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Angiogenesis is the process through which new blood vessels are formed from

preexisting ones and plays a critical role in several conditions including embryonic

development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis

is a major goal in the field of regenerative medicine and efficient vascularization of

artificial tissues and organs is one of the main hindrances in the implementation of tissue

engineering approaches, while, on the other hand, inhibition of angiogenesis is a key

therapeutic target to inhibit for instance tumor growth. During the last decades, the

understanding of cellular and molecular mechanisms involved in this process has been

matter of intense research. In this regard, several in vitro and in vivo models have been

established to visualize and study migration of endothelial progenitor cells, formation

of endothelial tubules and the generation of new vascular networks, while assessing

the conditions and treatments that either promote or inhibit such processes. In this

review, we address and compare the most commonly used experimental models to

study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of

the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages

and not yet explored possibilities of its use as model organism.

Keywords: Danio rerio, vascular development, vessel regeneration, angiogenesis assay, high-throughput

screening assays, endothelial markers

INTRODUCTION

Angiogenesis is the process through which new blood vessels emanate from preexisting vascular
structures. It plays a pivotal role in various physiological and pathological conditions and is
orchestrated by the tight interaction between endothelial cells and their niche. While inadequate
vessel maintenance or growth leads to tissue ischemia; excessive vascular growth or abnormal
remodeling promotes cancer, inflammatory disorders, and retinopathies (Pandya et al., 2006).

Angiogenesis is mainly accomplished through vessel sprouting, which may be divided into four
main steps: tip cell formation, tubule morphogenesis and lumen creation, adaptation to tissue needs
and, finally, stabilization and maturation of the newly formed vessels (Ribatti and Crivellato, 2012;
Neufeld et al., 2014). A non-sproutingmechanism ofmicrovascular growth has been also described,
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and it involves the increment of vascular surface by insertion
of a multitude of transcapillary pillars in a process called
“intussusception” (Styp-Rekowska et al., 2011).

Parallel to the study of the angiogenic process, a large number
of in vitro and in vivo assays have been developed to study the
cellular and molecular mechanisms involved (Cimpean et al.,
2011). Each model has its own advantages and disadvantages,
and their adequate combination is key to reveal the impact of the
element under analysis within the global process.

In vitro assays have been broadly used to answer questions
related to specific behaviors of endothelial cells such as
proliferation, differentiation, structural organization, cytokine
secretion profiling and chemotaxis, as well as the molecular
mechanisms associated with angiogenesis (Irvin et al., 2014).
Moreover, in vitro systems have helped to identify and validate
promising compounds to therapeutically promote or inhibit
angiogenesis (Goodwin, 2007), as they are quantitative, easily
monitored, reproducible, and provide the confidence necessary
for the rapid screening of potential pro- or anti-angiogenic
compounds (Weiss et al., 2015). However, important aspects
should be considered when assessing the potential of an
angiogenic effector using in vitro assays such as the decision
over the type or tissue-origin of the endothelial cells being
used, and the experimental bias of the protocols being followed
(for a more comprehensive discussion see Unger et al., 2002;
Staton et al., 2009). Finally, common in vitro experiments do
not consider the influence of the vascular niche, which has been
shown to be critical in the process of angiogenesis during tissue
regeneration (Ribatti and Crivellato, 2012; Kunisaki and Frenette,
2014; Ramasamy et al., 2015).

The complexities of the formation, function and pathology of
blood vessels in the context of the living animal mandate the
availability of adequate in vivo models in order to confirm the
results obtained in vitro. Since the 1970s multiple animal models
have been developed in order to understand the physiological
mechanisms of blood vessel formation, as well as to validate
approaches that either enhance or inhibit the angiogenic process.
The mouse model is by far the most common used to study
angiogenesis in vivo, with the advantage of being a mammal
that in many ways faithfully recapitulates human physiology.
However, this animal model can be laborious and expensive to
use, especially for screening purposes. Also, the use of mice limits
the evaluation of the outcome to a final time point, since de
novo or re-vascularization can only be visualized and quantified
after euthanizing the animal, hence limiting the understanding of
angiogenic dynamics.

As mammalian and most vertebrate tissues are opaque, the
introduction of the transparent zebrafish larva as a tool for
the examination of the vasculature in the intact animal has
gained recent attention. Importantly, several studies have made
clear that there is a high degree of molecular conservation
in the most important pathways involved in the development
and physiology of blood vessels in all vertebrates (reviewed by
Baldessari and Mione, 2008; Gore et al., 2012). Furthermore,
genetic and pharmacological evidence has shown that there is
mutual translatability of findings between zebrafish and human
vascular biology (Coultas et al., 2006; Lieschke and Currie, 2007).

Thus, the emergence of a simple yet validated discovery and/or
screening tool has been welcomed by the community.

In the following sections, we provide a brief overview
on the currently available in vitro and in vivo angiogenic
assays, describing their most common uses and their potential
advantages and limitations. Additionally, we also provide
information on the current and potential uses of zebrafish as
model to study angiogenesis.

IN VITRO MODELS

In vitro angiogenesis models study the behavior of endothelial
cells within a controlled environment (Ayata et al., 2015).
They are designed to recapitulate the different steps of the
angiogenic processes, where endothelial cells are involved, such
as cell proliferation, migration, extracellular matrix digestion and
invasion, morphogenesis and capillary tube formation (Cimpean
et al., 2011). Table 1 summarizes the settings and evaluation
parameters of the most commonly used assays focusing on
migration, proliferation and tubule formation.

Proliferation Assays
These assays are conceived to evaluate the effects of a
test substance, based on the quantitation of endothelial cell
proliferation. They are broadly classified into those that
determine net cell number and those that evaluate cell-
cycle kinetics (Staton et al., 2004). Cell numbers can be
estimated either manually or through automated cell counting.
Alternatively, metabolic assays, which have shown a linear
correlation with cell density (Niles and Riss, 2015), quantification
of DNA synthesis or expression of proliferation markers may
be used (reviewed by Whitfield et al., 2006). However, since
none of these methods have been explicitly developed for
vascular-related cells, it is indispensable to address the target
specificity of the test substance, as well as its therapeutic impact
based on other angiogenesis-related parameters. Furthermore,
proliferation assays should be combined with quantitative
methods for estimation of cell death, in order to discard the
possibility of cytotoxicity of the test-substance (Kepp et al., 2011).

