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Cardiovascular disease (CVD) continues to constitute the leading cause of death globally.

CVD risk stratification is an essential tool to sort through heterogeneous populations and

identify individuals at risk of developing CVD. However, applications of current risk scores

have recently been shown to result in considerable misclassification of high-risk subjects.

In addition, despite long standing beneficial effects in secondary prevention, current

CVD medications have in a primary prevention setting shown modest benefit in terms of

increasing life expectancy. A systems biology approach to CVD risk stratification may be

employed for improving risk-estimating algorithms through addition of high-throughput

derived omics biomarkers. In addition, modeling of personalized benefit-of-treatment

may help in guiding choice of intervention. In the area of medicine, realizing that

CVD involves perturbations of large complex biological networks, future directions in

drug development may involve moving away from a reductionist approach toward a

system level approach. Here, we review current CVD risk scores and explore how novel

algorithms could help to improve the identification of risk and maximize personalized

treatment benefit. We also discuss possible future directions in the development of

effective treatment strategies for CVD through the use of genome-scale metabolic

models (GEMs) as well as other biological network-based approaches.

Keywords: patient stratification, risk estimation, metabolism, systems medicine, systems biology, network

medicine

INTRODUCTION

Cardiovascular disease (CVD), specifically ischemic heart disease and stroke, remains to be the
world leading cause of death by a considerable margin (World Health Organization, 2012). It
also remains a challenge to accurately predict who is going to develop CVD. For this purpose,
several CVD risk-estimating algorithms including the Framingham risk score (Wilson et al., 1998),
Reynolds risk score (Ridker et al., 2007), Pan European score (SCORE; Conroy et al., 2003),
ASSIGN Scottish algorithm (Woodward et al., 2007), and QRISK2 UK algorithm (Hippisley-Cox
et al., 2008) have been developed (Simmonds andWald, 2012). The purpose of these algorithms are,
by considering traditional risk factors for CVD such as age, BMI, smoking status, and blood lipid
parameters (Table 1), to estimate the 10-year risk of a CVD-event so that preventative measures
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TABLE 1 | The five CVD risk scores QRISK2, Framingham, ASSIGN, SCORE, and Reynolds include the following parameters.

Parameter QRISK2 Framingham ASSIGN SCORE Reynolds

Age X X X X X

Smoking status X X X X X

Total cholesterol X X X X

Systolic blood pressure X X X X

Family history of CVD X X X

HDL cholesterol X X

Sex X X

Rheumatoid arthritis X X

Diabetes status X X

Geographic information (postcode) X X

C-reactive protein X

Cholesterol/HDL ratio X

Ethnicity X

BMI X

Atrial fibrillation X

Chronic kidney disease X

Blood pressure treatment X

An “X” marks the inclusion of a parameter in the risk score in question.

can be initiated for people whowill benefit from this intervention.
However, the current algorithms have been developed for
population-based prediction of CVD and not for personalized
prediction, making the task of predicting exactly who is going to
develop CVD difficult. For this reason, even though drugs such as
statins have shown tremendous benefit in secondary prevention,
in a primary prevention setting the benefits have arguably
been modest. Preventative intervention is likely beneficial in a
subset of the population, hence accurate risk stratification is an
essential tool to enable effective preventative treatment. Rapid
and continuous efforts are needed to develop novel biomarkers
for achieving high diagnostic accuracy to predict CVD.

Technical breakthroughs have enabled unprecedented
progress in the field of omics (i.e., genomics, transcriptomics,
proteomics, metabolomics, and lipidomics). Arguably, this
should result in great potential in the field of biomarker
discovery. Publications in the field of biomarker discovery have
increased dramatically over the past two decades, however the
increase in the number of clinically useful biomarkers have been
meager (Drucker and Krapfenbauer, 2013). In the area of drug
development, there is a need for new effective preventative drugs
for CVD. But even the most effective drug must be given to
the correct subjects. An important distinction must be made
between accurate risk identification and accurate personalized
prediction of treatment benefit. In a clinical setting, this means
that the following two questions should be able to be answered
by a CVD risk score as accurately as possible: (i) Will this patient
develop CVD within a certain time period? (ii) What is the
increase in life expectancy and disease-free years if this particular
patient initiates this particular (drug-based or life style-based)
intervention? In this review, we discuss the challenges associated
with the current CVD risk-estimating algorithms as well as the
potential of a systems biology approach to produce better risk
scores as well as more effective CVD drugs.

