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Gestational diabetes mellitus (GDM) is a disease of the mother that associates with

altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result

in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered

L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These

alterations in the fetoplacental endothelial function are present in women with GDM that

were under diet or insulin therapy. Since these women and their newborn show normal

glycaemia at term, other factors or conditions could be altered and/or not resolved

by restoring normal level of circulating D-glucose. GDM associates with metabolic

disturbances, such as abnormal handling of the locally released vasodilator adenosine,

and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases

resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as

a potent modulator of all these phenomena under normal conditions as reported in

primary cultures of cells obtained from the human placenta; however, GDM and the

role of insulin regarding these alterations in this disease are poorly understood. This

review focuses on the potential link between insulin and endoplasmic reticulum stress,

hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature.

Based in reports in primary culture placental endothelium we propose that insulin is a

factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia

and angiogenesis to a physiological state involving insulin activation of insulin receptor

isoforms and adenosine receptors and metabolism in the human placenta from GDM

pregnancies.
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INTRODUCTION

A large number of pregnant women are diagnosed with
gestational diabetes mellitus (GDM), a disease that appears in
pregnancy, courses with maternal hyperglycaemia and leads to
fetal hyperglycaemia and hyperinsulinemia [American Diabetes
Association (ADA), 2015]. These women are subjected to a
calories-controlled diet with the final goal of reducing glycaemia
to values as those in normal pregnancies. Interestingly,
even when the mother and newborn from GDM under diet
protocol show normal glycaemia at birth, metabolic alterations
reducing the reactivity of the placenta and umbilical cord
vessels (i.e., fetoplacental vasculature) are still seen (Sobrevia
et al., 2015). GDM results in reduced fetoplacental vascular
dilation in response to insulin or adenosine (an endogenous
vasodilator nucleoside) via mechanisms including altered
expression of adenosine receptors (ARs) and/or insulin
receptors forms A (IR-A) and B (IR-B), L-arginine and
adenosine membrane transport and transporters expression
in the human fetoplacental macrovascular and microvascular
endothelium. GDM results in higher synthesis of nitric
oxide (NO) and expression of the endothelial NO synthase
(eNOS), and L-arginine transport (the substrate for eNOS),
a phenomenon attributed to ARs activation by adenosine in
primary cultures of human umbilical vein endothelial cells
(HUVECs) and human placental microvascular endothelial
cells (hPMECs) (Westermeier et al., 2011, 2015a; Salomón
et al., 2012). Insulin reverses this disease’s associated alterations,
requiring ARs activation (Guzmán-Gutiérrez et al., 2016) via
selective activation of IR-A and/or IR-B, and ARs activation
leading to IR-A-associated mitogenic or IR-B-associated
metabolic phenotype in these cell types (Westermeier et al.,
2015a,b).

GDM triggers a variety of stressor signals leading to
abnormal function of intracellular structures, including the
endoplasmic reticulum (ER). GDM increases the activity of
molecules associated with ER stress (ERS) (Marciniak and Ron,
2006). Insulin signal is altered in ERS (Ron and Walter, 2007;
Sáez et al., 2014) and GDM (Sáez et al., 2014), a condition
ending in insulin resistance. Interestingly, ERS and GDM
course with altered activity of several transcription factors,
such as the pro-apoptotic transcription factor growth arrest
and DNA damage 153 (GADD153) (also referred as C/EBP
homologous protein 10 or CHOP). Even when is known that
human CHOP (hCHOP) is activated by NO leading to reduced
expression of SLC291A gene [for human equilibrative nucleoside
transporter 1 (hENT1)] (Farías et al., 2010), and that hCHOP
activity is modulated by insulin (Sáez et al., 2014), nothing
is clear regarding a potential involvement of ARs and/or IRs
in this phenomenon. On the other hand, pregnant women
coursing with supraphysiological hypercholesterolemia show
altered fetoplacental NO-dependent and L-arginine transport-
dependent vascular reactivity when plasma level of total
cholesterol (TCh) is >280mg/dL (Leiva et al., 2015). However,
the vascular effect of maternal dyslipidaemia, or whether ERS
and changes in cell signaling and/or expression of ARs or IRs
in these alterations is not yet reported. Since ERS and maternal

dyslipidaemia modulate angiogenesis (Gutiérrez et al., 2016),
and because GDM associates with placental endothelium and
trophoblast release of pro-angiogenic factors, dysfunction of
these cell types in ERS or maternal dyslipidaemia could result in
accelerated angiogenesis.

Thus, in this review, we have emphasized the possibility
that an abnormal metabolic state in pregnancy, as seen in
GDM, leads to fetoplacental disturbances resulting in ERS,
uncontrolled angiogenesis, or lipid metabolism. The involvement
of insulin modulation of human fetoplacental vasculature
function and its consequences in these phenomena are
discussed.

GESTATIONAL DIABETES MELLITUS

GDM is a disease that first appears or is identified during
pregnancy [American Diabetes Association (ADA), 2015],
associates with abnormal vascular function of the placenta
(Colomiere et al., 2009; Haas, 2014), and leads to deleterious
consequences to the fetus development and growth as
well as to the health of the mother (König et al., 2014;
Lappas, 2014). The incidence of this disease of pregnancy
is ∼7% worldwide [Ferrara et al., 2004; Dabelea et al., 2005;
American Diabetes Association (ADA), 2015]. With the goal
of reaching maternal glycaemia in a normal range, so to
avoid deleterious consequences of hyperglycaemia in the
growing fetus, patients diagnosed with GDM are subjected
to controlled diet (plus a suggested routine of exercise) or
treated with insulin [i.e., insulin therapy; Verier-Mine, 2010;
American Diabetes Association (ADA), 2015; Sobrevia et al.,
2015].

