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In utero undernutrition is associated with increased risk for insulin resistance, obesity,

and cardiovascular disease during adult life. A common phenotype associated with

low birth weight is reduced skeletal muscle mass. Given the central role of skeletal

muscle in whole body metabolism, alterations in its mass as well as its metabolic

characteristics may contribute to disease risk. This review highlights the metabolic

alterations in cardiac and skeletal muscle associated with in utero undernutrition and

low birth weight. These tissues have high metabolic demands and are known to be sites

of major metabolic dysfunction in obesity, type 2 diabetes, and cardiovascular disease.

Recent research demonstrates that mitochondrial energetics are decreased in skeletal

and cardiac muscles of adult offspring from undernourished mothers. These effects

apparently lead to the development of a thrifty phenotype, which may represent overall

a compensatory mechanism programmed in utero to handle times of limited nutrient

availability. However, in an environment characterized by food abundance, the effects

are maladaptive and increase adulthood risks of metabolic disease.

Keywords: intrauterine growth restriction, metabolic programming, mitochondria, oxidative phosphorylation,

uncoupling, epigenetics

Early life environmental factors, such as maternal food restriction, contribute to the development
of metabolic diseases in offspring (Gluckman et al., 2008). Intrauterine growth restriction (IUGR)
is one environmental perturbation that has been linked to the development of obesity and type
2 diabetes mellitus (T2DM). The idea that prenatal events may be important in determining risk
for adult disease was first reported by David Barker who made a landmark observation that birth
weight is inversely correlated with the risk of coronary heart disease in adulthood (Barker et al.,
1989). The birth records of 16,000 men and women who were born in Hertfordshire between 1911
and 1930 were examined. Death from coronary heart disease was associated with low birth weight,
with the rates falling progressively between individuals with a birth weight less than 2500 g and
individuals with a birth weight of 4310 g.

Low birth weight is defined by theWorldHealthOrganization as weight at birth<2500 g (World
Health Organization United Nations Children’s Fund, 2004). 15.5% of all babies are born with low
birth weight, representing over 20 million infants worldwide (World Health Organization United
Nations Children’s Fund, 2004). While the incidence of low birth weight is greater in developing
countries, it remains a significant problem in developed countries as well. In North America, 7.7%
of infants are low birth weight (World Health Organization United Nations Children’s Fund, 2004).
Low birth weight may be a result of preterm birth or poor fetal growth. Poor fetal substrate supply
can be due to poormaternal energy intake (insufficient intake of a specificmicro- or macronutrient,
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or reduced total calories), placental insufficiency, maternal
smoking, pregnancy at high altitude, or high maternal levels of
stress hormones (e.g., cortisol). Interestingly, infants who are
born with a high birth weight are also susceptible to metabolic
disease (Boney et al., 2005). Studies have shown that there is a
U-shaped correlation between birth weight and obesity with a
higher prevalence of obesity for low birth weight and high birth
weight (McCance et al., 1994;Wei et al., 2003). Here the focus will
be on low birth weight as a result of poor fetal substrate supply
and its impact on skeletal and cardiac muscle. These tissues have
high metabolic demands and are known to be sites of major
metabolic dysfunction in chronic diseases such as T2DM and
cardiovascular disease.