CURRENT CHALLENGES IN CVD RISK
PREDICTION

The ultimate goal of a CVD risk-estimating algorithm is to
accurately predict who and when someone is going to develop
CVD. This ability should not be confused with the ability of
an algorithm to predict how many out of a population will
develop CVD during a certain time period. Thus, population-
based prediction is different from personalized prediction. In
a study by van Staa et al. (2014) this question was addressed
by following 1.8 million subjects for an average of 3.3 years.
The three widely used risk prediction algorithms Framingham,
ASSIGN, and QRISK2 were evaluated to see if the risk scores
accurately predicted not only population-based risk but also
personalized risk of CVD. To achieve this, the three risk scores
were applied at each of the 1.8 million subjects and compared
to a competing risk Cox proportional hazard (CRCPH) model.
The study reported that the algorithms accurately predicted how
many CVD events would occur in the population, and accurately
predicted low-risk subjects. However, for high-risk subjects the
three algorithms agreed modestly with the CRCPH model. What
this study illustrates is that the Framingham, ASSIGN, and
QRISK2 CVD risk scores accurately estimate population-based
risks and do identify low risk subjects but the algorithms do not
accurately predict who is going to develop CVD.

Predicting benefit from an intervention at a personalized level
may be a very valuable tool in CVD treatment. Ferket et al. (2012)
estimated how much personalized benefit is gained from statin
therapy in a population of 2428 Dutch people. Amicrosimulation
model was used to create a personalized calculator of gains
in total and CVD-free life expectancy with statin therapy, and
the results of the model for each person was compared with
the CVD risk predicted by SCORE. The authors observed an
average of 0.3 years of increased life expectancy and 0.7 years
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of increased CVD-free life expectancy gained from an average
of 18.3 years of statin therapy. These gains from statin therapy
was considered modest, especially considering that side effects
were ignored by the model. Further on, statin therapy is currently
encouraged with increasing age due to its correlation with higher
CVD risk scores. However, importantly; due to competing risk
of death from other diseases, it might not follow that increased
10-year risk of CVD implies larger benefit from statin therapy.
For example, as stated in the paper “both a 55-year-old non-
smoking woman with a ten-year CVD mortality risk of 2% and
a 65-year-old male smoker with a ten-year CVD mortality risk of
15% might both gain one year of CVD-free life expectancy with
statin therapy.” For the entire population, 25% with a low SCORE
risk achieved equal or larger gains in CVD-free life expectancy
than the median gain in participants with a high SCORE risk
estimation. This distinction between risk of CVD and benefit-
of-treatment may appear subtle but is important. For secondary
prevention, statin therapy have shown tremendous benefit, but
what this study illustrates is the challenge of primary prevention
treatment decision and that there exist a need for risk scores
which also estimates personalized benefit of treatment.

CURRENT CVD BIOMARKER DISCOVERY

With the recent advances in metabolomics technologies,
hundreds to thousands of metabolites can be simultaneously
detected in tissues and biofluids (e.g., blood and urine) to provide
a snapshot of the current physiology. Metabolic signatures of
obesity (Newgard et al., 2009), future insulin resistance, T2D
(Wang et al., 2011), CVD (Shah et al., 2010; Magnusson et al.,
2013), NAFLD, and different types of cancer (Ganti and Weiss,
2011; Tan et al., 2012; McDunn et al., 2013; Zeng et al., 2014) have
been characterized for identification of associated risk factors as
well as for discovery of novel biomarkers.

Branched chain amino acids (BCAAs), valine, leucine, and
isoleucine as well as aromatic amino acids, tyrosine, and
phenylalanine were discovered to predict the development of
diabetes, which is strongly associated with CVD (Wang et al.,
2011). Moreover, BCAAs together with the urea cycle metabolite
levels in the plasma were used to predict the development of
CVD (Shah et al., 2010). Magnusson et al. (2013) developed a
method called diabetes-predictive amino acid (DM-AA) score
using the metabolic signature of three amino acids (tyrosine,
phenylalanine, and isoleucine) and showed that the plasma level
of these amino acids correlated with intima-media thickness,
plaque formation and exercise-induced myocardial ischaemia,
which are three signs of CVD-related abnormalities. The authors
also followed 4577 subjects for an average of 12 years, of
which 253 suffered a CVD event. Compared to subjects with
lowest quartile values of DM-AA score the odds ratio for CVD
development were 1.27, 1.96, and 2.20 for quartile 2, 3, and 4,
respectively.

