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Projection-neurons (PNs) within the antennal lobe (AL) of the hawkmoth respond

vigorously to odor stimulation, with each vigorous response followed by a ∼1 s period of

suppression—dubbed the “afterhyperpolarization-phase,” or AHP-phase. Prior evidence

indicates that this AHP-phase is important for the processing of odors, but the

mechanisms underlying this phase and its function remain unknown. We investigate this

issue. Beginning with several physiological experiments, we find that pharmacological

manipulation of the AL yields surprising results. Specifically, (a) the application of

picrotoxin (PTX) lengthens the AHP-phase and reduces PN activity, whereas (b) the

application of Bicuculline-methiodide (BIC) reduces the AHP-phase and increases

PN activity. These results are curious, as both PTX and BIC are inhibitory-receptor

antagonists. To resolve this conundrum, we speculate that perhaps (a) PTX reduces

PN activity through a disinhibitory circuit involving a heterogeneous population of

local-neurons, and (b) BIC acts to hamper certain intrinsic currents within the PNs

that contribute to the AHP-phase. To probe these hypotheses further we build a

computational model of the AL and benchmark our model against our experimental

observations. We find that, for parameters which satisfy these benchmarks, our model

exhibits a particular kind of synchronous activity: namely, “multiple-firing-events” (MFEs).

These MFEs are causally-linked sequences of spikes which emerge stochastically, and

turn out to have important dynamical consequences for all the experimentally observed

phenomena we used as benchmarks. Taking a step back, we extract a few predictions

from our computational model pertaining to the real AL: Some predictions deal with the

MFEs we expect to see in the real AL, whereas other predictions involve the runaway

synchronization that we expect when BIC-application hampers the AHP-phase. By

examining the literature we see support for the former, and we perform some additional

experiments to confirm the latter. The confirmation of these predictions validates, at

least partially, our initial speculation above. We conclude that the AL is poised in a

state of high-gain; ready to respond vigorously to even faint stimuli. After each response

the AHP-phase functions to prevent runaway synchronization and to “reset” the AL for

another odor-specific response.

Keywords: antennal lobe, afterhyperpolarization (AHP), projection neuron, local neuron, disinhibition,

computational model, synchrony, multiple-firing-event (MFE)
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INTRODUCTION

It has long been understood that recurrent connectivity as well
as intrinsic cellular properties both play a role in the dynamics
of the insect Antennal Lobe (AL) (Hansson and Anton, 2000;
Vosshall et al., 2000; Assisi et al., 2007; Galizia and Rössler, 2010).
Nevertheless, it is still unclear how these features interact, and to
what extent they influence the functional properties of the AL.
In this paper we investigate this question within the hawkmoth
(Manduca sexta) AL.

The Manduca AL itself houses many interneurons, including
both Local Neurons (LNs) as well as Projection Neurons (PNs)
which send information further downstream (Homberg et al.,
1989; Lei et al., 2010). These neurons are organized into
functional andmorphological modules—a.k.a. glomeruli—which
are each stimulated by different classes of odorants. In this
paper we largely concentrate on two such glomeruli—named
the “cumulus” and “toroid” in male moth—which form the
so-called Macroglomerular Complex (MGC) (Matsumoto and
Hildebrand, 1981; Christensen and Hildebrand, 1987). This
MGC serves as the first central stage of detection and processing
of conspecific female sex-pheromones, and plays a crucial role in
many of the Manduca’s mating behaviors (Schneiderman et al.,
1986; Hansson et al., 1991).

Our previous work, along with the work of others, has shown
that PNs and LNs within the Manduca’s MGC respond—with a
vigorous depolarization—to brief puffs of odor containing the
appropriate chemical components found in the animal’s sex-
pheromones (Warren and Kloppenburg, 2014; Kim et al., 2015;
Lavialle-Defaix et al., 2015). Intriguingly, the response of the
PNs also drops precipitously after each brief odor pulse—a
phenomenon we refer to as the “After HyperPolarization” (AHP)
phase of each response (Lei et al., 2002; Reisenman et al., 2005).
Our previous work has shown that this AHP-phase is somehow
implicated in odor-processing: pharmacological manipulation
which interferes with the AHP-phase also prohibits Manduca
from reliably detecting and responding to pheromone pulses (see
e.g., Lei et al., 2009). Moreover, similar AHP-like phases have
been widely reported as important for the sensory systems of
many other animals (Wilson and Goldberg, 2006; Saito et al.,
2008). Thus, rather than being a mere curiosity, the AHP-phase
seems to be a rather general dynamical feature which plays a
necessary functional role in sensory processing.

Our goal in this paper is to probe the dynamical mechanisms
responsible for the AHP-phase and its associated currents
within the Manduca AL. As mentioned above, we expect these
mechanisms to include both intrinsic cellular properties (see e.g.,
Pedarzani et al., 2005), as well as recurrent connectivity (see e.g.,
the role played by GABA-B receptors discussed in Otmakhova
and Lisman, 2004;Wilson and Laurent, 2005). Some intrinsic and
recurrent mechanisms have also been studied in the modeling
work done by Belmabrouk et al. (2011a,b). By clarifying how
these mechanisms either compete or assist one another, we hope
to reveal some of the computational principles at work in the
olfactory system.

The main conclusions of this paper are that the dynamics
of the hawkmoth antennal-lobe are consistent with: (a) strong

heterogeneous inter- and intra-glomerular synaptic connectivity,
and (b) slow inhibitory intrinsic currents acting on the PNs.
Feature (a) grants the AL a kind of automatic-gain-control—i.e.,
allowing the AL to respond very sensitively to faint odor puffs
with the robust activation of multiple PNs—involving a kind of
synchrony we refer to as “multiple-firing-events.” Feature (b)
protects such a sensitive AL from “runaway synchronization,”
allowing the AL to respond effectively to sequences of odor-
stimuli separated by a few hundred milliseconds.

The Results section of our paper is organized as follows. First,
in Section R1we describe some of our experimental results. These
experiments involve the application of various pharmacological
agents to the AL, and motivate our computational model, which
we discuss in Section R2. We use our computational model
to try and understand the kinds of dynamics which underlie
the phenomena we observe in experiment. This computational
model then informs several predictions (Section R3), some of
which we test in Section R4. Finally, we close with a discussion;
touching on possible consequences of our investigation, as well
as related work.

MATERIALS AND METHODS

In this section we give an overview of our experimental and
computational methods. This section is reinforced by material in
the online Supplementary Information.

Insect Preparation
Manduca sexta (L.) (Lepidoptera: Sphingidae) were reared in
the laboratory on artificial diet under a long-day photoperiod,
and adult male moths, 4 days post-emergence, were prepared
for experiments as described previously (Hansson et al., 1991).
For electrophysiological recordings, the moth was restrained
in a plastic tube with its head fully exposed. The labial palps,
proboscis and cibarial musculature were then removed to allow
access to the brain. To eliminate movement, the head was isolated
and pinned to a wax-coated glass Petri dish with the ALs facing
upward. Tracheae and a small part of the sheath overlying
one AL were then removed with fine forceps. The preparation
was continuously superfused with physiological saline solution
containing 150mM NaCl, 3mM CaCl2, 3mM KCl, 10mM TES
buffer (pH 6.9), and 25mM sucrose.

Electrophysiological Recording
To allow long-term recording from single neurons, which is
needed for the pharmacological experiments in this study, we
used a juxtacellular recording technique modified from Pinault
(1996) and tested in Lei et al. (2009). In short, electrodes
resembling those used for patch recording were pulled from
thin-wall borosilicate glass capillaries using Sutter P-2000 laser
puller and filled with physiological saline, resulting in <10 m�

electrode resistance. An Axoprobe-1A amplifier connected to a
10x DC amplifier (Model FC-23B, WPI, Sarasota, FL) was used
to amplify the signal up to 1000x. Calibration pulses from the
Axoprobe-1A amplifier were added to the output channels. A
Leica micromanipulator was used to advance the electrode into
the MGC region of an AL until a contact similar to that used for
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perforated-patch recording was achieved. A key technique in this
configuration is to bring the electrode tip close to a neurite, nearly
touching but not impaling it. We found that the amplitude of the
recording was affected by the closeness of the electrode tip with
the neurite. During the course of an entire experiment the relative
position between the juxtacellular-electrode and neurite may
drift, causing visible changes in the amplitude of the recorded
spikes, but not their frequency or timing.

Sensory Stimulation and Characterization
of Neurons
Olfactory stimuli were delivered to the preparation by injecting
odor-laden air puffs onto a constant air flow that was controlled
at 1 liter per minute. The flow was directed at the middle of the
antenna ipsilateral to the AL from which recordings were made.
Trains of 5 air puffs (50ms) with 2 s inter-pulse intervals were
generated by means of a solenoid-activated valve controlled by
an electronic stimulator (WPI, Sarasota, FL). Shorter or longer
intervals were used in particular experiments to test the effect of
intervals on response consistency (Figure 2). These air puffs were
directed through a glass syringe containing a piece of filter paper,
bearing various amounts of a single pheromone component
(0.1–100 ng in decadal steps). Not every concentration was
used in all experiments. The stimulus compounds used were:
(i) E10,Z12-hexadecadiennal (EZ, the primary component of
the conspecific female’s sex pheromone); (ii) E11,E12,Z14-
hexadecatriennal (EEZ, a second essential component of the sex
pheromone). MGC-PNs were characterized using 3 physiological
criteria: (1) randomly bursting spontaneous firing pattern;
(2) response specificity to pheromone components; and (3)
multiphasic pattern of responses. In M. sexta, uniglomerular
MGC-PNs have been shown repeatedly to give predictable
responses to the pheromone components according to the MGC
glomerulus in which their dendrites arborize (Christensen and
Hildebrand, 1987; Heinbockel et al., 1999, 2004; Lei et al., 2002):
Cumulus PNs are excited by antennal stimulation with EEZ but
inhibited (or not affected) by stimulation with EZ, whereas the
Toroid PNs are excited by stimulation with EZ but inhibited
(or not affected) by stimulation with EEZ. These types of PNs
typically exhibit a biphysic response pattern in juxtacellular
recordings, i.e., a depolarization phase followed by a period of
afterhyperpolarization (Lei et al., 2009). Finally, the spontaneous
activity of MGC-PNs typically is more randomly bursting, while
that of LNs is more tonic (Lei et al., 2011).