Migration Assays
Migration assays allow the study of endothelial cell motility
and chemotaxis. They evaluate the active migration of cells
into a specific area or toward a specific direction as a result of
a treatment. The main advantage of the exclusion zone assay
(Poujade et al., 2007; Gough et al., 2011), where silicone-based
structures, so-called “masks” or “stencils,” are placed on the well
bottom to create an cell-empty area, in comparison to a scratch
assay (Coomber and Gotlieb, 1990; Yarrow et al., 2004), where a
“wound” is created by physically disrupting an endothelial cell
monolayer, is the uniformity and hence reproducibility of the
denuded area into which confluent endothelial cells will later
migrate (reviewed by Hulkower and Herber, 2011).

Another commonly usedmigration assay follows the principle
of the Boyden chamber, first described in 1962, where a
semipermeable membrane that only allows active passage of cells
is placed in their migration path (Boyden, 1962), sometimes
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TABLE 1 | In vitro angiogenesis assays.

Type of assay Basis Assay Setting References

Proliferation

(reviewed by Stoddart,

2011; Niles and Riss, 2015)

Cell number The effect of test substance is measured by estimation

of the increase in viable endothelial cell number over time

Staton et al., 2009

Cell cycle

kinetics

BrdU assay Bromodeoxyuridine (BrdU), a pyrimidine analog, is

incorporated during DNA synthesis and quantified by

immunohistochemistry or ELISA

Qin et al., 2006

Proliferation

marker detection

assay

Ki-67, expressed during the S, G2 andM phases, or the

proliferating cell nuclear antigen (PCNA), overexpressed

in the G1 and S-phase are estimated quantitatively

Whitfield et al., 2006

Metabolism Tetrazolium

salt-assays

Metabolically active cells convert tetrazolium-salt

compounds (MTT, XTT, MTS and WST1) into formazan

dyes. The colorimetric change is quantified using

spectrophotometry and correlated to cell number

Boncler et al., 2014

Protease activity

assay

Protease activity measured using a fluorogenic cell

permeable substrate

(glycyl-phenylalanyl-aminofluorocoumarin; GF-AFC) is

correlated to viable cell-number

Niles et al., 2007

Resazurin assay: Metabolically active cells reduce resazurin to resorufin,

changing the spectrometric properties of the compound.

Signal is quantified and correlated with cell number

Larson et al., 1997

ATP-measurement Bioluminescence-based ATP-detection assay that uses

the linear relationship between viable cell number and

ATP-concentration

Wang et al., 2010

Cell death TUNEL-assay Fluorescent labeling of terminal deoxynucleotidyl

transferase-dUTP nick end of the 3′-OH region of

fragmented DNA is estimated by microscopy or flow

cytometry

Goodwin, 2007

Apoptosis marker

detection assay

Expression of apoptosis cell-markers, such as

caspase-3 or annexin V, is assessed via microscopy or

flow cytometry

Köhler et al., 2002

LDH assay: The release of lactate dehyrogenase (LDH) as a

consequence of loss of cell membrane integrity can be

quantified to through a colorimetric reaction

Smith et al., 2011

Migration (reviewed by

Hulkower and Herber, 2011)

Wound assay Scratch assay A tip or needle is used to remove cells to form a

denuded area in a confluent endothelial cell monolayer, in

which cell migration can be quantitatively estimated after

a specific time interval

Steinritz et al., 2015

Exclusion zone

assay

Stencils are placed in culture plates prior to cell-seeding

in order to create uniformly sized wounds in an intact

confluent monolayer, in which invasion by the patterned

cells can be quantitatively assessed

Gough et al., 2011

Chemotaxis/

chemoinvasion

Boyden chamber

assay

Two-compartment chamber with a semi-permeable

membrane is used to evaluate active cell migration in

response to specific stimuli or due to chemotaxis within

a test substance gradient

Albini and Benelli, 2007

Microfluidics assay Creation of a diffusion-generated concentration gradient

within a migration chamber, through which endothelial

cells can migrate

Chung et al., 2010; Young,

2014

Morphogenesis (reviewed

by Arnaoutova and

Kleinman, 2010)

Tubule

formation

2D-tubule

formation assay

Endothelial cells are platelet on an extracellular matrix

and monitored for their ability to form vessel-like tubules

Arnaoutova and Kleinman,

2010

EC-aggregate

reassembling

assay

Endothelial cell spheroids or aggregates are embedded

in an extracellular matrix that resembles the basement

membrane environment. Upon stimulation, vessels

sprout into the matrix

Li and Stuhlmann, 2011

3D-tubule

formation assay

Endothelial cells are seeded in a three-dimensional

culture platform that involves extracellular matrix

components and/or other cell-types. Different settings

allow to study sprouting, formation, stabilization and

maturation of vessel-like tubules

Hetheridge et al., 2011;

Diaz-Santana et al., 2015
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requiring matrix degradation, in which case it is regarded a
chemoinvasion assay (Albini and Benelli, 2007), or in response to
a test substance (chemotaxis). The use of microfluidic cell culture
systems has overcome the difficulties of maintaining a linear
gradient of the test compound by introducing microchannel
compartments in which a diffusion-generated concentration
gradient can be created. Furthermore, they allow live single-cell
and cell-population tracking, as well as directionality and velocity
estimation (Young, 2014).

Tubule Formation Assays
Tubule formation assays are used to study the assembly
of capillary-like structures by adjacent endothelial cells
(Arnaoutova et al., 2009). In two-dimensional assays, endothelial
cells are usually seeded on extracellular matrices and the
spontaneous building of capillary-like networks is analyzed.
Quantitation of tubule formation is mainly addressed by
immunohistochemistry and analyzed based on four main
parameters: average tubule length, number of tubules, tubule
area and number of branch points (Staton et al., 2009). They
allow to study spontaneous tubule formation due to endothelial
cell-to-cell interactions and the assembly of tight-junctions
(Vailhé et al., 2001), however they do not resemble the process
of sprouting angiogenesis, which is the development of new
blood vessels from pre-existing major donor vessels (Ribatti and
Crivellato, 2012). Also, the early formed tubules lack lumen and
their length and degree of branching differ from real capillaries
(Donovan et al., 2001).