GDM causes an abnormal supply of nutrients (e.g., D-
glucose, amino acids) to the fetus [Leach, 2011; American
Diabetes Association (ADA), 2015; Sobrevia et al., 2015], a
phenomenon that depends on the fetoplacental vascular tone
and blood flow. Since the distal segment of the umbilical
cord and the placenta lack of innervation (Fox and Khong,
1990; Marzioni et al., 2004), local regulation of the vascular
tone results from the synthesis, release, and bioactivity of
endothelium-derived vasodilators and vasoconstrictors (Pearson
and Gordon, 1985; Olsson and Pearson, 1990). The endothelium
of the human fetoplacental vasculature is a monolayer directly
facing fetal blood and corresponds to the epithelium underlying
the syncytiotrophoblast layer (Burton and Jauniaux, 2015).
Thus, the endothelium is the first target for a variety of
circulating molecules in the fetal blood. Equally, it is exposed
to maternal blood molecules and/or their metabolites that
cross or are released from the syncytiotrophoblast. Interestingly,
the level of the endogenous nucleoside adenosine, a potent
vasodilator, is increased in human umbilical whole blood
(Maguire et al., 1998; Westermeier et al., 2011), or umbilical
vein blood (Westermeier et al., 2015a), but not in umbilical
arteries blood (Salomón et al., 2012), in GDM pregnancies
where the mother was under diet compared with normal
pregnancies. These findings were paralleled by reduced uptake of
adenosine in HUVECs and hPMECs. Thus, an altered adenosine
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handling (e.g., uptake, release, metabolism) by the microvascular
and macrovascular endothelium of the fetoplacental unit in
GDM was proposed (Sobrevia et al., 2015; Westermeier et al.,
2015b).

GDM also associates with increased expression of SLC7A1
gene coding for hCAT isoform 1 (hCAT-1) and higher L-
arginine/NO signaling pathway activity in HUVECs (Guzmán-
Gutiérrez et al., 2016). These alterations result from activation
of the L-arginine transport and NO synthesis as a result of
activation of ARs (i.e., ALANO signaling pathway) in this
cell type from GDM. The extracellular level of adenosine
is mainly, if not only, maintained by the activity of the
Na+-independent hENT1 and hENT2 in the fetoplacental
endothelium (Sobrevia et al., 2015). Altered expression and/or
activity of these membrane transporters result in changes in
extracellular adenosine concentration, thus altering its normal
and broad modulatory actions on cell function (Fredholm
et al., 2011; Fredholm, 2014; Verkhratsky and Burnstock, 2014;
Burnstock, 2016).

Insulin and Adenosine Receptors in GDM
The insulin receptor splice variants IR-A and IR-B result from
the absence or presence of a 12-amino acid segment (encoded
by exon 11) at the C-terminal of the extracellular α-subunit
(Westermeier et al., 2015b). IR-A and IR-B are differentially
expressed, including the fetoplacental tissue, and signal via
preferential mechanisms depending on their binding affinities for
insulin, receptors internalization, receptors recycling time, and
intracellular signaling (Westermeier et al., 2015b). It is reported
that insulin via activation of IR-A and/or IR-B modulates
the expression and activity of hCAT-1, eNOS, hENT1, and
hENT2 in HUVECs and hPMECs (Table 1). These findings
show that insulin modulates L-arginine and adenosine transport
reversing the GDM-associated alterations in these mechanisms
to values in human fetoplacental endothelium from normal
pregnancies.

Adenosine causes relaxation of human umbilical vein rings
(in vitro) from normal pregnancies requiring activation of
endothelial ARs with a major contribution of A2A adenosine
receptors (A2AAR) compared with A1 (A1AR), A2B (A2BAR),
or A3 (A3AR) isoforms (Westermeier et al., 2011; Guzmán-
Gutiérrez et al., 2016). ARs are expressed in HUVECs (Wyatt
et al., 2002) and hPMECs (Escudero et al., 2008), of which A2AAR
predominates. Despite the increase in ALANO signaling pathway
in response to A2AAR activation by adenosine in HUVECs
from normal or GDM pregnancies, characterization of ARs-
associated cell signaling and a role for other than A2AAR in this
phenomenon are still unknown (Fredholm, 2014; Verkhratsky
and Burnstock, 2014; Sobrevia et al., 2015; Burnstock, 2016).
We recently showed that A1AR expression and activation
are required for insulin reversal of GDM-increased hCAT-1-
mediated L-arginine transport and NO synthesis in HUVECs
(Guzmán-Gutiérrez et al., 2016). However, nothing is reported
addressing the possibility of a potential differential expression
and/or cell signaling of ARs accounting for these effects in
the fetoplacental endothelium from normal pregnancies, or in

mothers with GDM [Verier-Mine, 2010; American Diabetes
Association (ADA), 2015; Sobrevia et al., 2015].

Interestingly, an increase in the extracellular level of
adenosine correlates with cardiovascular pathophysiological
factors, including shear stress. Since one cellular mechanism
explaining the increased level of adenosine and reduced hENT1-
mediated transport in HUVECs from GDM is a higher activity of
hCHOP transcription factor which is one key component of ERS
response in this disease (Farías et al., 2010). Even more, GDM-
associated increase in hCHOP activity is attenuated by insulin
in HUVECs. Thus, ERS is an abnormal metabolic condition
associated with GDM, but the role of insulin in this phenomenon
is unclear.