Insulin resistance (IR) has been strongly linked to increased
risk of CVD (Ginsberg, 2000), yet no measure of IR is
included in the current risk-estimating algorithms (Table 1).
The so called Quantose IR algorithm has been developed to
estimate IR using metabolomics and lipidomics data (Cobb

et al., 2013). Quantose IR is apart from the level of fasting
insulin based on α-hydroxybutyrate and the two lipid species
1-linoleoylglycerophosphocholine and oleate. This algorithm
is an example of a possible improvement in the evaluation
of IR through the need of only a fasting blood test and
it may increase the accuracy of the current CVD risk-
estimating algorithms; however, this has not been systematically
evaluated.

Recently, three lipid species TAG(54:2), CE(16:1), and
PE(36:5) were discovered as useful for improving the
Framingham risk score in 685 subjects of the prospective
population-based Bruneck cohort (Stegemann et al., 2014).
Addition of another three lipid species and exclusion of HDL-
cholesterol and total cholesterol from the Framingham risk
score resulted in an additional improvement. Framingham
risk score has also been improved by adding the three
microRNAs including miR-126, miR-223, and miR-197 as
biomarkers of CVD (Zampetaki and Mayr, 2012). Moreover,
Bolton et al. (2013) evaluated a panel of 27 single nucleotide
polymorphisms (SNPs), discovered from genome-wide
association studies, to predict the occurrence of coronary
heart disease. Compared to a Cox proportional hazard model
based on traditional risk factors, the addition of the SNP panel
significantly improved the accuracy of the model. Hence, evident
improvements upon the traditional risk scores estimated by
the existing algorithms have already been achieved by omics-
derived biomarkers of CVD. However, the gains are arguably
modest.

WHY HAVE SO FEW NEW BIOMARKERS
BEEN DISCOVERED?

There exist a large discrepancy between the number of biomarker
discovery publications and the number of new biomarker patents
(Drucker and Krapfenbauer, 2013). For all diseases (not only
CVD) only 1–2 new biomarkers were approved by the Food
and Drug Administration each year in the US between 1995 and
2009 despite the enormous technical advances in the omics fields
during the same period (Anderson, 2010). There are probably
a number of reasons for this, including lack of standardized
biomarker discovery pipeline, lack of good verification platform
for large sample sets and lack of an underlying theory of
biomarkers.

There are three categories in which newly discovered potential
biomarkers fall into: chance, bias, and generalizability. The
only category that may result in a potentially clinically useful
biomarker is the latter. The risk of a false discovery increases
with increasing number of measured parameters. Therefore, the
current ability to measure hundreds to thousands of analytes
in a single experiment will result in potential false discoveries.
However, this problem can be remedied by commonly used
statistical techniques and is therefore probably not the largest
explanation to the lack of novel biomarkers.

The issue of bias is however not a problem to be overcome
by statistical analysis techniques but is instead inherent in the
experimental design. For example, when a biomarker study is
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commenced a study population is separated into a diseased group
and a control group. However, when analyzing the characteristics
of the groups, it might be discovered that the diseased group is
also in average older and heavier than the control group. Is it
then possible to say that a discovered biomarker is a biomarker
of the disease, the age, or the weight? For this reason, the
groups are often matched against each other to minimize known
confounding factors. However, unknown confounding factors
might still bias the study. The only remedy to this problem
is randomization. Unfortunately, by definition, a biomarker
discovery study can never be randomized thus making the risk
of so called bias of inequality at baseline an inherent problem
of biomarker discovery. How important this issue is and if it
can explain the lack of accurate CVD biomarkers is currently
unknown, but it is likely an important contributing factor. Bias
can also be introduced if the samples from the different groups
are treated differently throughout the analysis pipeline. It is
therefore of vital importance that the handling and analysis of
samples are conducted consistently. If there is bias of inequality
at baseline between two groups, there is a risk that a measured
parameter will correlate with an unknown confounding factor
and not with the disease. The risk to have any discovery due to
bias thus increases both with the number of confounding factors
and with the number of parameters analyzed. To overcome this
problem it might (paradoxically to the field of omics) be desirable
to measure as few parameters as possible. Thus, one way of
achieving maximum chance of detecting true biomarkers is to
have a biomarker theory. An underlying theory would be able to
a priori point to what should be measured, thus limiting the need
to measure lots of parameters.