On the other hand, three-dimensional culture systems of
endothelial cells have been used to study the formation of
more complex capillary networks inside extracellular matrix
substitutes. They have helped to elucidate the role of support
cells, such as fibroblasts (Bishop et al., 1999; Hetheridge
et al., 2011), pericytes (Berthod et al., 2012) and adipose
stromal cells (Merfeld-Clauss et al., 2010; Verseijden et al.,
2010; Sarkanen et al., 2012), as well as the homo- and
heterotypic cell-interactions of endothelial cells during vessel-
formation, -sprouting and -anastomosis (Ayata et al., 2015;
Diaz-Santana et al., 2015). Moreover, three-dimensional tubule
formation assays have become an important tool to mimic
in vitro microenvironments of tumor vascularization (reviewed
by Chwalek et al., 2014; Song et al., 2014). Low standardized
settings and the more challenging evaluation of the three-
dimensional tubule formation are the main disadvantages of
these assays.

Organ Explant Based-Assays
Also known as ex vivo angiogenesis models, these assays
aim to analyze the angiogenic sprouting and the growth of
vessel capillaries from explanted segments of vasculature. Here,
isolated vasculature biopsies are placed generally over three
dimensional biological matrices in the presence or absence of a
test compound. Explants are then monitored for the outgrowth
of vessel tubules extending from the periphery of the explant
into the surrounding matrix (Rezzola et al., 2014). Table 2

summarizes the characteristics of the most broadly used ex vivo
assays.

Ex vivo assays have the advantage of working with native
quiescent endothelial cells in vivo at the experimental outset
(Ucuzian and Greisler, 2007; Staton et al., 2009). Further, because
the tissue complexity is preserved, most of the cellular and
molecular components involved in angiogenesis are present.
As a result, vascular sprouts contain a lumen and a basement
membrane, and are composed of a mixed population of
endothelial cells, pericytes, fibroblasts, andmacrophages (Nicosia
et al., 2011). These assays allow the study cell proliferation,
migration, tube formation, network branching, perivascular
recruitment and vascular remodeling (Baker et al., 2011), in
addition to other post-angiogenic mechanisms such as vessel
stabilization and regression (Nicosia et al., 2011). Some of
the disadvantages compared to in vitro assays are the more
demanding technical skills, the limited number of simultaneous
samples being processed, and the implicit higher experimental
variability (Staton et al., 2009; Rezzola et al., 2014). On the other
hand, compared to in vivo assays, ex vivo assays do not consider
circulating endothelial progenitors recruited in the angiogenic
process and lack the pro-angiogenic stimuli in blood flow (Irvin
et al., 2014). Also, the decision over the source of the vascular
material should behold that angiogenesis mainly involves the
microvasculature rather than the macrovasculature, and that
microvessels such as capillaries, small arterioles and venules, are
composed of different tissue layers compared to large arteries and
veins (Staton et al., 2009).

IN VIVO MODELS

Multiple in vivo models have been developed to directly study
angiogenesis within an organism, and therefore evaluate the
entire process of new blood vessel formation, since they allow
to consider all cellular and molecular role players involved,
such as supporting cells (e.g., tumor cells, pericytes, smooth
muscle cells, and fibroblasts), the extracellular matrix, and the
cellular and humoral components in circulating blood (Staton
et al., 2004). Most in vivo angiogenesis assays are not designed
to understand a specific process, but rather to determine the
success of the outcome, with the exception being the zebrafish
larva, as we discuss in the next section. Nevertheless, it is also
important to point out that one of the main disadvantages
of in vivo models is the ethical concerns they raise, and the
complications they imply, due to the strict guidelines regulating
animal testing in some countries. Again, the zebrafish is exempt,
for the most part, from these concerns, especially during
larval stages.

Corneal Angiogenesis Assays
As originally developed by Gimbrone et al. (1973), induction
of angiogenesis in the cornea is among the most convincing
demonstrations of neovascularization, since the cornea is richly
innervated, but normally has no blood vessels (Henkind, 1978).
In this assay, a stimulus induces the migration of endothelial cells
from the edge of the cornea into the space between the corneal
epithelium and stromal cells, forming new sprouts directed
toward the source of the angiogenic signal. This method has
been applied in multiple animal models including rabbit, mouse,
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TABLE 2 | Ex vivo angiogenesis assays.

Assay Setting Advantage References

Rat aortic ring assay Thoracic aorta is dissected, cleaned and cut

into rings. Upon serum-starvation, rings are

embedded in extracellular matrix components

in the presence or absence of the test

compound. Exponential vessel outgrowth from

the explant of the tubule structures is observed

within 10 days

Many rings available from few animals.

Supporting cells are included in the formation

of vessels. Visible lumenized tubule structures

develop over a time course similar to that in vivo

Nicosia, 2009

Mouse aortic ring assay Cost-efficient transgenic mouse technologies

and gene manipulation available.

Implementable for high-quality imaging and

high-throughput screening

Baker et al.,

2011

Miniature ring-supported gel assay Isolated aortae segments are placed in low

volume three-dimensional collagen gel

supports, which are casted by a nylon mesh

ring that improves the stability of the setting

Optimized system allows better specimen

handling, staining, imaging, and a more

economical use of extracellular matrix reagents

Reed et al.,

2011

Human arterial ring assay Human umbilical arteries are isolated from

umbilical cords, sectioned into rings, and then

embedded in extracellular matrix. Tubular

structures are quantified by image analysis

Provides a three-dimensional system for

identification of genes and drugs that regulate

human angiogenesis

Seano et al.,

2013

Retinal explant assay Explanted retina is cut and placed, over a

three-dimensional gel with the photoreceptor

layer facing upward. Endothelial cell sprouting

is observed from day 3 and peaks at day 7

Allows the study of tip endothelial cell

angiogenic responses and acute responses of

retinal blood vessels at the sprouting front

Rezzola et al.,

2014

Fat-tissue microfragment assay Human subcutaneous fat tissue is fragmented

and embedded in fibrin. Blood vessel growth

and elongation is examined after 15 days by

microscopy

Uses intact human fat tissue with quiescent

vessels from which other spontaneously derive.

