AUTHOR=Cui Shu F. , Wang Cheng , Yin Xin , Tian Dong , Lu Qiu J. , Zhang Chen Y. , Chen Xi , Ma Ji Z. TITLE=Similar Responses of Circulating MicroRNAs to Acute High-Intensity Interval Exercise and Vigorous-Intensity Continuous Exercise JOURNAL=Frontiers in Physiology VOLUME=Volume 7 - 2016 YEAR=2016 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2016.00102 DOI=10.3389/fphys.2016.00102 ISSN=1664-042X ABSTRACT=
High-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than low-to-moderate exercise intensity. Recently, it is becoming increasingly evident that circulating miRNAs (c-miRNAs) may distinguish between specific stress signals imposed by variations in the duration, modality, and type of exercise. The aim of this study is to investigate whether or not HIIE is superior to vigorous-intensity continuous exercise (VICE), which is contributing to develop effective fitness assessment. Twenty-six young males were enrolled, and plasma samples were collected prior to exercise and immediately after HIIE or distance-matched VICE. The miRNA level profiles in HIIE were initially determined using TaqMan Low Density Array (TLDA). And the differentially miRNAs levels were validated by stem-loop quantitative reverse-transcription PCR (RT-qPCR). Furthermore, these selective c-miRNAs were measured for VICE. Our results showed that some muscle-related miRNAs levels in the plasma, such as miR-1, miR-133a, miR-133b, and miR-206 significantly increased following HIIE or VICE compared to those at rest (