As an alternative to the search for a single biomarker of CVD,
another approach is to use a panel of biomarkers. If such a
panel is to be highly sensitive and highly specific it requires that
the individual biomarkers are so called orthogonal against each
other. This means that every biomarker adds diagnostic value
to the panel rather than just co-vary with other markers. Recent
technologies such as protein multiplex platforms do invoke hope
that effective biomarker-panels of CVD could be created and used
in the clinic.

NOVEL TOOLS IN SYSTEMS MEDICINE

Genome Scale Metabolic Models (GEMs) are employed for
simulating the metabolism of cells/tissues. When generating a
GEM, all known metabolic reactions in a particular cell or tissue
are integrated into one network topology. Once the model has
been constructed, it can be used in conjunction with flux balance
analysis which allows for in silico metabolic simulation of the
cell or tissue type in question (Mardinoglu and Nielsen, 2012,
2015; Mardinoglu et al., 2013; O’Brien et al., 2015; Yizhak et al.,
2015). GEMs in combination with transcriptomics, proteomics,
metabolomics, or lipidomics data have the potential to identify
perturbed metabolic subnetworks in silico (Agren et al., 2012,
2014; Shoaie et al., 2013, 2015; Yizhak et al., 2013, 2014a,b;
Galhardo et al., 2014; Mardinoglu et al., 2014; Gatto et al.,
2015; Ghaffari et al., 2015; Varemo et al., 2015; Zhang et al.,
2015). GEMs constitute a possible powerful tool in the area

of human complex disease since it enables the potential of
pathophysiological understanding of a disease (Ryu et al., 2015).

Another interesting tool in systems medicine is protein–
protein interaction (PPI) networks (Rolland et al., 2014). PPI
networks has the potential to provide useful information in CVD,
since each protein is placed in a larger network context and
thus alterations in proteins in the diseased state can be compiled
and translated into meaningful biological tasks. For example,
if 100 different proteins are shown to be altered in the blood
macrophages or endothelial cells of people with CVD and 80 of
them happen to be highly connected, shown by a PPI, then that
part of the network and the related metabolic function could be
concluded to be perturbed in the diseased state. Further on, if a
few of the proteins are shown to interact with lots of the other
disease-related proteins, these highly connected proteins might
be central to the disease progress itself. Thus, PPIs could identify
central hubs in the disease-network, hubs that might provide
pathophysiological understanding and be suitable as drug targets.

As mentioned, an a priori theory of biomarkers could aid in
biomarker discovery. A theory of biomarkers could be created
through the use of GEMs and PPI networks. A hypothetical
example for use of GEMs in CVD would be to model the
metabolism of cell types in the blood, for example macrophages,
endothelial cells or myocardial cells. If this would be done,
predictions about the metabolism of these cells and possible
metabolic alterations in CVD could be enabled. Specifically,
if GEMs would provide a mechanistic understanding of for
example macrophages and their possible metabolic alterations
in CVD, a limited set of plausible biomarkers (proteins or
metabolites) could be selected and measured independently
in a biomarker discovery study. This approach, coupled with
stringent experimental biomarker discovery design would limit
the risk of bias and could increase the chance of discovering
clinically useful biomarkers.

A concrete example for using GEMs which could be relevant
to CVD involves macrophage activation. Since there is a link
between inflammation and CVD and since macrophages play
an important role in the build-up of atherosclerotic plaques,
studying the metabolism of macrophages could aid in the
understanding of CVD. Bordbar et al. (2012) used genome-scale
metabolic modeling in combination with transcriptomics,
proteomics, and metabolomics to reveal the metabolic features
and modulators of macrophage activation. They identified
metabolites which enhanced (glucose and arginine) and
suppressed (tryptophan and vitamin D3) macrophage activation.
These particular metabolites were previously known to be
associated with immunoactivation but the mechanism was
unknown. Such a mechanistic insight into what regulates
macrophages could help in designing effective interventions. In
this case, the plausible intervention would be to limit glucose and
arginine intake and increase tryptophan and vitamin D3 intake
to decrease the activity of the blood-macrophages. Probably,
an intervention like this is not as straight-forward but it does
provide a rational approach for the development of treatment
strategies which could be tested empirically.