Assay could help predict response toward a

treatment

Greenway

et al., 2007

Choroid sprouting assay The choroid, a vascular bed beneath the retinal

pigment epithelium, is separated from the

retina, segmented, and placed over a matrix.

Outgrowth of vascular sprouts can be

observed within 2-6 days.

Vascular sprouts consist of endothelial cells,

pericytes and macrophages. Robust,

reproducible and representative model of

microvascular angiogenesis Semi-automated

software for quantification of sprouting area is

available

Shao et al.,

2013

rat and guinea pig (Ziche and Morbidelli, 2015). It has been
further developed to become quantitative, by incorporation of a
contrast-dye such as high molecular weight dextran and imaging
analysis. Disadvantages are that it is rather expensive, and that
the angiogenic process is rather atypical, since it occurs in a
non-vascular environment (Norrby, 2006).

Chorioallantoic Membrane (CAM) Assay
The CAM assay allows the measurement of both inhibition and
stimulation of angiogenesis over the vascularized chorioallantoic
membrane of a chick embryo, which can develop normally after
carefully opening the egg shell to create a window (in ovo), or
being placed in a cup outside of the egg shell (ex ovo or in vitro),
in order to get access to the CAM. From days 3.5 to 10 after
fertilization, highly proliferative and immature endothelial cells
rapidly grow a sprouting vascular network, which is then replaced
by intussusceptive microvasculature (Ribatti et al., 2001). During
early phases, the CAM assay is most suitable to study angiogenic
inhibitors. In contrast, the study of pro-angiogenic factors is
best accomplished from day 6 to 8, when the rapid embryonic
angiogenic development has slowed down. Quantification of
angiogenesis is typically based on the directionality of the
blood vessels toward the graft/angiogenic stimuli, the number
of sprouts, and/or the size/length of the stimulated blood
vessels. The CAM assay allows repeated visualizations of the

angiogenic process, and it is fast and cost effective, making
it suitable for large scale screens. Its major disadvantages are
the rather challenging quantification of the outcome, since it
is often difficult to distinguish normal angiogenesis from the
induced one, and the false positive effects that often occur from
inadvertently damaging the CAM (Ribatti et al., 2001; Ribatti,
2008).

Matrigel Plug Assay
Subcutaneous injection of matrigel in mice is a common
method to study angiogenesis in vivo in mammals. Matrigel
is an extract of the Engelbreth–Holm–Swarm tumor, mostly
composed by extracellular matrix proteins and growth factors
(Benton et al., 2014). When cold, matrigel is liquid, but becomes
solid at body temperature. This property makes simple the
injection of matrigel in the midventral abdominal region of
mice, where it quickly solidifies forming a “plug” (Akhtar et al.,
2002). The injected matrigel can be supplemented with either
angiogenic inhibitors or inducers. Then, usually about 2 weeks
after injection, infiltration of new blood vessels is determined
histologically. A major advantage of this method, is the simplicity
to implement it. However, visualization and quantification of
differences can be challenging and are mainly based in the
histological analysis of explanted plugs at a final experimental
point.
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Hind Limb Ischemia
A common system to study angiogenesis in vivo from a
therapeutic perspective, is the hind limb ischemia (HLI) model
(Limbourg et al., 2009). In this case, the femoral artery of
mice is ligated causing a strong obstruction of blood flow
toward the hind limb. Since originally described (Couffinhal
et al., 1998), the HLI protocol has been applied with multiple
variations. A common surgical approach is the ligation of the
femoral artery at distal and proximal sites, and removal of
the intervening arterial fragment (Fierro et al., 2011). Another
approach is a single ligation, without arterial excision, where
the severity of ischemia depends on the specific site of ligation.
Also a gradual arterial occlusion model has been established,
by placing ameroid constrictors on the femoral artery (Yang
et al., 2008). In all cases, the contralateral hind limb is left
intact, as a control. Mice are usually able to recover from this
injury naturally, restoring blood flow within approximately 4
weeks, bymechanisms including the formation or enlargement of
collateral blood vessels (Sondergaard et al., 2010). Laser scanning
Doppler imaging is the best suited method to monitor blood flow
restoration upon HLI induction, because it is non-invasive, and
can be performed in the same animal at multiple time points.
At the end of the experiment, animals can be euthanized for
further investigation including histology and gene expression
analysis. A negative aspect of scanning Doppler imaging is the
sensitivity of the method, since only robust differences can be
noticed. Another limitation of this method is that it fails to reveal
the exact mechanism underlying the blood flow restoration (e.g.,
angiogenesis vs. vasculogenesis).

Vascularization during Dermal Wound
Repair
Our group has developed a full skin defect model that presents
several advantages compared to the in vivo models presented
above, which are intrinsic to the nature of skin. Among others:
transparency, large surface, easy manipulation, external location
and tissue homogeneity (Egaña et al., 2008). In this model, full
skin defects are surgically created bilaterally on the back of mice,
and the skin excision is replaced by biodegradable scaffolds,
which can be modified to contain a specific angiogenic stimuli.
Typically, after two weeks animals are euthanized, and tissue
vascularization is quantified as follows: the skin, including the
implanted scaffold, is removed and quickly placed over a light
source. During trans-illumination, a digital picture is taken, and
is later analyzed by digital segmentation (Schenck et al., 2014).
This method does not affect cell integrity post mortem, allowing
further analysis such as histology or protein/RNA extraction.