ENDOPLASMIC RETICULUM STRESS

The normal function of ER is essential for the synthesis
and processing of secretory and membrane proteins, lipid
biosynthesis, and calcium storage (Marciniak and Ron, 2006).
The ER is highly sensitive to alterations in cellular environmental
changes and acts as a quality control station allowing the
transit of correctly folded proteins and retaining unfolded
or misfolded proteins (Hetz et al., 2015). Thus, ER plays
a key role in the general cellular response to nutrient
overload or deprivation, the abnormal increase in the synthesis
of secretory proteins, expression of mutant, or misfolded
proteins and microbial infections, among others (Ron and
Walter, 2007). These “stressor signals” disrupts ER homeostasis
and accumulates unfolded proteins in the ER lumen, a
phenomenon referred as ERS. In order to adapt ER function
to this stress condition, the unfolded protein response (UPR)
or ERS are activated (Marciniak and Ron, 2006; Zhang
and Kaufman, 2006; Ron and Walter, 2007; Hetz et al.,
2015).

An integrated ERS response involves transcriptional
activation of multiple genes mediated by inositol-requiring
enzyme 1 α (IRE1α) and activating transcription factor 6 (ATF6).
It leads to a general decrease in protein translation and selective
expression of specific mRNAs mediated by double-stranded
RNA-dependent protein kinase (PKR)-like ER-associated kinase
(PERK) (Marciniak and Ron, 2006). Thus, IRE1α, ATF6, and
PERK are referred as ERS sensors. Interestingly, ERS response is
also associated with activation of multiple transcription factors,
including X-box binding protein-1 (XBP1) and activating
transcription factor 4 (ATF4), regulating the expression of genes
involved in the final adaptive effects of UPR. Under normal
conditions, the UPR pathway functions as a physiological
adaptive mechanism (Hetz et al., 2015). However, when a
primary stimulus is too persistent or severe, the ERS response
could lead to irreversible cell damage and programed cell death
through hCHOP stimulation (Marciniak and Ron, 2006; Zhang
and Kaufman, 2006; Ron and Walter, 2007). ERS response
is thus critical for a normal cellular homeostasis, and plays
relevant roles in the pathogenesis of multiple diseases such as
GDM, DMT1, DMT2, obesity, inflammation, cardiovascular
disorders, viral infections, neurodegeneration, and cancer
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TABLE 1 | Effect of insulin on human fetoplacental vasculature in GDM.

Cell/tissue Insulin receptor

isoform

Effect of GDM Insulin effect References

HUVECs – Lower overall adenosine transport Increase Westermeier et al., 2011

HUVECs IR-A Lower hENT1 activity Increase Westermeier et al., 2011, 2015a

HUVECs – Higher NOS activity Decrease Westermeier et al., 2011

HUVECs – Higher eNOS protein abundance Decrease Westermeier et al., 2011

HUVECs – Higher eNOS phosphorylation in Ser1177 Decrease Westermeier et al., 2011

HUVECs IR-A Lower hENT1 protein abundance Increase Westermeier et al., 2011, 2015a

HUVECs IR-A Lower hENT1 mRNA expression Increase Westermeier et al., 2011, 2015a

HUVECs IR-A, IR-B Lower SLC29A1 promoter activity Increase Westermeier et al., 2011, 2015a

HUVECs – Higher adenosine concentration Decrease Westermeier et al., 2011

HUVECs – Higher IR-A mRNA Decrease Westermeier et al., 2011

HUVECs IR-A Lower hENT1 activity Increase Westermeier et al., 2015a

HUVECs IR-A Lower insulin receptor β subunit phosphorylation Increase Westermeier et al., 2015a

HUVECs – Lower plasma membrane hENT1 protein abundance Increase Westermeier et al., 2015a