Heart performance is naturally relevant for cardiovascular
health and is plausibly affected by the heart’s energy metabolism.
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Little is however known about the energy metabolism of the
heart in humans in vivo, during varying nutrient conditions and
pathological conditions such as heart failure and diabetes. In
order to simulate cardiac performance Karlstädt et al. (2012)
developed CardioNet—a GEM covering the metabolism of the
cardiomyocyte. Simulations for different nutrient conditions
were performed and the efficiency (howmuch ATPwas produced
compared to substrate and oxygen consumption) of the heart
was evaluated. Differences were seen when comparing different
combinations of substrates in terms of cardiac output. The
authors observations suggested that high levels of the ketone
body acetoacetate (which can be seen in for example diabetes)
would decrease cardiac output and increase ROS production
indicating possible decreased cardiac contractility. It is currently
not known how e.g., diabetes could affect cardiac health. The
study by Karlstädt et al. provide a possible pathophysiologic
mechanisms of heart malfunction related to diabetes and more
generally provide a framework for evaluating how varying oxygen
and nutrient conditions could affect the heart.

In order to simulate the entire human cellular and tissue
functions in a holistic approach, a whole cell/tissue model
could be used. One example of a whole-cell model of the
human pathogen Mycoplasma genitalium has been successfully
developed and simulation of dynamic cellular states has been
demonstrated (Karr et al., 2012). This holistic approach has not
yet been employed on human cells but does show the potential
use of such models. This process typically involves construction
and employment of metabolic, regulatory, signaling, and PPI
networks in conjunction with GEMs. The COBRA Toolbox
(Schellenberger et al., 2011) and RAVEN Toolbox (Agren
et al., 2013) which are valuable supports for researchers in
genome-scale metabolic modeling should also be expanded to
deal with simulation of these integrative models. Considering
the 3675 protein coding genes (18% of the genome) in the
generic human GEM HMR2 (Mardinoglu et al., 2014) and
their interactions with other proteins in biological networks,
such integrated computational models may provide further
information about the relationship between the genotype and
phenotype of CVD.

There are a number of hurdles to overcome for successful
simulation of human metabolism in a biologically relevant
matter. Reconstructing GEMs involves correctly defining, for
each metabolic reaction, the stoichiometry, the substrate(s), the
product(s), the enzyme(s), and the gene(s) which characterize
that specific reaction. This information has to be correct for
thousands of reactions. During the generation of the GEMs,
the network often needs to be so called gap-filled in order
for the network to be connected and complete. This gap-
filling step is one source of potential errors in the model.
Compartmentalization of the reactions is also a relevant issue,
not least when constructing human GEMs. It is often not
known where a reaction occurs in the cell and whether
the substrate/product can be exported/imported into other
compartments. Even though there is an extensive effort in
defining the subcellular localization of proteins (Kampf et al.,
2014; Uhlén et al., 2015), the complete draft information will not
be available for another few years.

Another issue relevant for human cell specific metabolic
models regards defining the environment. In microbial
conditions, the growth media is very well-defined so that the
possible uptake and secretion fluxes are also known. For human
cells the environment is much less known, which can greatly
affect the behavior of the model. For a GEM to simulate the
function of a cell/tissue accurately a so called objective function
needs to be defined. Usually, maximization of growth is used as
an objective function for microorganisms. However, defining
an objective function for human cells is not as straight-forward.
For human cells, this could feasibly be very context specific,
depending on for example regulation and signaling effects.
Integrating regulatory and signaling networks with GEMs could
therefore be important in order to capture biologically relevant
behavior. This integration is however a challenging task due
to increase in size of the networks. A GEM usually needs a
pre-defined biomass equation. The biomass equation greatly
influences the behavior of the model (directs the fluxes) and
thus the model is very sensitive to the definition of the biomass
equation. A number of issues has been raised on this topic and
the genome-scale metabolic modeling community has responded
successfully (Chindelevitch et al., 2015; Ebrahim et al., 2015).

Lastly, a model is often validated by its predictive ability, for
example for a microorganism GEM to predict the growth rate
and production rate of various substances. However, models are
rarely shown to not be able to perform infeasible tasks. The
unknowns in cell biology coupled with the degrees of freedom
in the generated networks makes genome scale modeling
challenging. However, several cancer related studies, testifying to
the value of the genome scale modeling in portraying a network-
level view of the cancer metabolism and in discovery of novel
drug targets and biomarkers have been recently reviewed (Yizhak
et al., 2015) and a similar framework could plausibly be used
for CVD.