Pharmacological Manipulation
Picrotoxin, bicuculline methiodide, L-2-4-diaminobutyric acid
and nipecotic acid (Sigma-Aldrich, >95%) were diluted in
physiological saline solution to 200µM and then bath-applied to
moth preparations as described previously (Lei et al., 2009). In
short, pharmacological agents were applied to moth preparations
through a syringe drip system. The time when the drugs took
effect was determined by observing the change of spontaneous
activity of the recorded neuron. Spontaneous activity and
odor-evoked responses were first recorded under the normal
physiological saline solution and then repeated under the drug
treatment, and finally the normal saline wash. Note that the final

saline wash was typically applied many minutes after the initial
recordings, during which the juxtacellular electrode may drift
slightly, reducing the amplitude of the recorded spikes (see e.g.,
Figure 4A).

Data Acquisition and Analysis
Spike traces were digitized at 25 kHz sampling rate using
Datapack 2k2 software (Run Technologies, Mission Viejo, CA),
and the time stamp of each spike was extracted off-line with
the event-extraction function within the software package. The
spike train data (columns of time stamps) were imported into
a custom-written Matlab (The Mathworks Inc, Natick, MA)
script, which calculates interspike-interval derived parameters
such as mean instantaneous firing-rate and duration of the
afterhyperpolarization. To determine the width of the response
window, the spike train data were exported into Neuroexplorer
(Nex Technologies, Littleton, MA) for plotting the peri-stimulus
time histograms (PSTH), which allowed approximate estimation
of response duration. Then the average of instantaneous spiking
frequency (i.e., inverse of inter-spike interval) within the
response window was calculated. We chose a 500ms period
starting from 120ms after the onset of solenoid opening as
response window. We also examined different window size such
as 400, 600, and 750ms and found no significant changes on our
quantification of responses. This robustness may be due to the
fact that the measurement is derived from averaging individual
interspike intervals (ISI). In order to measure the duration of
the afterhyperpolarization, we compared the ISI in a sequential
manner after the stimulus onset. If an interval is at least 5 times
longer than its previous interval, this later interval is considered
as the afterhyperpolarization. All statistical comparisons were
performed using the Statistics Toolbox of Matlab. To statistically
compare the pharmacological effects in a balanced data set
(i.e., across the same group of neurons at different stages, such
as control vs. drug vs. wash), we selected the non-parametric
Friedman’s test (Figures 4, 8). Where there were only two groups
in comparison (Figures 6, 9), we selected the non-parametric
Mann-Whitney U-test. In both tests, the cut-off for type-I error
were set at the 5% level (i.e., alpha = 5%). Following the
Friedman’s test, the Tukey-Kramer multi-comparison method
was applied to determine the pairwise significance level.

Computational Model
We constructed a spiking network model of the AL with a
modest number of architectural features—allowing it to simulate
certain kinds of AL phenomena—while at the same time having
few enough parameters to allow for serious benchmarking and
subsequent investigation. While we sketch out our model in this
section, the full details of our model are contained within the
Supplementary Information.

The network model discussed in this paper contains PNs,
as well as two subclasses of local neurons: LN1s and LN2s.
These neurons (totaling several dozen altogether) are organized
into clusters that represent distinct glomeruli. The neurons
are interconnected, both within each glomerulus and across
glomeruli. This connectivity is illustrated in Figure 1.
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FIGURE 1 | Illustration of computational network architecture. On the left we illustrate the anatomy of a single glomerulus, comprising 10 PNs, 8 LN1s, 12

LN2s, each modeled using single-compartment integrate-and-fire equations. These neuronal populations are connected together sparsely via local intra-glomerular

connections. Representative connections are illustrated in this diagram with colored lines, the thickness of which roughly corresponds to the coupling strength. In the

middle we illustrate our full network, comprising K glomeruli (e.g., K = 2–6). The neuronal populations within each of these glomeruli are connected together sparsely

via long-range inter-glomerular connections; these long-range connections have the same synaptic strength as the intra-glomerular connections, but are randomly

connected using different sparsity coefficients. On the right we list a few tables for the synaptic coupling strengths (given in terms of approximate EPSP and IPSP

amplitudes), and sparsity coefficients. A full description of the network, as well as the parameters involved, is given in the Supplementary Information.

Within our network model, each neuron is modeled by
a single-compartment integrate-and-fire equation, driven by a
combination of intrinsic, feedforward and synaptic currents:

τV
d

dt
V (t) = −

(

V − VL
)

+ ISK + I
input

fast
+ I

syn,LN1

fast
+ I

syn,LN1

slow

+I
syn,LN2

fast
+ I

syn,LN2

slow
+ I

syn,PN

fast
,

The intrinsic currents determine how each neuron responds to
stimuli, and are different for the different neuron types (e.g.,
PNs are equipped with SK-channels). The feedforward-input
currents are independent (uncorrelated) between neurons, and
are given by a feedforward Poisson input with time-varying rate.
This feedforward Poisson input rate—which again depends on
neuron type—comprises both a background (low rate) plus the
time-varying stimulus-induced input (which can be high rate).

The synaptic currents involve recurrent nicotinic-type
excitation (2ms timescale), as well as GABA-A-type inhibition
(2ms timescale), as well as a slower synaptic inhibition (e.g.,
GABA-B-type with a∼750ms timescale). The coupling strengths
depend on the pre- and post-synaptic neuron types (e.g., the
LN1 population inhibits the LN2s differently than the PNs). In
our model we assume that local neurons (LN1s and LN2s) are
inhibitory, whereas PNs are excitatory. We do not explicitly
model any excitatory local neurons (see Olsen et al., 2007, as
well as Shang et al., 2007), although the effective inter- and
intra-glomerular excitation associated with such neurons might
be similar to the excitatory effects of our PNs (see Huang et al.,
2010).

The recurrent connectivity matrix for our network is chosen
to be an Erdos-Renyi random graph (i.e., each edge chosen
independently with some given coupling probability) with

coupling probabilities that are functions of the pre- and post-
synaptic neuron type and are slightly different for inter-
glomerular connections vs. intra-glomerular connections.

As we will discuss below, we use our model to conduct
numerical simulations: we subject our model to various
stimuli while attempting to mimic a variety of experimental
conditions. One important detail within this methodology is
how we translate PTX and BIC application from the real
world to our model. For our purposes, we will simulate PTX
application as though PTX reduces the efficacy of GABA-
A type receptors. When our model is operating under the
influence of PTX (i.e., “PTX-on” condition), the postsynaptic
currents associated with GABA-A synapses will be reduced by
75%. We similarly reduce by 75% the postsynaptic GABA-
A currents under BIC application. In addition, we drastically
reduce the SK-currents under this “BIC-on” condition (as
motivated by the discussion in Section R1). Going forward, we
will compare and contrast the behavior of our model in the
PTX-on and BIC-on conditions with the “control” or CTRL-
condition (i.e., CTRL = fully functional GABA-A and SK
currents).

We emphasize two important features of our network are:

(1) We ensure that the inhibitory synaptic connections made
by our LNs are “heterogeneous”; i.e., the distribution of
post-synaptic connection strengths varies widely across
the LN population. As mentioned above, we enforce this
heterogeneity by dividing our LNs into two “subclasses”
labeled LN1 and LN2. While both subclasses of LNs are
connected sparsely and randomly to the other neurons in our
model, the distribution of connection strengths is different
for the LN1 and LN2 subclasses. This heterogeneity implies
that some LNs will mostly inhibit PNs, without inhibiting
too many other LNs, whereas some other LNs will do
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the opposite. This heterogeneity is crucial for allowing our
model to facilitate PTX-on disinhibition of the PNs (see
Section R1 for discussion).

(2) We ensure that the PNs are equipped with intrinsic SK-
currents. These inhibitory currents are driven by each PN’s
own firing, serving to prevent that PN from firing multiple
times in a row. Once elevated, this current persists for
quite some time, decaying after ∼400ms. The presence of
such a persistent intrinsic inhibitory current is crucial for
allowing our model to facilitate the BIC-on shortening of the
AHP-phase (see Section R1 for discussion).

Benchmarking the Model
The model described above has several parameters which
influence its dynamics. These parameters include both the
strength and sparsity of the synaptic connections, as well
as the strength of the intrinsic SK-currents and feedforward
currents. Many of these parameters are constrained somewhat
by physiology (e.g., the synaptic coupling strengths must be
compatible with the observed sizes of EPSPs and IPSPs).
Nevertheless, even as these parameters are varied within
physiological bounds, the network can still produce a wide variety
of dynamical regimes, ranging from the physiologically realistic
to the unrealistic.

In order to further constrain these network parameters
we “benchmark” our model. That is, we choose a variety of
experimentally observed phenomena associated with the real AL
(i.e., benchmarks) and demand that our network satisfy these
benchmarks. Given any particular set of parameters—thought
of as a point in parameter space—our network will operate
within a particular dynamical regime and, generally speaking,

few-to-none of these benchmarks will be satisfied. Our goal is to
find a region in parameter space that corresponds to dynamical
regimes that satisfy all of our benchmarks; we hope that these
dynamical regimes will be “realistic” to some extent.

Our benchmarks are listed below:

(1) Firing-rates, EPSPs and IPSPs: In the real AL, PN and LN
firing-rates are between 5 and 15Hz in background (i.e.,
when unstimulated), and usually between 40 and 80Hzwhen
stimulated. EPSPs and IPSPs are usually smaller than 1mV.
We require that corresponding values for our network lie
within these acceptable ranges.