The Skinfold Chamber and Ear Assays
Four major types of in vivo models have been developed to
observe the angiogenic process in two dimensions: the rat
mesentery window assay (Norrby, 2011), the hamster cheek
pouch assay (Monti-Hughes et al., 2015), the dorsal skinfold
chamber adapted to mice, hamsters and rats (Lehr et al., 1993;
Harder et al., 2014; Irvin et al., 2014), and the rabbit ear chamber
assay (Clark et al., 1931; Ichioka et al., 1997). These techniques,
developed as early as in the 1940s, rely on semi-transparent tissue

or the implantation of a transparent chamber that allows an
easy and direct visualization and quantification of the angiogenic
process, including blood vessel density and blood flow velocity.
In particular, the implementation of intravital microscopy along
with epifluorescence, confocal and multiphoton techniques,
offers the possibility of repetitive, direct, and quantitative
measurements of several microcirculatory parameters, as well
as microvasculature imaging at an unparalleled subcellular-
resolution (Taqueti and Jaffer, 2013). However, these methods are
invasive, and may cause great discomfort to animals. In addition,
some methods such as the implantation of a dorsal window
chamber in mice, are cumbersome (Palmer et al., 2011) and
therefore difficult to implement in a number of animals sufficient
for adequate technical replicates.

ZEBRAFISH AS A MODEL FOR
ANGIOGENESIS RESEARCH

While the models described above have provided essential
information and platforms for discovery of therapeutic targets
and drugs, many questions about the biology of vascular cells
and how they build the circulatory system remain unresolved.
Above all, the relevance of the models is often hindered by
the inaccessibility of the tissue in live animals, and much
of what we know has been derived from fixed material
or indirect assays. Zebrafish provides a series of advantages
as a model of study due to its rapid development, optical
transparency, high number of offspring and straightforward
strategies for forward and reverse genetic manipulation.
Furthermore, the early development of a cardiovascular system
in the transparent zebrafish embryo and larva translates
into a unique opportunity for direct observation of blood
flow and the development of the system’s related organs in
both wild type and transgenic fish, without the need for
complex instrumentation. Lastly, genetic studies have revealed
conservation of the molecular pathways between fish and
mammals making research in vascular biology in teleosts directly
translatable into potentially relevant information for human
health.

As the restrictions on the experimental use of mammalian
models for research increase, the zebrafish emerges as a
convenient alternative. Larvae can be used in massive numbers
in genetic or pharmacological screens, at stages in which they
lack the legal status of a “vertebrate animal” yet have all of the
physiological functions of the adult, including a hematovascular
system. Circulation begins 24 h after fertilization, with a simple,
yet functional blood circuit. The embryos and larvae, can be
kept for the first five days of life in small wells in microtiter
plates, in only a few hundred microliters of water. This is
the pharmacologists dream since as many replicates of the
experiment as one desires can be done and dilutions of each drug
can be tested ad libitum.

Two decades ago, the generation of the first stable transgenic
zebrafish line was reported. Since then, hundreds of transgenic
lines have been developed both for expression of reporter
proteins or for expression of diverse proteins for functional
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studies (Udvadia and Linney, 2003). At the same time, efficient
mutagenesis protocols have allowed forward-genetic screening
in the context of angiogenesis, generating valuable collections
of mutants (Jin et al., 2007). Traditionally, gene function in
zebrafish has been assessed using chemically or insertionally
induced mutants that required large scale unbiased screens
to identify phenotypes related with the process or organ of
interest (Gaiano et al., 1996; Haffter et al., 1996). While
common antisense technologies were not generally applicable to
the zebrafish, the advent of oligonucleotide substitutes named
morpholinos, enabled the knockdown of endogenous genes by
either blocking translation of the mRNA or splicing of the pre-
mRNA (Nasevicius et al., 2000). The ease of this technology
spurred its widespread use, even though it presented some
limitations such as the induction of undesired off-target effects
or the progressive loss of the effect at late developmental
stages because of diminishing activity over time. The zebrafish
toolkit has been recently enriched with the introduction of
gene editing technologies such as TALENs (Transcription
activator-like effector nucleases, Bedell et al., 2012), and CRISPR
(Clustered regularly-interspaced short palindromic repeats)-Cas
based strategies (Hwang et al., 2013). As long as genomic
sequence is available for the targeted locus, any gene can
be mutated efficiently and permanently in the germ line; the
efficiency is often high enough such that recessive phenotypes
can be seen already in the injected animals. Further, the
CRISPR-Cas9 system has been adapted for high throughput
mutagenesis in zebrafish so that dozens of genes can be
mutated in a single experiment (Varshney et al., 2015). Recently,
phenotypic inconsistencies between genomic mutations induced
by CRSPR-Cas9 and knockdown via morpholinos have emerged
(Kok et al., 2015). It is likely that these two gene loss-
of-function strategies differ in their penetrance given that
genetic lesions might induce compensatory reactions in the
genome obscuring the gene’s function. Many authors believe
that a combination of strategies is desirable when analyzing a
particular gene and that it is unwise (as has been agreed by
communities using other model organisms) to rely only on a
gene knockdown phenotype to assign gene function (Lawson,
2016).

Despite its success and popularity, those working with the
zebrafish model must consider complementing their studies with
mammalian systems, if they wish to validate the knowledge
gained for potential clinical applications. Gene and protein
functional conservation is high, but not absolute, and obviously
there are important physiological differences to be dealt with.
Aquatic and terrestrial life pose unique challenges that impact
on many organs, most notably the respiratory system and,
thus, cardiovascular architecture. In fish, only the embryo
and larva are transparent, making studies in adults just as
difficult as in mammals. The small size of embryos makes
some observations challenging (i.e., requiring sophisticated
microscopy and imaging) and they are also developing systems,
which means they are constantly in a state of change and growth.
Thus, the zebrafish, with all of its attributes, should be considered
a starting point for discovery and a model that can offer new
hypotheses to be tested further in other models.

Vascular Development in Zebrafish
Transgenic technology has enhanced the inherent in vivo imaging
capabilities that zebrafish larvae may offer to the investigator.
Though vessels and blood flow can easily be visualized with
a simple dissecting scope, it was with the introduction of
tissue specific expression of fluorescent proteins that vascular
and blood development could be examined in great detail.
Confocal microscopy and time lapse imaging can both be carried
out with live specimens which allows detailed morphogenetic
movements and cell shape changes to be followed directly.
Thus, vascular development has been described in great detail,
both from the anatomical and cellular point of view and
with a comprehensive examination of the molecular players
involved (reviewed by Gore et al., 2012; Schuermann et al.,
2014).

