500 450 0.99 0.99 0.07 0.97 0.93 0.27 1.16 1.13 0.23 1.03 1.02 0.18

15 3 1500 2500 99 1500 600 0.99 0.98 0.11 0.99 0.87 0.37 1.21 1.15 0.31 1.06 1.02 0.26

16 3 1500 2500 0 1500 600 0.96 0.97 0.08 0.9 0.87 0.28 1.1 1.03 0.25 0.99 0.96 0.2

17 3 2100 3900 99 1100 1000 0.97 0.97 0.13 0.96 0.87 0.4 1.45 1.43 0.3 1.11 1.07 0.27

18 3 2100 3900 99 1500 600 0.92 0.9 0.12 0.83 0.7 0.37 1.23 1.15 0.29 0.99 0.92 0.25

19 2 2100 3900 99 2100 3900 0.92 0.93 0.09 0.79 0.78 0.22 1.16 1.18 0.16 0.95 0.95 0.15

20 2 2100 3900 0 2100 3900 0.95 0.94 0.07 0.85 0.81 0.19 0.95 0.95 0.11 0.91 0.89 0.12

For all the scenarios listed, the system was challenged by MD treatment starting at t = 1000 ts, and ending at t = 2000 ts. The different treatment scenarios are listed with dosage

(fold increase of nutritional division requirements for DD; percent of inhibited hyphal transition events for TD), start and end time points (in ts). We list the means, medians, and standard

deviations (sd) of the respective IStotal values (See Equation 1). Scores close to one indicate a return of the system to the healthy reference state, small standard deviations indicate

higher treatment reliability.

TABLE 3 | Quantification of synergism according to Bliss independence

model.

Scenario fa1 fa2 faadd
12

fasim
12

fasim
12

/faadd
12

6 0.44 −0.08 0.4 0.51 1.29

7 0.54 −0.06 0.51 0.56 1.08

8 0.56 −0.04 0.54 0.53 0.99

For each treatment scenario tested, we combine the observed single fractional effects

(fa1 for DD, fa2 for TD), computed as the relative change in IS combined to a reference

scenario, the expected additive effect (faadd12 ), and the simulated combined effect (fasim12 )

and the fold change between faadd12 and fasim12 .

DISCUSSION

We have developed an ABM of host-pathogen interactions
duringC. albicans infection and used this to screen combinatorial
drug treatments. All the drugs tested are hypothetical drugs.
Nevertheless, our approach can be readily extended and refined,
when data become available, and it can be used as a proxy for
testing various treatment strategies. In short,

1. we provided an ABM of host-pathogen interactions ready to
download and simulate;

2. we introduced a new scoring scheme as an indicator of a
treatment success;

3. we described steps for screening the progress of various
treatment scenarios;

4. we suggested optimal treatment strategies based on the
availability of DD and TD.

Development of an ABM of Host-Pathogen
Interactions
Based on our previous work (Tyc and Klipp, 2011), we
have developed an ABM of host-pathogen interactions upon
C. albicans infection, which efficiently described this mutual
interplay during the early stages of infection. The model
predicted the outcome of proposed individual and combinatorial
drug treatments and enabled an initial assessment of their
potential. Although our model allowed us to identify strategies
to reduce initial infections, extensions that include secondary
immune response and different organs to which the fungi can
disseminate could yield more detailed and reliable predictions.

ABMs are well suited to investigate disease mechanisms (An
et al., 2009; Su et al., 2014). Prominent are models of cell/cancer
growth under different conditions and drug treatments (Bravo
and Axelrod, 2013; Li et al., 2013; Wang et al., 2013; Kim
et al., 2014; Su et al., 2014), host-pathogen interactions in M.
tuberculosis granuloma (Mattila et al., 2013; Repasy et al., 2013),
and details of immune response (Tokarski et al., 2012; Gong et al.,
2013).

Some obstacles hamper the application of such models
for quantitative predictions. Although ABMs enjoy certain
popularity, there is still no well-established standard that would
facilitate model reusability, exchange, and analysis (Railsback
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et al., 2006). Analysis of ABMs is usually computationally
demanding because it relies on iterative realization of the
stochastic models (Marino et al., 2008).

For the special case of host-pathogen interactions, it
is challenging to generate experimental data suitable for
parameterization of ABMs, but recent progress in the areas of
imaging and image analysis (Mech et al., 2011) will substantially
increase the amount of available data.

Development of a Scoring Scheme for
Treatment Success
A criterion to compare treatment outcomes was required
to efficiently screen different treatment scenarios. Here, we
introduced a scoring scheme which we named infection score,
IStotal, that related the changes in the amount of hyphae
upon treatment when compared to the healthy reference state.
Aiming for reduced treatment duration and drug dosage whilst
preserving the treatment outcome, our IStotal allowed for a quick
initial assessment of various treatment strategies. Eventually,
advanced scoring schemes will need to take pharmacokinetic
predictions (Thelen et al., 2011) and more details of immune
activation (Gong et al., 2013), into account.