(2) Pulse-response attenuation: In the real AL, the PNs will
respond less vigorously to an odor puff if that puff was
immediately preceded by a previous puff. This phenomenon
gives rise to attenuation of the PN response to a rapid
sequence of odor pulses.We require that our network exhibit
a similar attenuation when stimulated with simulated odor
pulses. Compare Figure 2 and Figure 3.

(3) PTX response when unstimulated: This benchmark is
intended to capture the phenomena discussed in Section
R1. As mentioned above, the pharmacological application
of PTX to the real AL is translated in our network to
the reduction of GABA-A presynaptic currents by ∼75%.
We require that, when compared against CTRL, the PTX-
on condition exhibit both (i) a reduction in spontaneous
PN firing-rates, as well as (ii) an increase in the typical
spontaneous PN ISIs. Compare Figure 4 and Figure 5.

(4) PTX response when stimulated: This benchmark is intended
to capture the effects of PTX on the PN response to a train of
odor pulses. As per experiment, we require that (i) the mean
PN response per pulse for the PTX-on condition should

FIGURE 2 | Varying the inter-pulse-interval (IPI) affects the attenuation of PN responses. (A) On top we show raster-plots of a PN response to five pulses in

sequence (IPI 500ms). The peristimulus-time-histogram is shown in the middle, and the normalized response per pulse is shown on the bottom. Note that there is a

marked attenuation of PN response following the first pulse. (B) IPI = 1 s, and the attenuation is less marked. (C) IPI = 10 s, which is significantly greater than the

AHP-phase; there is no attenuation of PN response.
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FIGURE 3 | Our model qualitatively reproduces the pulse-response attenuation seen in Figure 2. On top we show traces of PN-activity for a model

glomerulus responding to a sequence of five pulses. On the bottom we show the normalized spike-count per-pulse. On the left we use an IPI of 512ms. On the right

we use an IPI of 2048ms, which is significantly longer than the AHP-phase.

be comparable to that of the CTRL-condition, whereas (ii)
the standard-deviation in PN response per pulse should be
significantly higher when PTX is on. Compare Figure 10 and
Figure 11.

(5) BIC response when stimulated: This benchmark is intended

to capture the phenomena discussed in Section R1. As

mentioned above, the pharmacological application of BIC to

the real AL is translated in our network to the combination

of (i) a reduction of GABA-A presynaptic currents by∼75%,

as well as (ii) a reduction in the strength of the intrinsic

SK-currents that follow hyperpolarization of the PNs. We

require that, when BIC is on, our model PNs exhibit

prolonged responses to odor stimuli; responses that show

a much diminished AHP-phase. Consequently, the BIC-

on state should reduce PN pulse-response attenuation and

prevent PNs from faithfully tracking rapid sequences of

odor pulses. Compare (Lei et al., 2009) with Supplementary

Figure S7.
(6) BIC response when unstimulated: This benchmark is

intended to capture the effects of BIC on the spontaneous
state. We require that, when BIC is on, the PNs exhibit
slow modulation in their background dynamics, switching
between long epochs of periodic firing and long epochs
of relative silence (typical epoch length should be several

seconds to tens of seconds). Compare Figure 12 and
Figure 13.

To actually perform our benchmarking we repeatedly scanned
sections of parameter-space by varying one or two parameters
at a time, covarying the most influential parameters whenever
possible. For each scan we chose the “best” set of parameters
(i.e., those which came closest to satisfying our benchmarks)
and scanned again; varying different parameters the next time.
This repeated parameter-scanning was done by hand (and not
automated) so that (i) we could gain some intuition for the vastly
different kinds of dynamic-regimes our network was capable of
producing, and (ii) we could be sure that our results were not too
sensitive to any single parameter. We continued searching until
we found a large open region in parameter-space, each point of
which gave rise to a rather similar dynamical regime that exhibits
all of our benchmarks. Figure 1 lists sample values for many of
these coupling and connectivity parameters for one point within
such a region.

After benchmarking our network, we investigated the
mechanisms at work within the resulting dynamical regime.
We found that the dynamical regime that supported the above
phenomena was one of “high-gain,” with strong recurrent
connectivity that gives rise tomultiple-firing-events (MFEs). This
regime is discussed at length below in Section R2.
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FIGURE 4 | Picrotoxin reduces PN’s spontaneous activities. (A) Juxtacellular recording traces (12 s long) show a marked reduction in the number spikes due to

the application of picrotoxin. (B) The reduction of number of spikes due to picrotoxin is statistically significant (Friedman test, p < 0.01, n = 8) but the effect is not fully

reversible. Different letters on top of the box plots indicate statistical significance. (C) Cumulative sum of interspike intervals (ISI) shows that the picrotoxin treatment

prolongs the maximal ISI to about 4 s (red line) while the maximal ISI under saline control is only about 1.5 s (black line). Moreover, nearly all (about 98%) ISIs under

saline control are less than 0.5 s but about 87% of ISIs under picrotoxin are within this range. Saline wash produces a pattern that is between the drug treatment and

control (blue line).

RESULTS

Section R1: Initial Experiments
In this section we present some of our experiments which

hint at the nature of the after-hyperpolarization (AHP) phase

in projection neuron (PN) response. These experiments will

strongly suggest that the AHP-phase comprises both inhibitory

synaptic currents as well as hyperpolarizing intrinsic currents.

To preface, recall that the “control-condition” (i.e., saline

wash, rather than any active pharmacological agent) produces

spontaneous PN activity in the range of 6–12Hz (see, e.g.,

Figure 4A). When stimulated by a pheromone pulse, the PN

activity increases vigorously, and is usually followed by an AHP-

phase, expressed as a nearly silent period in the raster plots and

PSTH following each pulse (see e.g., Figure 6A). This AHP-phase

not only truncates the excitatory response evoked by each odor

pulse but also lasts for about a second or so. As a result, the AHP-

phase caused by any given odor pulse can interfere with—and

reduce—the magnitude of excitatory response to any subsequent

odor pulse occurring shortly after the first. To quantify this
attenuation, we stimulate the MGC with a rapid sequence of five
successive odor pulses (see methods) characterized by an “inter-
pulse-interval” (IPI) ranging from IPI = 0.5–10 s. As expected,
the PN response shows a marked attenuation when the IPI is less
than or equal to the observed duration of the AHP (see Figure 2).
On the other hand, when the IPI = 2 s or longer, the AHP from
each pulse dies away before the next pulse arrives, and so the AHP
does not significantly affect the PN response across pulses (i.e.,
there is little to no attenuation when IPI ≥ 2 s).

Our first set of experiments perturbs the scenario above
through the pharmacological application of picrotoxin (PTX)
to the MGC. PTX has been shown to be an effective GABA-
A receptor antagonist in both vertebrate and invertebrate
preparations (Newland and Cull-Candy, 1992; Anthony et al.,
1993; Laurent et al., 1999; Lee et al., 2003; Choudhary et al.,
2012; Warren and Kloppenburg, 2014). Consequently, we expect
PTX application to increase the PN response. However, to the
contrary:
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FIGURE 5 | Our model qualitatively reproduces the PTX-induced phenomena seen in Figure 4. On top we show traces of PN-activity for a model glomerulus

in background, both in the control state (black) and PTX-on state (red). Below these traces we plot the time-averaged PN firing-rate (averaged over 1 s bins). On the

bottom we show the average PN firing rates (left) and cumulative-distribution-function for the ISI-intervals (right).

PTX Decreases PN’s Spontaneous Activity
Under our experimental conditions, perfusing the moth AL with
PTX (200µM) significantly reduced the level of spontaneous
activities on PNs (Figures 4A,B; Friedman test, p < 0.01, n = 8).
Despite a reduction of the number of spikes (from 70 to 120
with median of 79 in a 10-s window to 10–50 with median of
20, Figure 4B), the bursting pattern was not altered (Figure 4A,
middle panel). Apparently, the reduction of number of spikes was
primarily caused by the increase of ISI, especially those intervals
between the bursts. This inference was further confirmed by
plotting the cumulative probability sum of ISI across saline
control (812 ISIs pooled from eight neurons), PTX treatment

(261 ISIs) and saline wash (309 ISIs; Figure 4C). Without PTX
(i.e., saline control), the maximal ISI was 1.72 s (Figure 4C, black
line), but this number went up to 3.95 s with PTX, an increase
of 129% (Figure 4C, red line). Moreover, the distribution of ISIs
associated with the saline control group was shifted (toward
shorter ISI times) relative to the distribution of ISIs associated
with the PTX treatment. For example, 95% of the control-ISIs
were shorter than 0.2 s, whereas this range only comprised about
85% of the ISIs under PTX-treatment. Saline wash did not reverse
the ISI distribution to the control pattern completely, but rather
to a pattern between the saline control and drug treatment
(Figure 4C, blue line).
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FIGURE 6 | Picrotoxin increases the duration of afterhyperpolarization

(AHP). (A) Raster plot and peristimulus histogram show a typical excitatory

response of a Toroid PN to five pulses of EZ stimulation. The stimulus onset is

at time zero and lasts for 50ms. Note the AHP (dotted arrows) following the

bursts of excitatory responses. (B) Under the picrotoxin treatment, the duration

of AHP is significantly increased, along with a reduced spontaneous activity.

(C) Group data showing that the picrotoxin-induced increase of AHP duration

is statistically significant either under 1 or 10 ng stimulation (Mann Whitney

U-test, p < 0.05 or 0.01, n = 8; asterisks indicate the significance level).