After Barker’s initial observation, subsequent epidemiological
studies showed a strong correlation between in utero
undernutrition, low birth weight, and risk of adult cardiovascular
disease, impaired glucose tolerance, T2DM, and obesity
(Figure 1) (Hales et al., 1991; Barker et al., 1993; Ravelli et al.,
1999; Roseboom et al., 2000; Painter et al., 2005). The well-
studied epidemiological data from the Dutch Hunger Winter
show the importance of adequate fetal nutrition. During this
short-term famine in 1944–1945, the daily nutritional intake was
reduced to∼400–1000 kcal. Adults whose mothers were exposed
to the famine during pregnancy had low birth weight and had
impaired glucose tolerance and predisposition to T2DM (Hales
et al., 1991). These studies gave rise to the “developmental origins
of adult disease” hypothesis, which states that adverse influences
early in development result in physiological adaptations that
increase susceptibility to adult disease. The increased risk of
obesity, insulin resistance, and T2DM has been suggested
to be due to a thrifty phenotype programmed in utero that
endows offspring with an increased capacity to store fuels rather
than burning them (Hales and Barker, 1992). This apparent
adaptive response by the fetus involves metabolic alterations
that could altogether conserve energy expenditure to allow
growth of key organs such as the brain, at the expense of other
tissues such as muscle. Thus, when the nutrients provided to a
fetus are limited, the fetus adapts to this environment through
physiological changes that enhance its survival under these
conditions. However, if the fetus is born into an environment
in which nutrients are abundant, the adaptations made in utero
may become a disadvantage (Gluckman and Hanson, 2004).
Thus, disparities between the predicted environment and the
actual environment into which the child is born may result in an
increased disease risk.

Research based on animal models of IUGR has provided
extensive support for the findings from human epidemiological
studies and has substantially advanced our understanding of
the negative impact of a suboptimal in utero environment. The
most commonly used animal models of IUGR are maternal
caloric or protein restriction and induction of uteroplacental
insufficiency. These models have shown that a suboptimal
in utero environment has deleterious consequences for adult
health, with effects in many organs and tissues including skeletal
muscle, heart, pancreas, liver, blood, and the brain (Snoeck et al.,
1990; Woodall et al., 1996a,b; Park et al., 2003, 2004; Peterside
et al., 2003; Qiu et al., 2004; Jimenez-Chillaron et al., 2005, 2009;

Bubb et al., 2007; Schober et al., 2009; Woo et al., 2011; Fung
et al., 2012; Thorn et al., 2013; Tare et al., 2014; Beauchamp et al.,
2015a,b). We are only just beginning to understand the profound
impact of suboptimal in utero nutrition on adult metabolic
health.

A common phenotype in IUGR humans and animals is
reduced lean mass (Hediger et al., 1998; Jimenez-Chillaron et al.,
2005; Kensara et al., 2005; Wells et al., 2007). Lean body mass,
primarily skeletal muscle, is known to be the best predictor
of basal metabolic rate (Zurlo et al., 1990; Rolfe and Brown,
1997). Skeletal muscle comprises ∼40% of the body mass in
an adult human and although its metabolic rate per gram of
tissue is relatively low, it greatly contributes to metabolic rate
due to its high fractional contribution to body mass (Zurlo
et al., 1990; Rolfe and Brown, 1997). Therefore, differences in
muscle metabolism have potentially substantial implications in
determining one’s susceptibility to obesity and related metabolic
disease, such as T2DM. Indeed, skeletal muscle is the largest
insulin-sensitive tissue in the body and is the primary site for
insulin-stimulated glucose utilization (Defronzo et al., 1985).
Thus, blood glucose homeostasis, particularly in the post-
prandial state is greatly impacted by insulin resistance in muscle.
As muscle is a key determinant of whole body metabolism and
insulin sensitivity, reductions in muscle mass and/or function
may be especially important to the increased metabolic disease
risk (Defronzo et al., 1985; Zurlo et al., 1990; Rolfe and Brown,
1997).

In addition to reduced lean mass, low birth weight is
associated with altered skeletal muscle fiber composition, and
oxidative capacity (Figure 2). Human studies have documented
a shift toward more type II glycolytic fibers, which accompanied
skeletal muscle insulin resistance (Jensen et al., 2007). When
challenged with a hyperinsulinemic-euglycemic clamp, a
measure of tissue insulin sensitivity, those who had a low birth
weight had decreased glucose uptake, consistent with impaired
insulin sensitivity (Jaquet et al., 2000). People with low birth
weight have also been shown to have reduced muscle glucose
uptake after local insulin infusions and decreased expression of
insulin signaling proteins and glucose transporter 4 (GLUT4) in
skeletal muscle (Hermann et al., 2003; Ozanne et al., 2005; Jensen
et al., 2008). In more rigorously controlled animal models of low
birth weight, many of these same skeletal muscle alterations have
also been observed. In IUGR animal models, skeletal muscle
has reduced mass, decreased GLUT4 expression, decreased
glycogen content, decreased insulin-stimulated glucose uptake,
decreased oxidative capacity, and increased lipid accumulation
(Selak et al., 2003; Jimenez-Chillaron et al., 2005; Zhu et al., 2006;
Raychaudhuri et al., 2008; Huber et al., 2009; Dai et al., 2012;
Beauchamp et al., 2015a).