In conclusion, placing high-dimensional omics data in a
network context, whether through the use of GEMs, PPIs, or
other networks (e.g., regulatory and signaling), may allow for an
increased pathophysiologic understanding of CVD. In addition,
GEMs together with other networks could provide a rational
approach to biomarker discovery, limiting the risk of bias and
increasing the chance of improving CVD risk scores (Figure 1).
However, important limitations do currently exist regarding the
biological relevance of human GEMs.

NETWORK MEDICINE AND DRUG
DEVELOPMENT

As stated, network-dependent analyses may allow for
identification of metabolic perturbations in CVD. Biological
networks have arguably evolved to be robust. For example,
single blockade of 85–90% of all proteins in yeast do not
result in any noticeable phenotypic alterations (Peters, 2013).
Similarly, knock-out studies in mice suggest that only 10% of all
potential drug target genes would have any effect as single targets
(Peters, 2013). In the traditional reductionist approach to drug
development, a disease modifying activity is reduced to a single
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FIGURE 1 | Integration of genome-scale metabolic models and other biological networks including protein–protein interactions may provide an

excellent scaffold for integration of omics data including transcriptomics, proteomics and metabolomics data. These integrated models can be used for

the discovery of biomarker and identification of drug targets. Moreover, biomarkers predicted for CVD can be used together with other risk estimating algorithms for

personalized risk prediction of CVD.

target. While this can be effective for certain diseases, it may not
be enough for treatment of a complex disease such as CVD. CVD
specifically could have multiple or complex causes which result
in network-level perturbations. If this is the case, an alternative
approach to CVD drug development would be identification of
network-level perturbations and developing drugs that can affect
the network rather than only a single protein.

The upcoming branch of network medicine or
polypharmacology, integrates systems biology tools with
pharmacology. Recently, a drug-target and a target–target
interaction network was constructed to identify which targets
of CVD drugs that possesses the most interconnectedness
with drugs and other targets (Zheng et al., 2014). These
targets have high probability of being important hubs in the
CVD-related metabolic networks and thus interesting to treat
with a multi-target compound. Subsequent virtual screening
of compounds revealed several potential multi-target drug
candidates and in vitro validation of five randomly selected
candidate compounds revealed that four of them could indeed
bind to these targets and thus possibly affect the CVD-
related metabolic network. However, this approach to drug
discovery could perhaps also increase the risk of adverse effects
precisely because the compounds in question are unspecific.
Nevertheless, this method illustrates how a polypharmacological
approach to CVD drug development could be conducted. If
these types of methods of drug development will produce
effective CVD-risk lowering interventions remains however
to be seen.

Risk scores based on multi-biomarker panels might also
aid in system-level drug development. If a potential drug
affects a single target but does not affect a plethora of other
biomarkers, this could provide an early indicator that the drug
candidate might not prevent CVD. However, if multiple markers
change after administration of a potential drug candidate, that
might be indicative of reduced risk of CVD and a potentially
successful drug. Risk scores based on multi-biomarker panels
could of course similarly be used for evaluation of other
types of interventions such as diet, and not only drug-based
interventions. The field of polypharmacology is, albeit promising,
still new. Future efforts in this area could hopefully result in the
development of novel preventative CVD medications.

CONCLUSIONS

Systems medicine uses omics data for reconstruction of cellular
networks. High dimensional omics data is often not easy to
directly translate into biological meaning. Therefore, the systems
medicine approach could, by integrating different kinds of
omics data and putting them in a network context, enable
pathophysiological understanding of a disease in question.
Systemsmedicine aims at identifying how the integrated network,
rather than single genes or proteins, is altered in a diseased state.
This approach allows for identification of perturbed subnetworks
and may, apart from providing pathophysiologic understanding
of the disease, also create a base to predict biomarkers and
identify subnetworks as drug targets. This information could
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lead to more accurate CVD risk scores as well as more effective
drugs/interventions.

In conclusion, it is important for each patient to understand
his/her own risk of CVD as well as likely benefit of treatment
to weigh against any potential side effects, thus there is a
need for accurate personalized risk scores in conjunction with
personalized prediction of treatment benefit. As illustrated,
current risk-estimating algorithms can in this setting be
improved upon. Accurate risk scores, more effective drugs
and personalized estimation of benefit from treatment are
three much needed tools in the area of CVD prevention. A
systems medicine approach can hopefully provide value in all
these areas.
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