In addition to measuring the effects of PTX on spontaneous
activity, we also measured the effects of PTX on the AHP-phase.
We observed that:

PTX Increases the Duration of PN’s AHP Phase
As mentioned above, the MGC PNs’ excitatory response to
pheromones is usually followed by an AHP-phase, expressed as
a gap in the raster plots and PSTH (Figure 6A, dotted arrows).
The length of the AHP period was significantly increased by
PTX application (Figure 6B, dotted arrows). Because the AHP
is positively correlated with odor concentrations (Figure 7A),
we also compared the PTX effect on low (1 ng) and high (10 ng)
dose evoked responses. In both cases, PTX significantly increased

FIGURE 7 | The length of the afterhyperpolarization (AHP) period is

positively related to the odor concentrations under saline control (A),

but the linear relationship is lost after picrotoxin treatment (B) (N = 8).

the length of AHP (Mann Whitney U-test, p < 0.05 or 0.01,
n = 8; Figure 6C). Interestingly, PTX application disrupted the
linear correlation between odor concentrations and the duration
of AHP (Figure 7B).

Thus, despite the fact that PTX is a GABA-A receptor antagonist,
perfusion of PTX actually enhances the inhibitory modulation
of the PNs. Moreover, because PTX increases the duration of
the AHP-phase, these effects likely stem from an increase in the
inhibitory currents responsible for the AHP-phase, and not to
secondary-effects of PTX which might block nicotinic-excitation
(as seen, e.g., in honeybee, see Barbara et al., 2005). Based on these
considerations, we will explore the hypothesis that the PNs may
be involved in a disinhibitory network operating within theMGC
or even spanning the AL (for motivation, see Christensen et al.,
1998a or Buckley and Nowotny, 2011).

As a very simple example of such disinhibition, one may
consider a 3-neuron circuit consisting of a single local neuron
(LN1) inhibiting a second local neuron (LN2) which inhibits
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FIGURE 8 | Sketch of an inhibitory and disinhibitory circuit, as well as a more realistic disinhibitory network: (A) We illustrate a simple inhibitory circuit,

involving a single LN which produces presynaptic inhibitory current I that inhibits a single PN. Under PTX we expect the efficacy of inhibitory synapses to decrease;

thus I should get smaller, implying that the PN activity will increase. (B) We illustrate a simple disinhibitory circuit, involving an LN1 which produces a presynaptic

inhibitory current I1 that inhibits another LN2. This LN2, in turn, produces a presynaptic inhibitory current I2 that inhibits a single PN. If the activity level of the first LN1

is high, we may expect LN2 to be only weakly active, and for the PN to be active. Under PTX we expect that the efficacy of inhibitory synapses will decrease: as a

result I1 will decrease, and so the activity level of LN2 will increase. This increased activity level—combined with the now decreased efficacy of inhibitory

synapses—will alter I2. If the activity level increase of LN2 is sufficiently large, it is possible for I2 to actually increase overall (even though PTX has been applied). As a

consequence, it is possible for the PN activity level to actually decrease overall—even though PTX has been applied. (C) A more realistic disinhibitory network would

involve not just three neurons, but rather a collection of LNs and PNs, with the former heterogeneously coupled. In the heterogeneous network shown we have

colored the various LNs according to the role they might play with regards to disinhibition: those LNs that predominantly inhibit PNs are classified as “LN2s” and

colored blue, while the LNs that predominantly inhibit the LN2s are classified as “LN1s” and colored green. In reality the roles are not so clear cut; some LNs will both

inhibit PNs as well as inhibit other LNs, and it may not always be possible to clearly classify each and every LN into a specific role.

a projection neuron (PN). The layout for this simple circuit
is illustrated in Figure 8. We’ll also assume—for exposition—
that this simple circuit is operating in a mean-driven regime
(see, e.g., Destexhe and Sejnowski, 2009; Buckley and Nowotny,
2011). In such a regime, each neuron receives independent
feedforward input currents that—alone—would be sufficient
to cause them to fire at high rates. As we’ll discuss next,
this mean-driven regime can be understood by analyzing its
firing-rates.

The “control” situation for this simple circuit involves LN1
being very active with high firing-rate m1. In this condition,
since LN1 is very active, the inhibitory presynaptic currents to
LN2—denoted by “I1” will be proportional to the LN1 activity.
That is to say, I1 will be roughly S×m1 for some “synaptic
strength” S. The large presynaptic current I1 will ensure that
LN2 is only weakly active, with a firing-rate m2 which will be
a function [i.e., f(·)] of the total input current to LN2. In this
case we expect m2 = f (E− I1) = f (E− Sm1), where f depends
on both I1, as well as some background excitatory current E; m2

should be lower as I1 increases. The presynaptic inhibition to the
PN—denoted by I2—will be proportional to f (E− I1), roughly
determined by something like I2 = S×f (E− I1) = Sf (E− Sm1).
Becausem1 and S are high, I1 will be high, som2 = f (E− I1)will
be low, so I2 will be low, and the PN activity will be high.

When PTX is applied to this simple circuit, the situation will
change. The LN1 will remain active, but no longer inhibit LN2
as much. If the application of PTX blocks, say, three-quarters
of the GABA-A receptors, we might imagine the synaptic-
strength S reduced to ¼S. With this reduction the presynaptic
inhibition to LN2 is only I1 = ¼Sm1, and so the new (higher)
firing rate of LN2 will be m2 = f (E−¼Sm1). This new

firing-rate m2 might be much higher than before (i.e., the firing-
rate may be a nonlinear function of the presynaptic currents),
implying that the presynaptic inhibitory current to the PN
will change to I2 = ¼Sm2 = ¼Sf (E−¼Sm1). If f has the
appropriate structure, it is certainly possible that I2 might actually
be higher under PTX than under the control condition. In
such a situation, we would observe the PN activity drop under
PTX.

To be clear, we are not suggesting that each PN in the
MGC is the target of an idealized disinhibitory circuit such as
in Figure 8B, nor that the MGC operates in a mean-driven
regime where such a firing-rate analysis is valid. Rather, we are
suggesting that perhaps the collection of LNs in the MGC may
be interconnected in such a way as to give rise to a similar
disinhibitory phenomena– even without any single simple
mean-driven disinhibitory circuit existing in isolation (see e.g.,
Figure 8C). Put another way: we suggest that an appropriately
heterogeneous LN population (i.e., a population of LNs that have
varying degrees of connectivity and coupling strength, both to
each other and to the PNs) might—as a gestalt—give rise to the
PTX-induced phenomena we observed above.

If, indeed, the MGC PNs are targets of such emergent
disinhibition, we would expect many of the results we see under
PTX to also manifest under other pharmacological agents which
increase the overall level of inhibition in the MGC. One way
to test this intuition is to use GABA transporter blockers—
specifically L-2-4-diaminobutyric acid (L-DABA) and nipecotic
acid. These blockers should increase the GABA concentration in
the tissue (Mbungu et al., 1995; Oland et al., 2010). As confirmed
below, this increase in GABA concentration has similar effects
to PTX:

Frontiers in Physiology | www.frontiersin.org 10 March 2016 | Volume 7 | Article 80

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Lei et al. Inhibitory Network Constrains Neural Synchrony

FIGURE 9 | Blocking GABA transporters increases the duration of

afterhyperpolarization (AHP). Two GABA transporter blockers, L-DABA (A)

and Nipecotic acid (B), were used to treat the experimental preparations, and

both blockers increase significantly the duration of AHP. The saline wash,

however, does not fully reverse the drug effect. Different letters on the bar

graphs indicate statistical significance (Friedman test, p < 0.01, n = 5).

GABA Transporter Blockers Enhance AHP
We perfused the AL with GABA transporter blockers, L-
2-4-diaminobutyric acid (L-DABA) and nipecotic acid. As
expected, both blockers increased the AHP duration significantly
(Figure 9) (Friedman test, p < 0.01, n = 5). The saline wash,
however, did not have significant effects. This could be due
to insufficient amount of washing time limited by recording
sessions.

Based on the PTX, L-DABA and nipecotic acid experiments
above, we concluded that (i) the PNs in the MGC participate
in some kind of disinhibitory circuit, and (ii) that disinhibitory
circuit gives rise to an inhibitory presynaptic current within the
PNs that contributes to the AHP-phase.

While sensible given the experiments we’ve discussed so far,
this conclusion is not obviously consistent with some of our
previous experiments involving bicuculline methiodide (BIC; see
Lei et al., 2009). To elaborate, BIC is similar to PTX, in that

both agents are putative GABA-A receptor antagonists within the
Manduca AL (Christensen et al., 1998b). Because there may be
differences in the affinity of each agent for GABA-A, we don’t
expect BIC to act in exactly the same way as PTX. Nevertheless,
at first blush we expected the effects of BIC to be qualitatively
similar to PTX: i.e., to also lengthen the AHP within PN MGCs.
To the contrary, however:

BIC Eliminates the PN’s AHP-Phase
BIC application substantially reduces the length of the AHP-
phase well below ∼200ms, and sometimes eliminates the
AHP-phase altogether. Consequently, under BIC the PN
response exhibits a much prolonged excitatory phase, persisting
several hundred milliseconds after the pheromone stimulus is
removed. In addition, due to the lack of an AHP-phase, the PN
response exhibits little to no attenuation from one odor pulse
to the next—even when those odor pulses are within 1 s of one
another (e.g., an IPI of 512ms). Thus, this BIC-induced lack of
attenuation prevents PNs from faithfully tracking the dynamics
of a pulsatile odor stimulus (Lei et al., 2009).

These results are surprising; the BIC induced phenomena within
the MGC seem diametrically opposite to the PTX induced
phenomena. Thus, even though they are both GABA-A receptor
antagonists (Waldrop et al., 1987)1, PTX and BIC cannot be
doing the same thing to the MGC.

One potential explanation for this paradox is that BIC
is actually more than just a GABA-A receptor antagonist.
Specifically, BIC could also block certain channels within the
PNs – channels that give rise to intrinsic currents which, in
the absence of BIC, ordinarily contribute to the AHP-phase
(for precedent see Villalobos et al., 2004; Pedarzani et al.,
2005; Belmabrouk et al., 2011a). While this leap of logic may
seem farfetched at first, we believe that there is a natural
candidate for such channels: namely, calcium-dependent small-
conductance potassium channels (SK-channels). Indeed, in a
functional study of cloned SK-channels using Xenopus oocytes,
BIC was found to block two types of SK-channels (Khawaled
et al., 1999).