The IStotal value we introduced allowed detecting the effect of
treatment scenarios where the patient is administered prolonged
and excessive drug treatments, reflected by IStotal increase beyond
1. We have interpreted the standard deviation of repeated
stochastic simulations as a measure for treatment reliability.
Below we discuss the performance of drug combinations we
found interesting with respect to their associated IStotal values
from repeated model simulations.

Predictions for Novel Therapies Against C.
albicans Infection
Our results indicated that TD drugs which prevent the switch
from yeast to hyphae [e.g., a farnesol-derived treatment or Allium
sativum (Low et al., 2008)] can have an adverse effect, namely by
leading to bursts of hyphal cells after the end of the treatment. In
our model we observed a burst of hyphal cells since cells with low
energy level that could not undergo the morphogenetic switch,
accumulated, and switched to hyphae right after the treatment
ended. This might be easily overlooked when not thoroughly
examined with supporting model simulations. Interestingly, our
simulation results indicated that addition of a TD-like drug
to a DD treatment greatly improved the treatment reliability
(by reducing the variability of the IStotal across multiple
simulations) while minimizing treatment duration and drug
dosage. Minimizing treatment dosage and duration reduces both
treatment cost and occurrence of potential side effects. Models
of host-pathogen interactions used in the context of evaluation
of drug treatment strategies, here assessed by evaluating IStotal,
will be of special use especially for establishing scenarios for
treating hospital-acquired fungal infections. Patients struggling
with hospital-derived illnesses often suffer from a weakened
immune system and are administered other drugs in parallel.
With host-pathogen models combined with pharmacokinetic
models, one could examine the risks of combinatorial drug
treatments.

The findings of our simulations study can not be directly
translated into medical practice because our model, although
it represents known biological processes, is not calibrated
to quantitative experimental data. Quantitative data necessary
for parameterization of models like ours are not available
yet. Additionally, we used hypothetical drugs that resemble
mechanisms of known drugs [e.g., fluconazole for the DD drug
(Charlier et al., 2006), or Allium sativum for the TD drug
(Low et al., 2008)] but in our model these are not tuned to
quantitatively resemble the administration of any certain dosage
of existing drugs. Nevertheless, studies such as ours show cost-
efficient routes to successfully exploit different mechanisms that
are not successful on their own. Before model predictions can be
translated into medical practice, they need to be experimentally
validated. For candidiasis, prominent experimental models that
could be used for testing are mouse (Kong et al., 2015) or
reconstituted human epithelium (Schaller et al., 1999). As
invertebrate models can be a pre-screening step before using
murine models (Brunke et al., 2015), computer models can be
used to reduce overall experiments.

Finally, ABMs are, as any models, limited to a certain
set of interactions. Before the translation of any modeling
results into medical practice, additional interactions lying outside
the scope of the respective model must be carefully checked.
For ABMs of host-pathogen interactions and the testing of
different drug treatments as discussed here, these are possible
interactions of the drugs beyond interactions on the pathogen,
e.g., pharmacokinetic interactions that extend or shorten the
half-life of a compound or might increase the severity of side-
effects of a compound. Such interactions could be taken into
account by adding input from pharmacokinetic models as input
to the ABMs. Still, there might be effects between drug and the
local environment that are unknown prior to their experimental
observation and can thus not be included in models (Moosa
et al., 2004). Accordingly, mathematical models will not abolish
in-vitro models or animal models altogether, but they are a
formidable tool to minimize animal testing and streamline the
process of knowledge generation.

CONCLUSIONS

Mathematical modeling is increasingly used for medical and
pharmaceutical predictions and shows increasing rates of success
(Swierniak et al., 2009; Brockmann and Helbing, 2013; Łuksza
and Lässig, 2014). In this work, we presented the screening
of combinatorial drug treatments in ABMs of host-pathogen
interactions. A similar approach has been used to investigate
synergisms in cancer treatment (Su et al., 2014). Here, we
demonstrated the potential of this approach for host-pathogen
systems with the prototypical example of the human pathogen C.
albicans.

Although some drugs are not efficient on their own,
our simulations demonstrated that they can greatly improve
treatment success when properly combined with other drugs.
By simultaneous inhibition of multiple virulence aspects of the
pathogen we were able to reduce both dosage and duration,
reducing the chance of off target deleterious effect. It would be
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very expensive—if feasible at all—to exhaustively test a sensible
number of combinations experimentally to find synergistic
combinations.

Although not quantitatively reliable, our results highlighted
the potential of ABM approaches for clinical applications: agent-
based platforms can bridge multiple temporal and/or spatial
scales that occur when studying the progress of disease from host-
pathogen interactions at the site of infection to the activation
of the innate immune response (Bauer et al., 2009; Kirschner
et al., 2014). Although such models would be very complex
and their parameterization would be very demanding, a detailed
model of human immune response would be highly reusable
and integration with pharmacokinetic models would further
boost their predictive value. The calibration of such models

would require additional experimental data and, in the case
of imaging data, techniques to quantitatively integrate such
data.
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