HUVECs IR-A Higher p44/42mapk phosphorylation Decrease Westermeier et al., 2015a

HUVECs IR-B Unaltered Akt phosphorylation Increase Westermeier et al., 2015a

HUVECs – Lower L-leucine incorporation Increase Sobrevia et al., 1998

HUVECs* – Lower L-leucine incorporation Unaltered Sobrevia et al., 1998

HUVECs – Lower thymidine incorporation Unaltered Sobrevia et al., 1998

HUVECs* – Lower thymidine incorporation Unaltered Sobrevia et al., 1998

HUVECs – Higher TPP+ influx Decrease Sobrevia et al., 1998

HUVECs* – Higher TPP+ influx Unaltered Sobrevia et al., 1998

HUVECs – Higher L-lysine transport Decrease Sobrevia et al., 1998

HUVECs* – Higher L-lysine transport Unaltered Sobrevia et al., 1998

HUVECs – Higher L-arginine transport Decrease Sobrevia et al., 1998

HUVECs* – Higher L-arginine transport Unaltered Sobrevia et al., 1998

HUVECs – Higher cGMP accumulation Decrease Sobrevia et al., 1998

HUVECs* – Higher cGMP accumulation Unaltered Sobrevia et al., 1998

HUVECs – Lower 6-keto-PGF1α synthesis Unaltered Sobrevia et al., 1998

UV rings – Lower relaxation Increase Westermeier et al., 2011

hPMECs – Lower overall adenosine transport Increase Salomón et al., 2012

hPMECs – Lower hENT1 activity Unaltered Salomón et al., 2012

hPMECs IR-A, IR-B Lower hENT2 activity Increase Salomón et al., 2012

hPMECs – Lower hENT1 protein abundance Unaltered Salomón et al., 2012

hPMECs IR-A, IR-B Lower hENT2 protein abundance Increase Salomón et al., 2012

hPMECs – Lower hENT1 mRNA expression Unaltered Salomón et al., 2012

hPMECs IR-A, IR-B Lower hENT2 mRNA expression Increase Salomón et al., 2012

hPMECs IR-A, IR-B Lower SLC29A2 promoter activity Increase Salomón et al., 2012

hPMECs IR-A Lower p44/42mapk phosphorylation Increase Salomón et al., 2012

hPMECs IR-B Lower Akt phosphorylation Increase Salomón et al., 2012

hPMECs IR-A Lower IR-A mRNA expression Increase Salomón et al., 2012

hPMECs IR-B Increased IR-B mRNA expression Decrease Salomón et al., 2012

fpECs – Increased MT1-MMP protein abundance Increase Hiden et al., 2012

fpECs – Effect not reported on Akt phosphorylation Increase Hiden et al., 2012

fpECs – Effect not reported on p44/42mapk phosphorylation Increase Hiden et al., 2012

HUASMCs – Increased overall adenosine transport Decrease Aguayo et al., 2001

HUASMCs – Increased cGMP accumulation Unaltered Aguayo et al., 2001

HUASMCs – Increased NOS activity Unaltered Aguayo et al., 2001

HUASMCs – Lower cAMP accumulation Increase Aguayo et al., 2001

Placental tissue – Unaltered IRS-1 protein expression Decrease Colomiere et al., 2009

(Continued)
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TABLE 1 | Continued

Cell/tissue Insulin receptor

isoform

Effect of GDM Insulin effect References

Placental tissue – Increased IRS-2 protein expression Unaltered Colomiere et al., 2009

Placental tissue – Unaltered PI3-K p85α protein expression Decrease Colomiere et al., 2009

Placental tissue – Unaltered GLUT-1 protein expression Increase Colomiere et al., 2009

Placental tissue – Unaltered IRS-2 mRNA expression Increase Colomiere et al., 2009

Placental tissue – Unaltered PI3-K p85α mRNA expression Decrease Colomiere et al., 2009

Placental tissue – Unaltered GLUT-1 mRNA expression Increase Colomiere et al., 2009

Placental tissue – Unaltered GLUT-4 mRNA expression Decrease Colomiere et al., 2009

HUVECs, human umbilical vein endothelial cells; hPMEC, human placental microvascular endothelial cells; HUASMCs, human umbilical artery smooth muscle cells; fpEC, feto-placental

endothelial cells; hENT1, human equilibrative nucleoside transporters 1; hENT2, human equilibrative nucleoside transporters 2; SLC29A1, solute carrier family 29 (equilibrative nucleoside

transporter) member 1; NOS, nitric oxide synthase; eNOS, endothelial NOS; Ser, Serine; IR-A, insulin receptor A; IR-B, insulin receptor B; IRS-1, insulin receptor substrate 1; IRS-2, insulin

receptor substrate 2; cGMP, cyclic guanosine monophosphate; cAMP, cyclic adenosine monophosphate; PI3-K, phosphatidylinositol 3-kinase; p44/42mapk , p42/44 mitogen-activated

protein kinase; TPP+, tetra[3H]phenylphosphonium; MT1-MMP, membrane-type matrix metalloproteinase 1; GLUT-1, glucose transporter type 1; GLUT-4, glucose transporter type 4.

*Cells were treated with 25mmol/L D-glucose for 24 h in vitro.

(Marciniak and Ron, 2006; Zhang and Kaufman, 2006; Ron
and Walter, 2007; Díaz-Villanueva et al., 2015; Salvadó et al.,
2015).

ERS in GDM
Since the UPR is a general homeostatic mechanism for cellular
defense, GDM-associated alterations could be different in
maternal and fetal tissues. The multiple functional alterations
described in human fetal endothelial cells from pregnancies
with GDM include reduced expression and activity of hENT1
in HUVECs (Farías et al., 2010), likely due to ARs activation
by adenosine (Burnstock, 2002, 2016; Fredholm, 2014).
Interestingly, hCHOP, a key component of ERS response,
act as an NO-dependent transcriptional repressive factor of
SLC29A1 (for hENT1) expression in HUVECs from GDM
pregnancy. An increase in the expression and activity (i.e.,
DNA binding) of hCHOP has been implicated in the apoptotic
branch of UPR, especially when the stressor stimuli overcome
the compensatory capacity of the ER in this phenomenon
(Eizirik et al., 2008; Hotamisligil, 2010). Thus, GDM-associated
alterations in adenosine transport in human fetal endothelial
cells could be partially explained by activation of the ER-related
hCHOP transcription factor. Indeed, increased expression
of hCHOP in HUVECs from GDM pregnancies could be
considered as an index of cellular stress. These findings are
consistent with the detection of hCHOP induction in cells
exposed to an elevated extracellular level of homocysteine
(Outinen et al., 1999), suggesting its involvement in endothelial
dysfunction caused by hyperhomocysteinemia in patients with
diabetes mellitus (Austin et al., 2004; Ndrepepa et al., 2006;
Sharma et al., 2006). Thus, expression of the ERS marker
hCHOP in HUVECs from GDM pregnancies rise the possibility
that UPR is active in this cell type and eventually in other
maternal and fetal tissues in this pathology. To date, a key
component of the ERS pathway referred as apoptosis signal-
regulating kinase 1 (ASK1) is activated in mothers with diabetes
mellitus, and plays a causal role in a defective neural tube
formation (Wang et al., 2015). In addition, ERS response
may also be involved in maternal diabetes-associated cardiac

malformations, affecting the embryonic cardiogenesis period
(Zhao, 2012).