Although there is no direct molecular evidence that proves
that Manduca PNs possess SK-channels, there are several pieces
of evidence that point toward this possibility:

(1) In the fruit fly, Drosophila melanogaster, one type of SK
channel was reported. Moreover, this channel is likely
important for sensory processing, since the photoreceptors
of the mutant flies lacking the gene of this channel produce
oscillatory currents that hinder their responses under dim
conditions (Abou Tayoun et al., 2011).

(2) In mammals, SK-channels are believed to mediate the AHP-
currents following action potentials, both inhibiting cell
firing and limiting the firing frequency of repeatable action
potentials (Bond et al., 1999; Adelman et al., 2012).

1Even though we used different methods to introduce PTX and BIC into the

AL—bath perfusion vs. multibarrel pressure injection—we do not believe that this

difference in procedure could be wholly responsible for the extreme discrepancies

we observed in the PN dynamics.

Frontiers in Physiology | www.frontiersin.org 11 March 2016 | Volume 7 | Article 80

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Lei et al. Inhibitory Network Constrains Neural Synchrony

(3) An SK channel homolog, KCNL-2, has also been
characterized in the nervous system of C. elegans and
is believed to regulate egg laying behavior (Chotoo et al.,
2013).

Is it possible that Manduca PNs are indeed equipped with SK-
channels, and that these channels are both partially responsible
for the AHP and blocked by BIC? On the surface, this scenario
might be consistent with the experiments described above. Recall
that PTX and BIC gave rise to, respectively, a lengthening and
shortening of the AHP-phase. Perhaps, as previously discussed,
PTX reduces the effectiveness of GABA-A receptors, thus
lengthening the AHP-phase of the PNs through a disinhibitory
network of LNs. Now BIC should also reduce the effectiveness
of GABA-A receptors somewhat, but could also block putative
SK-channels within the PNs. While the former alone would
reduce the PN activity, just like PTX, the latter could remove
a substantial component of the AHP-currents, increasing PN
activity. Perhaps a combination of these two effects could
somehow result in both the PTX-induced phenomena we see
above, as well as the BIC-induced phenomena observed in Lei
et al. (2009).

Going forward, we will explore this possibility: We will use
computational modeling to investigate the scenario sketched
out in the previous paragraph. More specifically, we will create

a spiking neuronal network that has (a) strong heterogeneous
recurrent connectivity across the LN population, and (b)
SK-channels within the PNs. We will determine whether or not it
is even possible to benchmark such a network against the PTX-
and BIC-induced phenomena described above. In doing so, we’ll
expose mechanisms that may be at work within the MGC or,
more generally, across many glomeruli within the AL.

Before we embark on such a project, we comment on two
somewhat more subtle phenomena we have observed; the first
relating to PTX application, the second to BIC:

PTX Disrupts PN’s Response Consistency across

Repeated Isolated Stimuli
Recall that, in response to isolated pulses of pheromonal stimuli,
the MGC PNs typically generate bursts of action potentials
tracking each stimulus pulse (Figures 10A,B). Because the inter-
pulse-interval (IPI = 2 s) in this case was sufficiently greater
than the typical AHP-length (compare, e.g., Figure 6C with
Figures 10A,B), the response from one pulse did not “interact”
with the following pulse; consequently, there was little to no
attenuation of the PN response across pulses. The same holds
under PTX application, which did not significantly change the
PNs’ response magnitude, measured as the mean instantaneous
firing rate during the response window across odor pulses

FIGURE 10 | Picrotoxin increases response variations. (A,B) Juxtacellular recording traces show the responses of a Toroid PN to four pulses of EZ stimulation

under saline control (black trace) and picrotoxin treatment (red trace). (C,D) Picrotoxin does not significantly change the mean instantaneous firing rate during the

response window either to 1 or 10 ng stimulation; however, the treatment significantly increases the response variation measured by the standard deviation of firing

rate across odor pulses (Mann Whitney U-test, p < 0.01, n = 8; asterisks indicate the significance level).
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(Figure 10C, Mann Whitney U-test, p > 0.05, n = 8). However,
under PTX, the excitatory responses from pulse to pulse were
not as consistent as those under the saline control, shown by
a significant increase of the standard deviation of the mean
instantaneous firing rate across all 5 odor-evoked responses
(Figure 10D, Mann Whitney U-test, p < 0.01, n = 8). These
drug effects were similarly observed when using low (1 ng)
or high (10 ng) concentration of odors (Figures 10C,D). See
Figure 11 for comparison with our model.

BIC Introduces Structure into the PN Spontaneous

Activity
When unstimulated, the MGC PNs usually produce sporadic
spontaneous activity with no obvious structure. Under BIC
application, the spontaneous PN activity can change into a
long-lasting structured pattern, which alternates between epochs
of fast-periodic-spiking and epochs of near total quiescence.
The epochs of fast-spiking are characterized by ISI-intervals of

∼50ms, whereas the quiescent epochs have firing-rates near
0Hz. The epochs can each last for several tens of seconds, and
alternation between the spiking and silent epochs continues for as
long as BIC is supplied. The transition between any given spiking
epoch and the subsequent silent epoch can be very abrupt—often
much less than 100ms—and sometimes even instantaneous.
While we had originally observed this phenomenon in our
previous work (Lei et al., 2009), we confirmed it once again
with a new set of experiments. In these recent experiments we
again observed BIC-induced spontaneous activity patterns, this
time with even more variation than what we had originally seen
in 2009. Although the spiking activity was generally increased
by BIC application, only one MGC PN exhibited extreme
rhythmicity when alternating between quiescent and spiking
epochs (asterisk in Figure 12A). The other MGC PNs also
exhibited long-lasting epochs of spiking as well as quiescent
epochs, but were less rhythmic (Rows 1–3 of raster plots in
Figure 12A).

FIGURE 11 | Our model qualitatively reproduces the PTX-induced phenomena illustrated in Figure 10. (A,B) PN-activity for a model glomerulus subject to a

train of stimulus pulses separated by an IPI of 2 s. (C) The PTX-on state induces small changes in the mean PN-response—i.e., instantaneous firing-rate—averaged

across pulses. (D) The PTX-on state induces larger changes in the standard-deviation (across pulses) of PN-response.
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FIGURE 12 | Bicuculline methiodide (BIC) alters the spiking patterns of the spontaneous activity of PNs both in the MGC and in the ordinary glomeruli.

(A) Raster plots show that BIC treatment generally increases the spontaneous activity level of MGC PNs, opposite to the picrotoxin treatment, and produces the

run-away pattern (asterisk) in some PNs. (B) Such run-away patterns are also present outside the MGC when BIC is used, verifying the predictions from the network

model.

These two phenomena both expose rather specific dynamic
features of the MGC and neither is an obvious epiphenomenon
of the mechanisms we have proposed so far. To elaborate, even if
PTX does disrupt a disinhibitory network involving the PNs, why
would such a disruption necessarily reduce the consistency of PN
response across isolated pulses? Furthermore, even if BIC does
block SK-channels—which have dynamics in the 100–500ms
range—why would blocking these channels give rise to structured
spontaneous activity on a 10 s time-scale?

Thus, to further constrain and validate our computational
modeling, we will use the above two phenomena as additional
benchmarks. That is to say, we will determine if our
computational model, possessing both (a) heterogeneous
connectivity across the LNs and (b) SK-channels within the PNs,
can reproduce all the phenomena discussed so far.

Section R2: Computational Modeling
In this section we briefly describe our computational model, and
use it to probe the potential consequences of disinhibition and
SK-channels within the moth MGC.

Note that ours is certainly not the first model to investigate
these mechanisms within theManducaAL. For example, a mean-
field model by Buckley and Nowotny (2011) analyzes the role
of disinhibition within an idealized inhibitory network without

fast synapses. As another example, a spiking network-model by
Belmabrouk et al. (2011a) includes SK-type channels in order
to replicate some of the pharmacological results seen in Lei
et al. (2009)—specifically the elimination of the AHP-phase
and diminished pulse-tracking properties observed under BIC-
application.

We view both these works as encouraging, and take them
as additional support for the disinhibition and SK-channel
hypotheses. That being said, our model—which combines
disinhibition and SK-channels—is the only model we are aware
of that attempts to capture the broad range of PTX- and BIC-
induced phenomena we observed in Section R1. Moreover, as
we will eventually discuss later, our modeling study illuminates
the importance of multiple-firing-events, which depend critically
on fast synapses and cannot be well understood via a mean-field
framework.

Our model is a spiking network model of a few interconnected
glomeruli within the Manduca AL. This network is built out
of several dozen spiking single-compartment integrate-and-fire
neurons, using the voltages and conductances of the individual
neurons as microscopic variables. Each glomerulus in our model
corresponds to a relatively tightly knit cluster of a few dozen
neurons, including inhibitory LNs and excitatory PNs. In terms
of connectivity, we have abstracted the complex topology of
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the real AL as follows: we assume that different populations of
neurons are interconnected sparsely and randomly, both within
each glomerulus as well as across glomeruli. We remark that we
do not explicitly model excitatory LNs, instead assuming that
their effects are similar to the effects of the excitatory PNs (to
which they may be strongly connected—see e.g., Huang et al.,
2010).

With regards to the network’s dynamics, we equip our
neurons with fast synaptic currents, corresponding to nicotinic-
type excitation and GABA-A-type inhibition, as well as slower
inhibitory synaptic currents with a decay time ∼750ms. Both
our LNs and PNs exhibit fast sodium-like spikes (modeled via
the integrate-and-fire equations), but our PNs are also equipped
with a slow intrinsic inhibitory current mimicking the putative
SK-currents discussed above (decay time-scale ∼400ms). Each
neuron in our network is also driven by independent feedforward
Poisson input comprising (i) a background drive and (ii) a
stimulus-specific drive targeting specific glomeruli at specific
times.