Recently, we have used a mouse model system of maternal
undernutrition during late pregnancy to examine offspring
from undernourished dams. Consistent with previous studies,
these low birth weight offspring had increased adiposity and
decreased glucose tolerance in adulthood compared to controls
(Beauchamp et al., 2015a). Our studies focused on female
offspring, as our pilot studies indicated a more pronounced
metabolic phenotype than in male offspring. In permeabilized
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FIGURE 1 | IUGR is one environmental perturbation that has been linked to the development of T2DM and obesity in adulthood. It is hypothesized that

the early life stressor of dietary energy restriction may program metabolic adaptations that favor survival initially, but are ultimately detrimental to adult health in an

environment of dietary energy surfeit. Therefore, what was an advantage in utero in which energy substrates was scarce can become a disadvantage by increasing

the person’s susceptibility to metabolic diseases in adulthood.

FIGURE 2 | Numerous studies have demonstrated that adult humans

who were born with low birth weight have abnormalities in

characteristics of skeletal muscle and heart, two tissues that have

high metabolic demands. These abnormalities increase the risk for

metabolic diseases including obesity, type 2 diabetes, and cardiovascular

diseases. Please refer to text for specific references.

fiber preparations from mixed fiber type muscle of adult females,
in utero undernourished mice had decreased mitochondrial
content and decreased mitochondrial proton leak respiration,
fatty acid oxidative capacity, and state three respiratory capacity
through complex I (Beauchamp et al., 2015a). The findings have
implications for obesity risk. Obesity is a result of an energy
imbalance, in which energy intake exceeds energy expenditure

over a sustained period of time. In the long-term this results
in energy storage in the form of triglycerides in adipose tissue.
Therefore, our findings of decreased mitochondrial content and
decreased capacity for fuel oxidation in muscle, an indicator
of tissue energy expenditure, may in part explain the increased
susceptibility to obesity in IUGR offspring. Furthermore, we
have shown that IUGR offspring lose less weight after a 4 week
40% calorie restriction diet (Beauchamp et al., 2015a). We have
suggested that this resistance to weight loss may be due to the
thrifty metabolic mechanisms programmed in skeletal muscle in
utero, and may have implications for diet-resistant obesity, which
we investigate in human clinical populations (Harper et al., 2002;
Gerrits et al., 2010; Thrush et al., 2014). Thus, it seems that in
utero undernutrition not only increases susceptibility to obesity
but may also make weight loss more difficult.

It has been hypothesized that mitochondrial programming
may be a key adaptation made by an IUGR fetus to promote
survival in a nutrient-restricted environment (Lee et al., 2005).
Mitochondria play a key metabolic role and are responsible for
oxidizing energy substrates to support ATP synthesis, which can
then be used to drive a very wide range of energy demanding
reactions in cells. Mitochondrial dysfunction is implicated in
many disease states, including obesity and T2DM and thus,
mitochondrial dysfunction may be a link between in utero
nutrition and health and disease in adult life. IUGR has been
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associated with decreased skeletal muscle mitochondria DNA
content and decreased expression levels of genes involved in
mitochondrial biogenesis and function (Lane et al., 1998; Park
et al., 2004; Liu et al., 2012). Consistent with these findings,
we have shown that in utero undernourished offspring have
decreased skeletal muscle mitochondrial content and impaired
mitochondrial function (Beauchamp et al., 2015a). Moreover,
we assessed energetics in isolated mitochondria and found
that mitochondria from in utero undernourished offspring have
decreased coupled and uncoupled respiration compared to
mitochondria from control mice (Beauchamp et al., 2015a).
Therefore, we have shown that not only do IUGR offspring have
decreased skeletal muscle mitochondrial content but respiration
per mitochondrion is also decreased. These skeletal muscle
adaptations are consistent with a programmed thrifty phenotype,
which would set the stage for the development of adult metabolic
disease in an environment with abundant nutrition.