Insulin and ERS in GDM
The ERS response associates with a development of insulin
resistance in the context of obesity or DMT2 (Ozcan et al., 2004,
2006; Sáez et al., 2014). The c-Jun N-terminal kinase (JNK)
is activated through an IRE-1α-dependent phosphorylation in
response to ERS in endothelial cells from humans with diabetes
mellitus and in animal models of diabetes (Eizirik et al.,
2008; Hotamisligil, 2010; Figure 1). Activation of JNK leads to
phosphorylation of serine307 on insulin receptor substrate 1
(IRS-1), thus inhibiting insulin signaling pathway, a condition
that turns into a stage of insulin resistance due to defective
downstream signaling, including reduced protein kinase B/Akt
(Akt) activation and NO synthesis (Taniguchi et al., 2006;
Hotamisligil, 2010). Additionally, ERS correlates with activation
of an inflammatory response inducing interleukin 1α (IL-1α) and
interleukin 1β (IL-1β) secretion in adipose tissue of pregnant
women that are obese or with GDM (Liong and Lappas, 2015).
Since IL-1β is a major contributor to the pathophysiology
of obesity in pregnancy and GDM (Colomiere et al., 2010;
Liong and Lappas, 2015), inhibition of ERS-induced IL-1β
synthesis may be a potential therapeutic approach to improve
pregnancy complications associated with maternal obesity and
GDM, including altered insulin resistance. Thus, a growing body
of evidence addresses that ERS may be activated in maternal and
fetal tissues in GDM pregnancy. Since insulin signaling could
be under modulation by key components of ERS pathway, it
is possible that both, maternal and fetal insulin response may
be reduced under conditions of ERS. Looking for eventual ERS
alleviating interventions in pregnancy may contribute to the
prevention of GDM-associated, ERS-related alterations of insulin
biological effects.

PLACENTAL ANGIOGENESIS

One of the main steps in the placenta formation is the
development of its highly structured and specialized net of blood
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FIGURE 1 | Endoplasmic reticulum stress and abnormal insulin signaling in human fetoplacental endothelium from gestational diabetes mellitus.

Gestational diabetes mellitus is a disease that associates with endoplasmic reticulum stress (ERS). The latter is an abnormal metabolic condition that could (?) lead to

increased ( ) phosphorylation of inositol-requiring enzyme 1α (P-IRE-1α) resulting in higher c-Jun N-terminal kinase (JNK) activity. This phenomenon causes

phosphorylation of insulin receptor substrate 1 at serine307 (P-Ser-IRS-1) ending in lower insulin receptor (IR)-associated cell signaling in response to insulin. This

altered response to insulin results in reduced ( ) synthesis of nitric oxide (NO) and phosphorylation of protein kinase B/Akt (P-Akt). These mechanisms are proposed

to be potentially involved in insulin resistance (Insulin resistance?) in the human fetoplacental endothelium. At present, it is unclear whether GDM causes insulin

resistance or ERS, or are these abnormal metabolic conditions that result in GDM clinical manifestations. Composed from information reported by Ozcan et al. (2004,

2006), Taniguchi et al. (2006), Eizirik et al. (2008), Hotamisligil (2010), Sáez et al. (2014), Westermeier et al. (2011, 2015a).

vessels. Formation of placental blood vessels occurs with (i)
vasculogenesis, which begins at the end of the third week of
gestation and corresponds to the formation of the first vascular
plexus from pluripotent progenitor cells which then differentiate
into endothelial cells, and (ii) angiogenesis, which begins at
the end of the fourth week of gestation and where the first
vascular plexus are expanded and remodeled (Charnock-Jones
et al., 2004; Gutiérrez et al., 2016). This process is finely tuned and
regulated by different angiogenic factors including the vascular
endothelial growth factor (VEGF), placental growth factor
(PlGF), angiopoietins (ANG), fibroblast growth factor 2 (FGF2),
and the insulin/insulin-like growth factors (INS/IGF) system
(Burton et al., 2010; Burton and Jauniaux, 2015). Expression
of these factors is highly regulated throughout gestation and
is mainly attributed to trophoblast cells, Hofbauer cells, and
smooth muscle cells, (Chen and Zheng, 2014). Since expression
of angiogenic factors as well as the angiogenic process itself are
under regulation by glycaemia, insulin, and hypoxia (Hadjipanayi
and Schilling, 2013; Brocato et al., 2014; Chen and Zheng, 2014;
Cvitic et al., 2014), vasculogenesis and angiogenesis processes
at the fetoplacental vasculature are susceptible to alterations
by a diabetic environment, such as in GDM or pregestational
diabetes mellitus. Besides activation of the angiogenic factors,
activation of ERS and UPR pathways (Paridaens et al., 2014) and

dyslipidaemia (Oh et al., 2016), are also involved in physiological
and pathological angiogenesis involving these molecules in the
human placenta.