Most of the strategies which have been followed to
create stable transgenic lines with vascular-specific phenotypes
are based on gene-specific promoters. Both autologous and
heterologous promoters have been shown to work. Table 3 lists
some of the transgenic lines, which have been designed and
developed for the visualization and analysis of the vascular
system. Before a complete and reliable zebrafish genome
sequence was available, the promoter of a related gene from
another species, most commonly a mammalian one (Baldessari
and Mione, 2008), was used. However, the reporter protein
expression in zebrafish did not always exactly recapitulate
that of the orthologous one, because of the differences in
promoter elements among species. For example, the zebrafish
Tg(tie2:GFP)s849 line encoding the promoter for the murine
tie2-gene (a vascular-specific tyrosine kinase receptor activated
by angiopoietin ligands), successfully drove GFP expression
in endothelial cells, but also showed substantial nonvascular
expression in the hindbrain and the posterior neural tube,
and the overall level of expression was proportionally lower
compared to that in mice (Motoike et al., 2000). On the other
hand, the fli1a and scl zebrafish genes, have been used as
early markers of vascular and hematopoietic lateral mesoderm.
While the expression of fli1a is restricted to endothelial cells,
a subset of early circulating myeloid cells, and cranial neural
crest derivatives (Brown et al., 2000), the expression of scl is
specific for the hematopoietic lineage at later stages (Gering et al.,
1998).

The development of the vascular anatomy of the zebrafish has
been extensively described and has been proven to share high
similarity with other vertebrates (Isogai et al., 2001; Ellertsdóttir
et al., 2010; Gore et al., 2012). Many of the studies on vascular
development have been achieved by using molecular tracers
during the early embryonic stages of zebrafish. One of such
strategies is the injection of fluorescent microspheres, and their
detection after lumenization and anastomosis of the vascular
network is complete (Küchler et al., 2006). This strategy has
also been used to compare the development of blood and
lymphatic vasculature in zebrafish (Coffindaffer-Wilson et al.,
2011). Transgenic zebrafish lines have been also employed
to track individual cell growth during vascular development.
Using fluorescent endothelial cell markers, it is possible to
observe the proliferative and migratory behaviors of single
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TABLE 3 | Transgenic zebrafish lines generated for the study and visualization of the vascular system.

Line Gene Expression References

Tg(5xUAS:cdh5-EGFP) VE-cadherin Pan- endothelial Lenard et al., 2013

Tg(-7.8gata4:GFP)ae3 Transcription factor GATA-4 Endocardial and myocardial cells Heicklen-Klein and Evans, 2004

Tg(dll4:EGFP) Notch ligand Endothelial cells Sacilotto et al., 2013

Tg(efnb2a:EGFP) Ligand of Eph- receptor Artery Swift et al., 2014

Tg(fli:eGFP)y1 Transcription factor Fli-1 Endothelial cells, cytoplasmic Lawson and Weinstein, 2002a

Tg(fli1:neGFP)y7 Transcription factor Fli-1 Endothelial cells, nuclear Roman et al., 2002

Tg(flt4:YFP) Vegfr3 Pan-endothelial Hogan et al., 2010

Tg(gata1:dsRed)sd2 Transcription factor GATA-1 Blood cells Traver et al., 2003

Tg(gata1:GFP) Transcription factor GATA-1 Erythroid lineage Long et al., 1997

Tg(gata2:eGFP) Transcription factor GATA-2 Blood cells Traver et al., 2003

Tg(hsp70l:canotch3-EGFP) Notch3 intracellular domain Perivascular Wang et al., 2014

Tg(kdr.eGFP)s843 Vegfr2/flk1/kdr/Vegfr4 Angioblast/endothelial precursors Jin et al., 2006

Tg(kdr:G-RCFP) Vegfr2/flk1/kdr Angioblast/endothelial precursors Cross et al., 2003

Tg(kdr:RFP)la4 Vegfr2/flk1/kdr Angioblast/endothelial precursors Huang et al., 2005

Tg(my17:eGFP) Cardiac myosin light chain 2 Myocardial cells Ho et al., 2007

Tg(nkx2.3:efnb2a,myl7:EGFP) Ligand of Eph- receptor Artery Choe and Crump, 2015

Tg(scl-α:DsRed) Transcription factor Tal-1 Endothelial cells (intermediate) Zhen et al., 2013

Tg(scl-β:d2eGFP) Transcription factor Tal-1 Endothelial cells (anterior-posterior) Zhen et al., 2013

Tg(Tie2:eGFP) Tie-2 receptor tyrosine kinase Endothelial cells Motoike et al., 2000

TgBAC(cdh5:Citrine) VE-cadherin Pan- endothelial Bussmann and Schulte-Merker, 2011

TgBAC(cdh5:GAL4FF) VE-cadherin Pan- endothelial Bussmann et al., 2011

TgBAC(dll4:GAL4FF) Notch ligand Endothelial cells Hermkens et al., 2015

TgBAC(flt4:Citrine) Vegfr3 Pan-endothelial Gordon et al., 2013

Tg(0.8flt1:RFP)hu5333 Flt1 Strong expression in arterial ISV Bussmann et al., 2011

Adapted from Baldessari and Mione (2008), Kamei et al. (2010) and Schuermann et al. (2014).

cells, and different kinds of cell types during the embryo-to-
larva transition. Combining transgenic lines expressing different
fluorescent proteins, it was possible to observe two cell types
simultaneously. For instance, it was possible to track both
endothelial progenitors and erythrocytes while following the
vascular network development and the initiation of blood
circulation (Lawson and Weinstein, 2002a,b; Herwig et al., 2011;
Kimura et al., 2013). Moreover, combining nuclear and cell
membrane specific fluorescent tags has allowed the examination
of single cell morphological dynamics in living larvae during
vessel formation (Yu et al., 2015). Finally, the development of
stable transgenic zebrafish lines has been a valuable resource
for tissue specific gene expression as well as inducible gene
expression (Udvadia and Linney, 2003). The implementation
of these strategies enabled the study of the sequence of events
involved in the establishment of the first circulatory loop in
zebrafish embryos, which consists in the connection between
the heart with the dorsal aorta and the cardinal posterior vein
back to the heart. Other blood vessels, which are characteristic
and highly accessible in the zebrafish embryos and larvae
are the intersegmental vessels, which emerge from the dorsal
aorta into the embryonic trunk and tail, and later grow into
the anastomosing dorsal longitudinal vessels (Strilić et al.,
2009).