Given the high energy requirements of the heart, IUGR
may be associated with cardiac metabolic alterations that have
negative effects in adulthood. Many cardiac diseases and heart
failure are associated with altered metabolism in the heart,
including a general decrease in oxidative capacity and the down-
regulation of enzymes of fatty acid oxidation (Sack et al., 1996;
Sharov et al., 2000; Razeghi et al., 2001; Stanley et al., 2005;
Boudina et al., 2007; Anderson et al., 2009). In humans, IUGR
is associated with changes in cardiac morphology, premature
stiffening of carotid arteries, impaired cardiac function, and
elevated blood pressure (Martin et al., 2000; Bahtiyar and
Copel, 2008; Crispi et al., 2010). In animal models, IUGR is
associated with the development of adult hypertension, vascular
dysfunction, and increased myocardial lipid content (Battista
et al., 2002; Cheema et al., 2005; Zohdi et al., 2012). IUGR
rats have an increased susceptibility to ischemia/reperfusion
injury that is associated with a mismatch between myocardial
glycolysis and glucose oxidation rates (Rueda-Clausen et al.,
2011). In this study, IUGR offspring during reperfusion had
decreased cardiac performance and significant increased amount
of glucose that underwent glycolysis relative to the amount
that was oxidized (Rueda-Clausen et al., 2011). Recently,
we assessed energetics in a cardiac muscle homogenate and
found that in utero undernourished mice in adulthood have
decreased mitochondrial proton leak respiration (adenylate-free,
and oligomycin-induced rates), fatty acid oxidative capacity,
and maximum oxidative phosphorylation capacity (Beauchamp
et al., 2015b). These findings are consistent with the decreased
respiration in cardiac tissue reported in adults with obesity and
T2DM and the decreased cardiac energy transduction associated
with heart failure (Sharov et al., 1998, 2000; Boudina et al.,
2007; Anderson et al., 2009; Doenst et al., 2010). Therefore,
our results demonstrated that maternal undernutrition alters
mitochondrial metabolism in the heart, which may contribute to
the increased risk of cardiovascular and other metabolic diseases
in the offspring. However, studies examining themetabolic effects
of IUGR on cardiac muscle are very limited.

Skeletal muscle has a remarkable ability to adapt and respond
to its environment and physiological challenges by changing its
phenotype in terms of size, composition, and aerobic capacity,

outcomes that are brought about by changes in gene expression,
biochemical, and metabolic properties (Flück and Hoppeler,
2003; Luquet et al., 2003; Hénique et al., 2015). As such,
skeletal muscle can modify its functional characteristics to adapt
to metabolic need. The fetal adaptations to undernutrition
that produce the long-term outcomes of IUGR are not fully
understood. Intriguingly, some of these effects are transmissible
across generations, suggesting that heritable changes in gene
expression occur with in utero undernutrition. Experimental
studies have shown intergenerational transmission of obesity
and altered glucose metabolism associated with low birth weight
(Benyshek et al., 2006; Harrison and Langley-Evans, 2009;
Jimenez-Chillaron et al., 2009). The increased susceptibility to
metabolic disease in adulthood may arise, at least in part, from
epigenetic mediated alterations in gene expression. Epigenetic
modification refers to modifications of DNA and chromatin that
result in differential gene expression without altering the DNA
sequence itself. These modifications include DNA methylation,
genomic imprinting, and chromatin modifications such as
post-translational modification of histones. These epigenetic
modifications alter the binding of transcription factors to specific
promoters and/or alter chromatin conformation, which in turn
modulate gene expression. Thus, epigenetic modifications of the
fetal genome based on maternal environmental cues may reset
the metabolic state of the fetus to produce phenotypes in the
offspring that are best suited for the predicted environment
and that are maintained into adulthood. Evidence indicates
that environmental factors acting during critical developmental
periods can alter the epigenome. For example, in the mouse, the
level of methyl donors, such as methionine, folate, and choline in
the maternal diet has been shown to alter DNA methylation in
the offspring (Wolff et al., 1998).