Angiogenesis in GDM
Placenta hypervascularization in women with DMT1, DMT2,
or GDM, is reported (Cvitic et al., 2014; Huynh et al., 2015;
Jarmuzek et al., 2015). DMT1 and DMT2 affect the entire process
(vasculogenesis and angiogenesis; Jirkovská et al., 2002; Nelson
et al., 2009; Jarmuzek et al., 2015) while GDM seems to impact
the microvascular remodeling at angiogenesis (Jarmuzek et al.,
2015). At 3rd trimester of pregnancy, the effect of DMT1,
DMT2, and GDM on these phenomena is similar resulting
in increased branching and surface area of villous capillaries
(Teasdale, 1981; Jirkovská et al., 2002). Since GDM associates
with developing longer umbilical cords compared with normal
pregnancies (Georgiadis et al., 2014), it is suggested that placental
hypervascularization in diabetes mellitus is mainly attributed
to increased angiogenesis (Jirkovská et al., 2002; Leach, 2011;
Figure 2). The later is partially explained by a placental hypoxia
condition resulting from the fetal hyperglycaemia in diabetes
mellitus. Fetal hyperglycaemia triggers fetal hyperinsulinemia,
over-activating fetal metabolism leading to increased oxygen
demand (Hytinantti et al., 2000; Taricco et al., 2009; Jarmuzek
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et al., 2015). Thus, it is likely that fetal hypoxia promotes
the expression of angiogenic factors during the physiological
placental angiogenesis at the 1st trimester of pregnancy when the
oxygen level is reduced (Jauniaux et al., 2000). Since the level
of FGF-2 is also regulated by hypoxia (Wang et al., 2009; Seo
et al., 2013) and is increased in both the placenta and umbilical
cord blood in diabetic pregnancies (Arany and Hill, 1998; Grissa
et al., 2010), this growth factor emerges as a candidate to explain
the hypervascularization in placentas from diabetes mellitus.
Knowing that insulin is an angiogenic factor in endothelial cells
(Liu et al., 2009), fetal hyperinsulinemia would have profound
effects on placental and fetal vascular changes associated with
maternal diabetes mellitus in pregnancy (Lassance et al., 2013).
Interestingly, in another set of studies VEGF expression was
shown to be lower in human placentas likely due to increased
expression of the ERS-maker GRP78 (Aditiawarman, 2014).
Thus, responses of ERS to a stressor will also result in an altered
synthesis and/or release of proangiogenic factors in the human
placenta vascular bed. This information is complemented by the
proposed role of IRE1α, ATF6, and PERK as sensors of ERS
(Marciniak and Ron, 2006; Zhang and Kaufman, 2006; Ron and
Walter, 2007) or UPR (Ghosh et al., 2010; Hetz et al., 2015)
constituting potential novel upstream regulatory pathways of
angiogenesis viamodulation of VEGF transcription in the human
placenta (Iwawaki et al., 2009). Whether insulin modulates
angiogenesis in the human placenta via changes in expression
and/or function of ERS markers is unknown.

Insulin, Angiogenesis, and ERS in GDM
Insulin stimulates the formation of new blood vessels in vivo
(Martínez-Jiménez et al., 2013), stimulates the formation of
longer and branched blood vessels (Liu et al., 2009), and
promotes microvascular endothelial cells migration (Liu et al.,
2009). Thus, fetal hyperinsulinemia in GDM pregnancies could
result in enhanced branching angiogenesis (Jirkovská et al., 2002)
stimulating endothelial cells proliferation. This phenomenon
is likely mediated by activation of IRs isoforms, which are
expressed at villus branching spots in this cell type in the
process of angiogenesis. At 1st trimester of pregnancy the
IRs are mainly expressed by the syncytiotrophoblast, and in
a lesser extent by cytotrophoblasts; however at term, IRs are
mainly expressed in the fetoplacental vasculature (Desoye et al.,
1994, 1997; Hiden et al., 2006). Thus, it is feasible that insulin
regulates fetoplacental angiogenesis, but not, or in a minor
degree, placental vasculogenesis at late pregnancy (Figure 2).
Interestingly, mothers with GDM that were under insulin therapy
show increased metalloproteases activity, probably mediated by
activation of IR-A isoform. This is potentially due to higher levels
of insulin-like growth factor 2 (IGF-2) as reported in placental
endothelial cells from normal pregnancies (Hiden et al., 2012).
Thus, IR-A is likely involved in proangiogenic pathways in GDM.
On the other hand, placental histology in women with GDM that
were under insulin therapy and show normal glycaemia at 3rd
trimester of pregnancy, a decrease in the proangiogenic factors
cadherin and b-catenin was reported (Babawale et al., 2000;
Easwaran et al., 2003). Thus, GDM associates could course with
impaired placental barrier leading to angiogenesis. However, the

latter is contrary to the reported increase in expression of these
molecules in these patients (Baumüller et al., 2015), highlighting
a potential stimulatory effect of insulin involving these adhesion
molecules to lead angiogenesis in the placenta (Table 2).