A remarkable feature of zebrafish compared to other
vertebrates, is that they rely on passive oxygen diffusion during
the early embryonic stages rather than oxygen perfusion, as
the completion of the vascular development takes place after

hatching. Moreover, the generation and characterization of
zebrafish mutants has shown that embryos are able to sustain
normal development even in absence of a functional vascular
system or in the absence of blood (Stainier et al., 1995; Isogai
et al., 2003). This attribute has made the analysis of late
phenotypes related to circulatory systemmalformations possible,
whereas they are lethal and hence impossible to study in
living mammals (reviewed by Isogai et al., 2001; Wilkinson
and van Eeden, 2014). A prime example of the power of
the genetic approach was the study of the zebrafish gridlock
mutant (Peterson et al., 2004). The gridlock mutation causes
a syndrome similar to human aortic coarctation disrupting
blood flow in the aorta. Further, mutant animals were used to
design a small molecule screen that would detect reversal of
the phenotype upon treatment and several compounds were
found to have such an effect. Table 4 summarizes some of
the most remarkable vascular zebrafish mutant lines described
thus far.

Finally, experimental analysis of blood vessels during zebrafish
development has also relied on common techniques for
visualizing gene and protein expression. In order to observe
the expression of endogenous genes in zebrafish embryos and
larvae, two methods are available: in situ hybridization and
immunohistochemistry. While neither of these methods was
specifically developed for the zebrafish vasculature studies, an
increasing number of tools and protocols are becoming available
that facilitate these strategies (Kamei et al., 2010; Thisse and
Thisse, 2014).
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TABLE 4 | Zebrafish vascular mutants.

Line Gene Phenotype References

cloche scl, lmo2, gata1, gata2, flt1, flt Lack endothelial and circulating blood cells Stainier et al., 1995

glass onion/parachute cdh2 Neuronal-cadherin (N-cadherin/Cdh2)-deficient zebrafish show dysmorphic

vascular network

Bagatto et al., 2006

gridlock hey2 Lack trunk and tail circulation due to reduced arterial gene expression and

improper assembly of the dorsal and lateral aortae

Lawson et al., 2001

heart of glass heg Morphological cardiovascular defects Mably et al., 2003;

Kleaveland et al., 2009

kurzschluss unc45a Branchial arteries fail to form properly. Arterial-venous shunts lead to loss of

circulation in the trunk

Chen et al., 1996

lmo2 lmo2 Abnormal ocular blood vessels cause failure of optic fissure closure Weiss et al., 2012

mindbomb notch5 Mutants are defective for Notch signaling, exhibit arterial-venous shunts,

defective PCV formation, and reduced arterial gene expression

Lawson et al., 2002

out-of-bounds plexnD1 Display premature sprouting and mispatterned growth of the trunk

intersegmental vessels due to loss of semaphorin–plexin signaling pathway

Childs et al., 2002

plcgy10 plcg1 Deficient in VEGF-mediated angiogenesis and arterial differentiation Lawson et al., 2003

santa ccm1 Severe dilation of major blood vessels, followed by a thinning of cell walls Mably et al., 2006

schwentine flk1 Loss of angioblasts and failure to undergo angiogenesis Habeck et al., 2002

Segmental artery mutants kdrl, plcg1, plexinD1, etsrp Vascular mutants identified by haploid transgenic screening show defects

in Vegf/Plcg1 signaling

Covassin et al., 2009

sonic you shh Defects in trunk circulation due to abnormal arterial differentiation Lawson et al., 2002

stalactite mtp Mutant shows excessive sprouting angiogenesis due to loss of

apolipoprotein-B regulation

Avraham-Davidi et al.,

2012

tie2-hu1667 tie2 Enhancement of junctional integrity via VE-cadherin Gjini et al., 2011

valentine ccm2 Altered endothelial junctional integrity causes dilation of major vessels. Mably et al., 2006

ve-cadherinubs8 cdh5 Failure to form established junctions during anastomosis Lenard et al., 2013

VEGF-receptor mutants flk1 Mutants identified in a forward genetic screen show disrupted blood

vessels sprouting of normal angioblasts

Habeck et al., 2002

vhl vhl Increased VEGF-signaling induces aberrant angiogenic sprouts and retinal

neovascularization

van Rooijen et al., 2009

violet beauregarde alk1 Mutants develop severe edema, associated with an abnormal blood

circulation and improper arterial-venous connections

Roman et al., 2002

Adapted from Lagendijk et al. (2014) and Wilkinson and van Eeden (2014).

Vascular Regeneration
The zebrafish is a broadly known model for studies on tissue
regeneration. In this regard, its capacity to regenerate its organs
and limbs is remarkable even in adult stages. The caudal fin,
in particular, provides an ideal tissue for studies related to
vascular regeneration in adult zebrafish due to its simple thin
architecture and relative transparency (Poss et al., 2003). While
caudal fin regeneration in zebrafish larvae takes a few days, it
has been demonstrated that the adult caudal fin is capable of
full regeneration after successive amputations within a couple
of weeks (Azevedo et al., 2011). The caudal fin amputation
model has been extensively used to study the orchestration
of the mechanisms involved in regeneration, such as cell
differentiation, migration and patterning, which lead to the
restoration of the fin’s original morphology and functionality
(Pfefferli and Jaźwińska, 2015). In a landmark study, Xu et al.
(2014) showed that regenerating vessels in the regenerating tail
fin originate from vein-derived cells that acquire angiogenic

potential. These cells migrate singly or collectively and organize
into vessel in response to chemokine signaling (reviewed by
Hasan and Siekmann, 2015). However, the applicability of this
model to the study of vascular regeneration could be much
more widely exploited. For instance, the ablation of single
vessels or vessel interruption has not been addressed in the
zebrafish. A new technique called electroablation (Moya-Díaz
et al., 2014) has been shown to be useful for inducing small
tissue lesions including blood vessel ablation in the adult
tail fin.