These are the main ingredients of our model. Note that, as
described in the Methods Section and in the Supplementary
Material, our model has (a) heterogeneous recurrent inhibition
provided by the LNs, as well as (b) slow intrinsic SK-currents
within the PNs; while the latter is considered in Belmabrouk et al.
(2011b), the former is not. The parameters for our model include
excitatory and inhibitory couplings strengths (both within and
across glomeruli), the strength of the SK-currents within the
PNs, and the strengths of the feedforward input currents. As
mentioned in the methods section and discussed in more detail
in the Supplementary Material, we proceeded to tune this model
by varying the parameters. Our goal when tuning was to search
for parameters for which our model was “biologically plausible.”
That is, for which our model satisfied all the benchmarks
associated with our observations of the AL. We found that,
indeed:

Our model allows for “biologically plausible” behavior
There exists a region in parameter space for which our model
can simultaneously exhibit the following phenomena discussed
in Section R1: (1) Firing-rates, EPSPs and IPSPs similar to
those observed in the real AL; (2) Pulse-response attenuation
for IPIs < 1 s, (3) PTX-induced reduction in PN spontaneous
firing rates, (4) PTX-induced loss of consistency across isolated
stimulus pulses, (5) BIC-induced reduction in PN pulse-
response attenuation and pulse-tracking, and (6) BIC-induced
slow patterns when unstimulated. These phenomena are
illustrated in Figures 3, 5, 11, 13, as well as in Supplementary
Figure S7.

Even this modicum of success points toward the plausibility
of our previous hypothesis. Namely, that the phenomena
we observed might be due to (a) heterogeneous recurrent
connectivity involving the LNs and (b) intrinsic SK-
currents within the PNs. More importantly, however, our
computational model gives a hint as to how these architectural
mechanisms give rise to the phenomena at hand, and how

those phenomena might coexist within a single dynamical
regime.

After analyzing our model, we discovered that all the
biologically plausible regimes we found shared a few things in
common:

(1) Strong recurrent inhibition: Unsurprisingly, all our
biologically plausible regimes had large inhibitory coupling
strengths. This is to be expected, as we engineered our model
to possess a heterogeneous collection of LNs capable of
disinhibition. In order for our network to exhibit the desired
PTX-induced reduction in PN firing rates, the effects of
such disinhibition should be significant. Strong recurrent
inhibition seemed to be a necessary prerequisite for this.

(2) Strong intrinsic SK-currents: Also unsurprisingly, all our
biologically plausible regimes had large amplitude SK-
currents within the PNs, corroborating previous modeling
work by Belmabrouk et al. (2011a). This again is expected,
as we required PNs in our model network to exhibit a BIC-
induced reduction in the AHP-phase. Recall that, in our
network, BIC-on corresponds to a reduction in both GABA-
A-currents and SK-currents. Given that the former alone
would lengthen the AHP-phase (through disinhibition),
it is crucial that the AHP-phase also comprise a strong
intrinsic inhibitory component—in our case this was an
SK-current. In order for the BIC-on state to shorten the
AHP-phase, this SK-current must be strong enough that its
removal (under BIC) “outweighs” the additional presynaptic
inhibition received by the PNs due to the disinhibitory
network.

(3) High gain:Our model functioned well when the feedforward,
intrinsic and synaptic currents combined to ensure that,
most of the time, at least some neurons in the network had
membrane potentials that were not too far from the firing-
threshold. This requirement is tantamount to the statement
that—barring obvious exceptions such as PNs in the AHP-
phase—the currents driving each neuron were neither
overwhelmingly excitatory nor overwhelmingly inhibitory.
This “high gain” regime allowed neurons to be responsive
to fluctuations in their input currents; this responsivity
played an important role in all the phenomena we
sought.

(4) Strong recurrent excitation: Finally, all our biologically
plausible regimes had large excitatory coupling strengths.
In this case “large coupling strengths” specifically means
that the typical EPSP was of the same order as—or
not too much smaller than—the typical IPSP coming
from the heterogeneous network of LNs. This requirement
can be thought of as a special case of the “high-
gain” requirement from the previous paragraph, restricted
to presynaptic currents. These large coupling strengths
were instrumental in producing the somewhat more
subtle dynamic phenomena discussed toward the end of
Section R1.

These last two requirements—a high-gain state with strong
recurrent excitation—were crucial for our model, and gave rise
to a very important dynamic feature:
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FIGURE 13 | Our model qualitatively reproduces the BIC-induced phenomena illustrated in Figure 12. (A) On top we show the spontaneous PN-activity for

both glomeruli (two shades of gray) in a K = 2 glomeruli model. The time-averaged spike-count (2 s bins) is shown on the bottom. (B) On top we show the

spontaneous PN-activity for both glomeruli (two shades of red) in the same K = 2 glomeruli model under the BIC-on state. Note that not only are there long periods of

elevated activity observed within each of the glomeruli, but also that these periods of activity are anti-correlated with one another.

Our Model Exhibits Emergent

“Multiple-Firing-Events” —or MFEs
These MFEs are a special kind of causally-linked synchronization
across subsets of PNs. This brief synchronization occurs because
the PNs are in a high-gain state; there are often a few PNs which
are not too far from the firing-threshold. Because of the strong
recurrent excitation, one or two typical EPSPs can close this gap,
causing one spike to lead to the next. That is to say, it will not
be uncommon for any given PN spike to drive at least one other
postsynaptic PN over the spiking-threshold, causing a second PN
spike almost immediately (i.e., within 1–2ms). This second spike
may cause a third, and so forth, resulting in a chain reaction
including several PNs over a comparatively short period of time
(say, <5ms).

That these chain-reactions can occur depends on the high-
gain and strong recurrent excitation; whether or not a chain-
reaction will occur at any given time is due primarily to luck—
which PNs have high subthreshold voltages and which do not.

While it is certainly possible for MFEs to occur spontaneously
(i.e., when the model is unstimulated), most MFEs occur during
the initial response to stimulation. This initial response period
corresponds to the “highest-gain” of the PNs, before they will
be suppressed by the inhibitory currents from the forthcoming
AHP-phase.

An example of an MFE within an idealized 3-neuron network
is shown in Figure 14A. This network comprises 3 PNs which
are stimulated with feedforward Poisson input similar to our full
network; the synaptic time constants are also similar to our full
network (i.e., 2ms), but the synaptic coupling strengths are about
a factor of 10 higher so thatMFEs clearly manifest. On the top left
we show a short 5ms sample trajectory from this network with
the subthreshold voltage of each PN color-coded in accordance
with the network to the right. Because each neuron is modeled
using the integrate-and-fire equations, each subthreshold-voltage
will fluctuate (based on its combination of input currents) until it
reaches the firing-threshold (VT), at which point the neuron will
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FIGURE 14 | Illustration of multiple-firing-events (MFEs): (A–C) Here we use a collection of small networks to illustrate the kinds of chain-reactions we

see in our simulations. See text for details.

fire and reset to VR (firing denoted by vertical line), no longer
participating in this short stretch of dynamics. Note that the first
PN to fire adds an excitatory input current to the second PN and
encourages it to fire as well; the combined effects of these first
two PNs adds a substantial excitatory presynaptic current to the
third PN, causing it to fire less than amillisecond later. This entire
cascade takes place over <3ms, and is similar to the MFEs in our
larger network.

Of course, the chain-reactions we’ve been describing don’t just
include PNs; the first few PNs to initiate a chain-reaction will
also cause firing amongst the LNs, many of which also benefit
from the high-gain state. How such a chain-reaction unfolds can
be very complicated and situation-dependent; recall that the LN
population is heterogeneous. LN1s inhibit LN2s; LN2s inhibit
PNs. The short-time-scale dynamics within each MFE can be
rather complicated, with PNs, LN1s and LN2s competing over
the fate of the cascade.

This complexity is illustrated in Figures 14B,C. In Figure 14B
we expand the 3-neuron network of Figure 14A to include
two LN2s (see addition blue neurons on the right, as well
as bluish trajectories on the left), which affect how the
cascade unfolds. This time, the first PN again adds excitatory
presynaptic current to the other two PNs, but also to the
two LN2s; these LN2s manage to fire before the other PNs
would fire, giving rise to inhibitory presynaptic currents which
actually prevent these other PNs from firing altogether. Another
example is shown in Figure 14C, where the simple network is
further expanded to include two LN1s (see additional green

neurons on the right, as well as greenish trajectories on
the left). This time the first PN to fire causes one of the
LN1s to fire second, which actually inhibits and delays the
spikes coming from the LN2s. As a result, the LN2s are not
capable of completely curtailing the cascade, and one of the
remaining PNs manages to fire (compare Figure 14B with
Figure 14C).

Thus, the specifics of any given MFE are rather variable: it is
possible for a chain-reaction of PN spikes to trigger LN2 spikes
which halt the cascade or to trigger LN1 spikes which help the
cascade continue via disinhibition. When each MFE concludes—
usually due to a barrage of inhibition—the PNs involved
experience an abundance of persistent inhibitory currents: both
presynaptic and intrinsic. If the system is stimulated, a sufficiently
strong feedforward input can override these inhibitory currents
and cause further firing. On the other hand, when the network
is unstimulated, these inhibitory currents are usually sufficient to
prevent further firing.

MFEs Strongly Affect the Dynamics of Our Model
As one can see from the description above, MFEs represent a
particular kind of synchrony; they are most decidedly causal
in nature, stemming from strong and fast competition between
synaptic excitation and inhibition. In this regard, MFEs can
be viewed as a more complicated version of the “sandpile”
cascades discussed in Bak et al. (1987) and later considered
in the context of neuroscience by Mirollo and Strogatz (1990),
Gerstner and van Hemmen (1993), DeVille and Zheng (2014)
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and others. We also believe MFEs to be related to the “neuronal
avalanches” studied by Plenz et al. (2011) and Beggs and Plenz
(2003).