It is interesting to notice that the metformin, an insulin
sensitizer currently used to treat DMT2, is also an activator of
the AMP-activated protein kinase (AMPK), which was shown
to inhibit ERS restoring endothelial cell dysfunction in high fat
diet-induced obese mice (Cheang et al., 2014). Since AMPK is
a molecule whose activation may result in reducing ERS-markers
activation (particularly PERK), and its expression is low in a mice
model of GDM (Yao et al., 2015), it is feasible that it is involved
in the GDM-associated increase in placental angiogenesis.
Interestingly, AMPK activity was also reduced in skeletal muscle
in obese pregnant women with GDM (Boyle et al., 2014),
complementing the observations regarding AMPK as a potential
ERS-marker in mice GDM. Other studies have recently shown
that atherogenesis is also a process that involves ERS-factors
activation (GRP78 and CHOP) and endothelial dysfunction
in rabbits (Kruzliak et al., 2015). In addition, treatment of
HUVECs with low-density lipoprotein (LDL) activated UPR and
interleukins expression (Gora et al., 2010). Certainly, further
research is necessary in order to understand whether insulin
treatment during pregnancy in women with GDM or coursing
without or with supraphysiological hypercholesterolaemia (Leiva
et al., 2015) leads to a beneficial or detrimental result on
overall angiogenic mechanisms involving or not ERS and/or UPS
pathways in the human fetoplacental vasculature.

MATERNAL DYSLIPIDAEMIA

Dyslipidaemia is defined as the elevated blood level
of triglycerides (hypertriglyceridemia) and TCh
(hypercholesterolaemia) including increased LDL and reduced
high-density lipoprotein (HDL) levels [National Cholesterol
Education Program (NCEP), 2002]. This pathological condition
is recognized as the main risk factor for the development of
cardiovascular disease [National Cholesterol Education Program
(NCEP), 2002; Arsenault et al., 2011]. GDM also courses with
maternal dyslipidaemia affecting fetal development and growth
(Desoye and Hauguel-de Mouzon, 2007; Sanchez-Vera et al.,
2007; Marseille-Tremblay et al., 2008; Schaefer-Graf et al., 2008).
Indeed, hypercholesterolaemia was shown to contribute to
endothelial dysfunction in the fetal vasculature in this disease
(Reece, 2010; Sreckovic et al., 2014). Interestingly, GDM-
associated increase in the maternal plasma lipids may result in
abnormal transport of these molecules across the placenta into
the developing fetus, a phenomenon likely regulated by insulin
(Herrera and Desoye, 2015). Thus, alterations of a maternal
lipids profile in GDM could lead to alterations in the fetal
circulating level of lipids or to a defective composition of lipid
macromolecules making HDL or other lipids less functional in
the fetus (Leiva et al., 2015).

Dyslipidaemia in GDM
GDM courses with increased maternal TCh and triglycerides
altering the expression and function of proteins involved in
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FIGURE 2 | Fetal insulinemia and altered angiogenesis in fetoplacental endothelium from gestational diabetes mellitus. With the progression of

pregnancy up to the 40th weeks of gestation, the maternal glycaemia increases, and could reach supraphysiological levels in pregnancies where the mother is

diagnosed with gestational diabetes mellitus. The maternal hyperglycaemia results in increased fetal glycaemia from about the 5th week of gestation (dotted line), a

condition resulting in a supraphysiological increase of fetal insulinemia from the 12th week of gestation. Increased fetal insulinemia results in altered placental vascular

development and growth leading to angiogenesis alterations (Placental vasculogenesis and angiogenesis). Thus, an adverse fetal outcome is seen as a result of

abnormal angiogenesis. Cell signaling mechanisms involved in this phenomenon include altered expression and/or activity of several molecules that are responsive to

insulin (IR-A, MMPs, cadherin, b-catenin). Equally, a low oxygen level at the beginning of pregnancy increases the expression of proangiogenic growth factors (VEGF,

PlGF, IGF, FGF-2) and increased (GRP78, CHOP, IRE-1α, ATF6, PERK) or reduced (AMPK) expression and/or activity. Composed from information reported by

Babawale et al. (2000), Jirkovská et al. (2002), Easwaran et al. (2003), Baumüller et al. (2015), Westermeier et al. (2015b).

TABLE 2 | Effect of insulin on angiogenesis in the human fetoplacental vasculature in GDM.

Tissue/cells Effect of GDM on angiogenesis Insulin effect Receptor/molecule involved References

Placental tissue* n.r. Increase TK, cadherin–catenin Babawale et al., 2000

Placental tissue Increase Increase – Jirkovská et al., 2002

Placental tissue Increase Increase – Westgate et al., 2006

Placental tissue Increase Increase – Hiden et al., 2009

Placental villi Increase Increase – Calderon et al., 2007

Placental villi Increase Decrease VEGFR2, VEGF Pietro et al., 2010

HUVECs* n.r. Increase HIF1α, VEGF-A Treins et al., 2002

fpECs Increase Increase PI3-K Hiden et al., 2012

TK, tyrosine kinase signaling pathway; VEGF, vascular endothelial growth factor; VEGFR2, VEGF receptor 2; HIF1α, hypoxia inducible factor 1; VEGF-A, VEGF A, HUVECs, human

umbilical vein endothelial cells; fpEC, feto-placental endothelial cells; PI3-K, phosphatidylinositol 3-kinase. *Samples taken from women with GDM under treatment with insulin; n.r., not

reported.

triglycerides and cholesterol homeostasis (Marseille-Tremblay
et al., 2008; Radaelli et al., 2009; Herrera and Ortega-Senovilla,
2010; Herrera and Desoye, 2015). These changes include
increased expression of genes related to lipid transport and
metabolism such as the fatty acyl-CoA ligases (FACLs), which
catalyse conversion of fatty acids into fatty acyl-CoA esters
required for the synthesis of triglycerides, increased cholesterol
and membrane phospholipids, higher expression and activity
of placental fatty acid binding proteins (FABPs), endothelial
and lipoprotein lipases that favor the breakdown of maternal
triglycerides into fatty acids (Radaelli et al., 2009; Figure 3).