The zebrafish larval vascular network has been subject of
numerous screens over the past decade. Key to this effort was
the development of the Tg(fli1:EGFP)y1 transgenic line (Lawson
and Weinstein, 2002a), that fluorescently labels endothelial
cells throughout life (Figure 1) and enables the visualization
of the microvasculature in this tissue. However, most screens
to date have used the larval vasculature to find molecules that
disrupt (positively or negatively) the normal pattern of blood
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vessels. Only a few screens have examined the role of the
vasculature on tissue regeneration, even though these transgenic
fish could be a remarkable tool to allow the study of the effects
of test substances and genetic interference on vessel growth
and restoration. As an example, Bayliss et al. examined the
requirement for blood vessels in caudal fin regeneration using
adult fish (Bayliss et al., 2006). In this work, the authors conclude
that up to ∼1mm avascular caudal fin tissue can be regenerated,
though, for regeneration of the full limb, angiogenesis is required.
Further, they showed that the model can be implemented for
antiangiogenic drug screening, as it is possible to selectively
inhibit highly active, abnormal vessels while leaving quiescent
vessels intact.

Since angiogenesis is one of the main focuses of vascular
regeneration research, models for this type of vascular
development and growth have been developed. In the embryo,
the intersegmental vessels form by angiogenic sprouting from
the dorsal aorta and have been the target of studies using drugs
or genetic perturbations (Schuermann et al., 2014). Further,
since it has been shown that mammalian malignant cells can
be xenotransplanted into zebrafish embryos and that they can
form tumors (Haldi et al., 2006), models for tumor angiogenesis
have been developed (Tobia et al., 2011). We have also shown
recently (Chávez et al., 2016), that angiogenic sprouting can
also be induced by xenotransplantation of cells expressing the
recombinant vascular endothelial growth factor (VEGF), in this
case plant cells. Thus, the factors governing angiogenic growth
and inhibition are amenable to be examined in vivo in these
contexts.

High Throughput Screens
As previously mentioned, zebrafish larvae are optically
transparent until 5 days after fertilization allowing direct

observation of internal tissues. This feature, coupled with the use
of transgenic zebrafish lines with fluorescently labeled organs
and cells, has allowed for straightforward assays to be developed
to assess either positive or negative effects of chemicals or
genetic perturbations on vascular integrity (Raghunath et al.,
2009; Taylor et al., 2010). For instance, by using transgenic
lines in a genetic screen, numerous vascular-specific mutations
were identified (Covassin et al., 2009), while a chemical screen
has revealed compounds that restored a normal phenotype in
mutant fish (Hill et al., 2005; Asnani and Peterson, 2014).

How relevant are drug screens carried out in fish to human
biology? As most human genes have a fish ortholog and sequence
conservation is high, most teleost proteins targeted by drugs
will predict an effect on its human counterpart (Tran et al.,
2007). The relevance of this type of approach is highlighted by
the fact that several small molecules identified in zebrafish are
currently in clinical trial phase (MacRae and Peterson, 2015).
Furthermore, these assays can be scaled into high throughput
screens due to the fact that the zebrafish larvae, 2–3mm at
3 days post-fertilization, can be arrayed into microwell plates
and examined manually or automatedly by the thousands. Large
chemical libraries can be screened for direct effects on the
tissue of interest as compounds readily permeate the animal,
and minimal amounts of each compound are required (drugs
are supplied diluted in only a few ml in aqueous solution). The
readout can be exceedingly simple: usually a perturbation of the
normal or expected anatomical structure or cellular behavior
is sought. While it is possible to visually screen hundreds of
fish for a phenotype as it has been classically done (i.e., double
blind scoring), there are automated and semi-automated systems
for image acquisition and analysis as well as software that can
quantitatively detect subtle effects (Pardo-Martin et al., 2010;
Tamplin and Zon, 2010).

FIGURE 1 | In the transgenic zebrafish line Tg(fli1:EGFP)y1, the promoter for the endothelial marker fli1 drives the specific expression of EGFP in

blood vessels. This allows the visualization, and hence the analysis of the vasculature during zebrafish embryonic development (A, Lawson and Weinstein, 2002a),

and during adult vessel regeneration upon tail fin amputation (B, Huang et al., 2003). Scale bar represents 500µm in (A), and 1mm in (B).

Frontiers in Physiology | www.frontiersin.org 10 March 2016 | Volume 7 | Article 56

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Chávez et al. Zebrafish, an Emerging Angiogenesis Model

CONCLUSIONS AND PERSPECTIVES

Since the 1990s experimentation on animals has increasingly
emphasized the “three Rs”: reduction (minimize the number of
animals), refinement (maximize the amount of data obtained)
and replacement, (substitute with in vitro studies, when possible;
Mayer et al., 1994). Here, we have enumerated a series of
alternative models for the study of vascular development and
regeneration. In vitro studies are accessible and offer controlled
conditions for manipulation, but they lack the complexity found
in living tissues. As mammalian models present the closest
substitutes for humans, they should be preferred as the final
validation step when proposing a therapy. However, these
organisms can only be used in small numbers due to the
cost, cumbersomeness of the experimental designs and ethical
concerns. We describe the zebrafish model as an attractive
alternative because it combines the relevance of in vivo assays
with the simplicity and versatility of in vitro assays. In larvae,
access to the developing vasculature is straightforward thanks
to fluorophore-tagged strains and the small size of the animals
makes the use of high-throughput strategies possible. In adults,
the tailfin is equally convenient as a model tissue as regenerating
vessels are directly observable at all stages and the animals are

suitable for experimental manipulation with compounds, for
instance. The advent of new genome modification techniques
opens up even more tools for the vascular biologist as new
therapeutic targets can be identified through mutational analysis.
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