By contrast, MFEs are quite distinct frommany other forms of
synchrony that have been studied, such as synchrony borne from
(i) correlated feedforward inputs, (ii) global fluctuations in firing-
rate, (iii) strong sources of synaptic depression, or (iv) synaptic
delays. TheMFEs we see in ourmodel are not easily characterized
analytically as an additional feedforward Poisson spiking process
(see Brunel, 2000), or as fluctuations of a balanced state (see van
Vreeswijk and Sompolinsky, 1998).

While we don’t yet have a full characterization of MFEs
ourselves, we have studied them in a less complex network
(Rangan and Young, 2013b). Even this simpler case required
serious effort to analyze mathematically (Rangan and Young,
2013a; Zhang et al., 2014a,b; Zhang and Rangan, 2015). Thus,
at present we eschew any sort of detailed analysis, instead
describing in words the dynamic picture we see in our
model:

MFEs Manifest Within the Control State
In terms of the model’s spontaneous activity, many of the PN
firing-events are isolated (i.e., not part of anyMFE), but some PN
spikes occur synchronously (see Figure 15A). When the model is
driven by an odor pulse the activity levels of both the PNs and
LNs rise; again the PN activity comprises both MFEs and isolated
spikes, although with both occurring at a much higher frequency
than in the spontaneous state. Shortly after any odor pulse the
PN activity dies down, and the PNs are driven predominantly by
persistent inhibitory currents. These inhibitory currents combine
slow synaptic inhibition with intrinsic SK-currents, giving rise to
an AHP-phase. During this AHP-phase, our model PNs are no
longer in a high-gain state, and exhibit very little firing at all (i.e.,
very few isolated spikes or MFEs).

MFEs Underlie the PTX-on Phenomena
When PTX is applied, the GABA-A coupling strengths are
reduced; the LN2 presynaptic inhibitory current drops; the
LN2 population moves closer to the spiking threshold; the
LN2 firing rate increases significantly; and the net inhibitory
presynaptic currents to the PNs increases somewhat. The net
effect of all this on spontaneous activity is rather simple: the
spontaneous PN firing-rate is somewhat lower in the PTX-
on state than in the control state. The excess inhibitory
currents lower both the probability of isolated spikes and
MFEs.

With regard to stimulated activity, however, the story is more
intricate. As we discussed in Figure 14, predominantly excitatory
networks (i.e., networks without strong disinhibition, similar to
Figure 14A) tend to have more stereotyped MFEs than networks
that are capable of strong disinhibition (i.e., networks with
strongly competing LN1s and LN2s, similar to Figure 14C). A
corollary to this claim is: networks with stronger disinhibition
tend to be more variable than networks without. We believe
that this mechanism underlies the PTX-on reduction in PN
consistency.

To elaborate: recall that the PTX-on state causes the LN2
population to fire more vigorously (i.e., to be “higher gain”)
than in background. As a consequence, the competition between
the LN1s, LN2s and PNs is more acutely felt when PTX is on.
This increased competition means that—for certain choices of
parameters—the cascades that occur within any given MFE are
even more variable than in the control state. This extra variability
gives rise to the PTX-induced reduction in PN consistency
across isolated stimulus pulses. As corroborated by numerical
experiments, this reduction in PN consistency is accentuated as
the overall level of disinhibition rises (see Supplementary Figure
S6F). Note that this phenomenon is not captured via a mean field
reduction, and thus will not manifest in most standard firing-rate
models.

MFEs Underlie the BIC-on Phenomena
Recall that the BIC-on state in our network involves both a
reduction of GABA-A coupling strengths as well as a reduction in
the intrinsic SK-currents within the PNs. The effect of the former
alone would be identical to the PTX-on state. However, the
removal of the SK-currents changes the story quite significantly.
When the PNs no longer have SK-currents, the conclusion of
each MFE no longer heralds the onset of intrinsically generated
AHP-currents. As a result, the PNs participating in any one MFE
are free to participate in another shortly afterwards, as long as
they are not suppressed by inter-glomerular inhibition coming
from elsewhere in the AL.

Thus, under BIC it is possible for the network to generate
“runaway synchronization,” where any one glomerulus produces
a stochastic sequence of MFEs with a characteristic period
determined by the feedforward input currents (typically in the
50ms range). An example of such behavior is illustrated in
Figure 15B. During such an MFE-sequence many of the other
glomeruli will be suppressed by this active glomerulus (due to
strong inter-glomerular inhibition, enhanced by the disinhibitory
effects of BIC). This runaway synchronization typically continues
until the active glomerulus “falters,” and by chance fails to
generate an MFE. At this point another glomerulus—one that
was initially suppressed—has a chance to grab the reins and
begin its own runaway sequence of MFEs. Such a coup—if it
occurs—typically takes place rather abruptly, as the successor
only needs a short window of opportunity to nucleate an MFE
and take over.

In this manner the spontaneous activity in the BIC-on state
can produce—for any given glomerulus—epochs of periodic
firing (i.e., when the glomerulus is active) alternating with epochs
of quiescence (i.e., when another glomerulus is active). The time-
scale of these epochs is determined by the probability that a
bout of runaway synchronization “falters.” Depending on the
choice of parameters, this falter-probability can be quite small—
corresponding to long epoch timescales in the tens of seconds.
Our intuition underlying this argument is essentially the same
as the discussion in Section 10.6 of Zhang and Rangan (2015),
which also presents an analysis of this phenomenon. As before,
this BIC-induced phenomenon is not captured by a mean-field
reduction.
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FIGURE 15 | Illustration of multiple-firing-events (MFEs) within our model network. (A) Here we show a raster-plot of spontaneous activity within a single

model glomerulus from our network. The spikes associated with the different kinds of neurons are indicated via different colored dots. By zooming-in we can see an

example of a MFE transpiring over ∼5ms. (B) Here we show a raster-plot of spontaneous activity spontaneous activity from the same model-glomerulus under the

BIC-on condition, with two MFEs displayed in more detail underneath. This raster-plot is taken during an active-epoch, where this glomerulus is firing at roughly 20Hz.

Two MFEs are shown in detail; the rest indicated with arrowheads. Note that the firing-events within each MFE are far from independent, instead occurring in brief

synchronous bursts. In each case the MFE is precipitated by the firing of one or more PNs; these first few spikes trigger a cascade which includes more PNs, as well

as LN1s and LN2s.

Summary
The narration we have provided above captures—as best we
can—the essential dynamical features of our computational
model. As described, the architectural features of our
network give rise to a dynamical regime with many
interdependent mechanisms that interact in a complicated
way. Whether or not any of these mechanisms applies

to the real AL is an important question, which we turn
to now.

Section R3: Model Predictions
It is expected that many of the specific dynamical details of our
model will vary depending on our exact choice of parameters. In
the previous section we attempted to gloss over these minutiae
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and focus only on the salient features of our model: features
that persisted across all the parameters which satisfied our
benchmarks. Some of these salient features take the form of
emergent dynamical mechanisms; mechanisms that we did not
explicitly build into our model, but which arose naturally from
the interactions of the network. Such emergent mechanisms give
rise to predictions regarding the real AL.

Below are two such predictions; both involve emergent

dynamical mechanisms which are integral to the function of our

model and robust to our choice of parameters.

1. Our model predicts that PNs in the AL participate in MFEs.

While many PN spikes are isolated, many also occur as a result

of other spikes. This latter phenomenon can involve just 2
PNs, or (more rarely) all the PNs in a glomerulus, and often
includes LN spikes as well. These MFEs are most common
during the initial response to a stimulus; but can also occur
during spontaneous activity.

We feel quite comfortable with this prediction for two reasons.
Firstly, MFEs emerged ubiquitously across a very wide swath
of parameters that was much larger than—and included—the
region in parameter-space that was biologically plausible. Put
another way, our model never did anything even remotely
reasonable without MFEs occurring. Secondly, we believe that
MFEs are a key ingredient in the dynamical interactions
responsible for both the PTX- and BIC-induced phenomena.

2. Furthermore, our model predicts that the BIC-induced
structured activity encompasses not just the MGC, but
many other glomeruli as well. Any glomerulus with a
foreshortened AHP-phase—as induced by BIC—can begin
producing MFE sequences. Moreover, different glomeruli
compete to produce these MFE-sequences: such activity
within any one glomerulus ensures—through interglomerular
inhibition—that other glomeruli are suppressed. Conversely,
a quiescent epoch observed in any one glomerulus necessarily
implies an active epoch occurring someplace else.

We are also comfortable with this second prediction for two
reasons. Firstly, despite all of our parameter-scanning, we were
never able to produce BIC-induced structured activity without
the underlying mechanism of competing MFE-sequences. This
held true even when we searched across parameters that didn’t
even satisfy our other benchmarks. In other words, our model
seemed incapable of producing structured activity on a 10 s
timescale in any other way. Secondly, we have observed a similar
mechanism at work in a model of the primate visual cortex
(Rangan and Young, 2013b). In this previous work, competing
MFE-sequences of much the same nature give rise to the slowly
shifting patterns of activity observed in the anesthetized cortex—
a state which, like our BIC-on state, does not exhibit a prolonged
AHP and thus also allows for runaway synchronization.

Section R4: Validating the Model with
Further Experiments
We now depart from our computational model and return
to physiology to try and find evidence confirming our two
predictions.

Our first prediction above—i.e., the existence of MFEs—
has been observed indirectly under a variety of experimental
conditions. For example, Christensen et al. (2000) found that
PN activity within Manduca was not independent, but rather
correlated to varying degrees depending on the stimulus. Later
work by Lei et al. (2002) found that PNs in the MGC often
fired synchronously (i.e., within 5ms of one another), with
the preponderance of synchronous spikes dependent on the
recurrent presynaptic inhibition. The nature of this synchrony
was further clarified by Christensen et al. (2003), which
confirmed that—like the MFEs we see in our model—the
synchronous PN firings observed in experiment could not be
attributed to coordinated firing-rate fluctuations coming from
the LFP. Finally, recent work by Martin et al. (2013) found that,
when stimulated, at least 15% of the PN spikes produced within
the Manduca MGC were participants in a synchronous event
spanning <2ms and involving at least one other PN.