Human data that link maternal undernutrition to epigenetic
changes are limited. In one study, whole blood genomic DNA
was analyzed in adults who were in utero during the Dutch
HungerWinter, a period of famine, compared to their unexposed
same-sex sibling. Adults who were in utero during the famine,
and thus were undernourished, showed hypomethylation of
the insulin-like growth factor II gene, a maternally imprinted
gene that is a key factor in mammalian growth (Heijmans
et al., 2008). Modifications to the methylation status of genes
produce stable alterations in gene expression and represent a
potential mechanism by which early life nutrition may influence
susceptibility to metabolic disease in adulthood (Waterland and
Jirtle, 2004). However, to date, epigenetic modification of muscle
in IUGR offspring has not been described in humans.

Animal models are increasing our understanding of the
mechanisms that cause the deleterious effects of IUGR.
Epigenetic modifications that affect glucose metabolism have
been described in IUGR pancreas, liver, and muscle. Pancreatic
and duodenal homeobox 1 (Pdx-1) is a transcription factor that
plays an important role in β-cell development and function.
Expression of the Pdx-1 promoter is decreased in IUGR and
promotes the development of T2DM in adulthood. It has been
shown that islets isolated from IUGR fetuses have decreased
histone acetylation at the proximal promoter of Pdx-1, which
is associated with decreased Pdx-1 expression and defective
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glucose homeostasis (Pinney et al., 2011). In another study,
maternal protein restriction in rats led to decreased methylation
of genes for the glucocorticoid receptor (GR) and peroxisome
proliferator-activated receptor alpha (PPARα) in the liver of the
offspring after weaning (Jing-Bo et al., 2013). This was associated
with greater mRNA expression of GR and PPARα, both of which
are involved in glucose and lipid metabolism (Jing-Bo et al.,
2013). In IUGR, skeletal muscle becomes insulin resistant and
glucose uptake is reduced. It has been shown that IUGR is
associated with alterations in transcription factor binding to the
GLUT4 promoter, and this was associated with silencing histone
modifications and reduced glut4 gene expression (Raychaudhuri
et al., 2008). In skeletal muscle, it has been shown that IUGR
rats have increased methylation of peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α), a master regulator
of mitochondrial biogenesis (Xie et al., 2015). Accordingly, this
was associated with a reduction in PGC-1α transcription activity,
mitochondrial content, and protein level of components of the
insulin signaling pathway (Xie et al., 2015). Taken together, these
results support the idea that alterations in the maternal diet can
induce epigenetic changes in muscle that are associated with
altered gene expression.

While there is growing evidence for the role of epigenetics in
metabolic programming in the development of chronic diseases,
the detailed molecular mechanisms mediating the effects of in
utero undernutrition remain unknown. In the future, epigenetic
markers such as DNA methylation in blood and tissue samples

may be able to serve as biomarkers to identify individuals at
increased risk. Ultimately, this may allow prevention of disease
by nutritional or pharmacological interventions.

In conclusion, in utero undernutrition is associated with
skeletal and cardiac muscle alterations such as decreased mass,
mitochondrial content, and metabolism. The adaptations in
skeletal muscle are consistent with the idea that low birth
weight offspring may develop a protective mechanism in utero
for species survival in times when energy supply is restricted.
However, in an environment characterized by the abundant
availability of highly palatable food and a decreased need for
physical activity, such adaptive mechanisms become detrimental,
increasing the risk for metabolic diseases including obesity and
T2DM.
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