While these experiments have yet to directly confirm (i) the
chain of causality linking one spike to the next and (ii) the
participation of LNs, taken altogether they strongly suggest that
the MFEs we see in our model might be occurring in the AL.
Because we did not use these experiments as benchmarks to
constrain the dynamics of our model, we can consider them
as a kind of validation of the dynamical picture we discovered.
Conversely, we could also view the emergent MFEs from our
model as further support for many of the conclusions that have
been drawn from this experimental work (see e.g., Martin et al.,
2011).

Our second prediction above—i.e., that BIC-induced
spontaneous patterns involve many glomeruli—has not yet
been confirmed. While structured spontaneous activity has been
observed within the MGC (see, e.g., our benchmark Lei et al.,
2009), such activity outside the MGC has not yet been reported.
We take this step here, measuring from glomeruli outside the
Manduca MGC under BIC application. These new experiments
were able to verify aspects of our second prediction:

BIC Induces Structured Spontaneous Activity

Encompassing Glomeruli Outside the MGC
We moved our recording electrode to the medial portion of AL,
and recorded from a plant-odorants (hibiscus oil) responsive
neuron. This neuron displayed spontaneous bursting patterns,
implying that it was a PN (Lei et al., 2011). We found that,
under BIC application, this neuron displayed epochs of fast-
periodic-spiking lasting 5–10 s long interspersed with quiescent
epochs lasting about 20 s long. As exhibited in Figure 12, the
time-scale, distribution of, and transitions between these epochs
seem commensurate with those reported within the MGC. These
drug-induced changes could be reversed by saline wash.

We view this experimental result as an indication that our
reasoning is on the right track. Nevertheless, we have yet to
directly confirm that (i) the fast-spiking epochs are due to MFE-
sequences, and (ii) that the glomeruli compete antagonistically
with one another, with only one glomerulus active at a time.
Naturally, we hope to carry out such experiments in the future,
further illuminating the mechanisms at work within the AL. For
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now, however, we take a step back and try and interpret the
results we have so far.

DISCUSSION

This paper describes somewhat of a journey; a trajectory
beginning with physiological experiments, passing through
the realm of modeling and simulation, and ending back
again with more experiments. We started out by measuring
the PN dynamics and AHP-phase within the MGC under
a variety of pharmacological agents. The drastic differences
between PTX- and BIC-application lead us to conjecture
that the AHP-phase involved both (a) disinhibition mediated
by heterogeneous LN connectivity, as well as (b) intrinsic
SK-currents produced by the PNs themselves. To determine
whether or not these twomechanisms could, simultaneously, give
rise to all the phenomenawe observed, we built and benchmarked
a computationalmodel. Thismodel highlighted the occurrence of
MFEs—a dynamical mechanism that we did not directly observe
in experiment, but which emerged naturally from the high-gain
state of our biologically plausible model. Using our model as
a stepping-stone, we then returned to experiment; confirming
at least partially some of the predictions we had regarding the
existence of MFEs and their dynamical consequences.

It is certainly possible that our hypotheses are not correct, or
that we have omitted an important feature; PTX and BIC could
affect a variety of specific targets in different ways. For example,
rather than involving SK-channels, BIC could primarily affect the
synapses of the LN2s while PTX primarily affected the synapses
of the LN1s. Nevertheless, we found that our hypotheses were
sufficient to explain the phenomena under study, and we feel
comfortable concluding that:

(a) There exists strong fast recurrent excitatory and inhibitory
connectivity throughout the Manduca AL—both between
and within glomeruli. Moreover, this connectivity is
heterogeneous—i.e., different neurons can have very
different distributions of pre- and post-synaptic connections.
Such heterogeneous connectivity implies that the network
is capable of disinhibiting the PNs under the right
circumstances.

(b) While the strong recurrent inhibition described in (a)
definitely contributes to the strong AHP-phase of the PNs,
the AHP-phase also depends on intrinsic inhibitory currents
produced by the PNs themselves.

(c) The strong fast excitation mentioned above facilitates
MFEs—causally linked spikes spanning subsets of neurons
within the AL. Rapid sequences of MFEs are typically held in
check by the presence of the AHP-phase, which prevents PNs
from participating in many successive MFEs.

These conclusions are bolstered, to one degree or another, by
various lines of experimental evidence, much of which we have
referenced along the way. For example, regarding Conclusion-A,
Christensen et al. (1998a) found that PN activity in theManduca
AL was modulated by disinhibitory microcircuits involving two
GABAergic LNs. Regarding Conclusion-B, we have the results of

Lei et al. (2009), which clearly show that BIC-application shortens
the AHP-phase. Finally, regarding Conclusion-C, we have an
abundance of circumstantial evidence (Christensen et al., 2000,
2003; Lei et al., 2002; Martin et al., 2013), as well as our own BIC-
induced results of Figure 12, all of which point toward synchrony
within theManduca AL.

Nevertheless, not all experimental observations line up with
our conclusions. For completeness we briefly discuss some
conflicting evidence.

Is There Disinhibition in the Silkworm
Moth?
A recent study (Fujiwara et al., 2014) probed the inhibitory
circuits in the AL of another moth species—the silkworm moth
Bombyx mori—and concluded that odor stimulation produced
both recurrent excitatory and inhibitory currents, with the latter
emerging after some time delay and supressing the excitatory
phase of subsequent odor-evoked responses. This point itself
is not inconsistent with our conclusion-A but is based on a
different measurement. They then further examined how PTX-
application affected the PN dynamics. Unlike our experiments
discussed in Section R1, Fujiwara et al. measured the odor-evoked
PN spike counts, instead of measuring the AHP. They reported
that PTX-application did increase spike counts, in contrast to
our observation that PTX-application lengthened the AHP-phase
(Figure 6). From their observations they concluded that PTX-
application elevates excitatory currents to the PNs; a conclusion
that seems diametrically opposite to our work in Section R1,
where we concluded that PTX-application actually enhances the
inhibitory currents impinging on the PNs. This discrepancy may
be due to the species difference or experimental conditions, but
is also likely related to the specifics of the measurement used.
We remark that, while our conclusions regarding the role of PTX
may differ, both we and Fujiwara et al. agree that PTX does not
affect the mean odor-evoked firing-frequency (Figure 10). While
we don’t yet have resolution to this conundrum, earlier work by
Waldrop et al., (1987; Christensen et al., 1998a) points out that
direct excitatory, inhibitory and disinhibitory connections may
all affect the PNs. Antagonizing GABA-A receptors (i.e., PTX)
may produce a syndrome of effects that requires us to consider
the entire network.

Does the AHP-Phase Combine Recurrent
and Intrinsic Currents in the Swordgrass
Moth?
Based on our Conclusion-B, we would predict that the duration
of the AHP phase should be positively correlated with increased
odor concentration; an increased concentration causes higher
LN and PN firing, the former giving rise to more recurrent
inhibition, the latter to a stronger intrinsic SK-current. This is
indeed the case (Figure 7), and moreover this dose-response
relation is disrupted by PTX-application. It’s unclear how the
duration of the AHP phase could encode odor concentrations,
but our data at least suggest that the GABA-A receptor-mediated
inhibition is related to the dynamic range of PN’s responsiveness.
However, in another moth species—the black swordgrass moth
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Agrotis ipsilon—the duration of the AHP (termed Inhibitory
Phase) is not correlated with odor concentrations (Jarriault
et al., 2009). While we cannot yet explain this discrepancy, we
noticed that their data do reveal that the magnitude—rather than
the duration—of the AHP is concentration-dependent (Figure
7 in Jarriault et al., 2009). Thus, in summary, while we are
reasonably confident of the dynamic picture we have painted for
theManduca, the mechanisms may reveal themselves differently
in other insect species.

SUMMARY

If indeed our picture is accurate and theManducaAL does exhibit
the mechanisms we propose, we are lead naturally to the grander
question: what purpose could they serve? We hypothesize that
perhaps the Manduca has evolved to excel at certain difficult
sensory tasks, such as finding a mate on the wing through a
highly dynamic scent plume. One necessary computation for
such behavior would be to reliably detect and respond to a faint
odor-filament spun across a turbulent breeze.

As a moth flies, it encounters such filaments intermittently,
with each brief exposure to pheromone lasting no more than a
few 10 s of millisecond, and with subsequent glimpses of the odor
separated by several 100 s of millisecond. In this kind of scenario
it makes some amount of sense for the AL to be in a very high-
gain state; with even the slightest hint of pheromone eliciting a
vigorous response. Of course, given the brevity of the stimulus,
a firing-rate code seems inefficient, and a temporal code (such
as the temporal-binding of odor-specific synchronous subsets)
might be much more elegant and efficient (Martin et al., 2011).
The high-gain state we predict in this paper is consistent with
both of these requirements; producing vigorous synchronous
bursts of PN activity in response to brief stimulus pulses.

Carrying this narrative forwards, one can imagine the moth
having just encountered one such odor-filament, its MGC
responding furiously. At this point the moth’s AL is blind to
the world; after all, a typical consequence of maintaining such
a high-gain state is that—after the initial response—it is very
easy for recurrent excitatory connectivity to perpetuate that
response, regardless of any new stimulus. It is at this point that

the AHP-phase steps in; the recurrent inhibition and intrinsic
currents curtailing such a runaway response, and allowing the
MGC to “reset” after 100–500ms. This characteristic AHP-time
is not too different from the typical time it might take before
the moth bumps into the next odor-filament. At that point the
moth’s AL will be in a high-gain state once more; fresh and ready
to respond vigorously a second time.

In conclusion, our integrated theoretical and empirical
approach supports the notion that both recurrent network
interactions and intrinsic currents contribute to the dynamical
properties of the projection neurons in the antennal lobe. These
properties render a high-gain state, which may be an adaptive
feature for the animal’s olfactory behaviors.
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