Increased FABPs found in GDM pregnancies leads to binding
fatty acids from the maternal circulation to export these to the
fetal circulation. FACLs could favor the synthesis of triglycerides
in the fetal circulation, and endothelial lipases and lipoprotein
lipases could increase the breakdown of maternal triglycerides
favoring the uptake of the fatty acids by the trophoblast.
Additionally, placental expression of fatty acid synthase (FAS)
is increased in placentas from GDM (Marseille-Tremblay et al.,
2008), suggesting that lipid metabolism in the placenta is altered
by this pathological condition. Interestingly, in placental tissue
and trophoblast from GDM a higher level of lipid droplets
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FIGURE 3 | Potential consequences of dyslipidaemia and hyperinsulinemia on the human fetoplacental unit from gestational diabetes mellitus.

Gestational diabetes mellitus (GDM) results in maternal (Mother) metabolic alterations leading to dyslipidaemia and hyperinsulinemia. These two abnormal metabolic

conditions are associated with higher expression and activity of several molecules involved in the placental transport (FABPs,) and metabolism (FACLs, FAS, PLTP) of

lipids or its receptors (LDLR, SR-BI) in the human trophoblast (Placenta). These changes result in altered transplacental transport of several signaling molecules via the

trophoblast barrier, ending in increased ( ) fatty acid, reduced ( ) docosahexaenoic acid (DHA), or altered composition or function of high-density lipoprotein (HDL) in

the fetoplacental circulation (Fetus). Since these changes in the capacity of transport by the placenta increased levels of endoplasmic reticulum stress (JNK, IRE-1α)

and atherosclerotic [phospholipolyzed LDL (pLDL)] markers are detected in the fetal endothelium. Adverse fetal outcome results from alterations in the fetal circulating

or tissue levels of these molecules in GDM compared with normal pregnancies. Increased level of fatty acids regards with a higher incidence of fetal macrosomia while

a decrease in the fetal plasma level of DHA associates with increased number of neurological disorders. Additionally, less functional HDL could potentially result in

endothelial dysfunction in the newborn, and atherosclerosis could result from increased ERS markers. Composed of information reported by Ethier-Chiasson et al.

(2007), Marseille-Tremblay et al. (2008), Herrera and Ortega-Senovilla (2010), Scifres et al. (2011), Olmos et al. (2012), Pagán et al. (2013), Araújo et al. (2013),

Sreckovic et al. (2013), Herrera and Desoye (2015).

has been reported, suggesting that lipid content is higher in
this pathological condition compared with normal pregnancies
(Elchalal et al., 2005; Scifres et al., 2011).

GDM effect on lipoprotein receptors expression has also
been reported. Whereas, in normal pregnancies maternal
hypercholesterolaemia associates with lower expression of LDL
receptor (LDLR) in homogenized placenta (Ethier-Chiasson
et al., 2007; Desoye et al., 2011), expression of the HDL
scavenger receptor class B type I (SR-BI) and LDLR is increased
in GDM compared with normal pregnancies (Dubé et al.,
2013). Thus, GDM affects maternal and neonatal lipid profiles
perhaps predisposing the fetus to future metabolic diseases
(Dubé et al., 2013). Another protein involved in the lipoprotein
metabolism that is also modified by GDM in placental cells
is the phospholipid transfer protein (PLTP), which is involved
in the metabolism of fetal HDL and directly related with the
HDL remodeling leading to a larger HDL molecule (Tzotzas
et al., 2009). PLTP is expressed in endothelial cells of the
placental vasculature (Marceau et al., 2005; Scholler et al.,
2012a). GDM associates with upregulation of PLTP in the
placental endothelium (Scholler et al., 2012b), a phenomenon
due to the hyperinsulinemia and hyperglycaemia. PLTP increased

expression could also be a phenomenon associated with the
increased concentration of HDL described in newborns from
GDM pregnancies (Merzouk et al., 2000; Scholler et al., 2012a,b;
Sreckovic et al., 2014).

Insulin, Dyslipidaemia, and ERS in GDM
In normal and GDM pregnancies transfer of lipids from the
maternal to the fetal blood across the placenta is a process
highly regulated by the level of insulin (Table 3). Interestingly,
incubation of trophoblast cells from normal pregnancies with
insulin and fatty acids (i.e., concomitant conditions in GDM)
increase lipid droplets formation, suggesting that trophoblast
is involved in packaging lipids. The mechanisms involved
in this phenomenon include insulin-stimulated overexpression
of adipophilin (a protein involved in fatty acid uptake and
storage in adipocytes; Elchalal et al., 2005). However, human
trophoblast from GDM pregnancies shows higher expression
of FABPs isoform 4 (FABP4), which was suggested as likely
responsible for the associated increase in placenta lipid droplets
(Scifres et al., 2011). However, increased FABP4 expression
and lipid droplets formation are not regulated by insulin in
these cells. Thus, insulin-modulated mechanisms involved in
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TABLE 3 | Effect of insulin on the expression of molecules involved in lipids metabolism in GDM.

Cells/tissue Molecule GDM effect on expression Physiological consequences in GDM Insulin effect References

HPECs PLTP Increased Increase in fetal HDL level Decrease Scholler et al., 2012b

PHT FABP4 Increased Increase in placental lipid droplets formation Unaltered Scifres et al., 2011

PHT ACSL Reduced Reduced DHA uptake Increase Araújo et al., 2013

PHT ACSL Reduced Reduced AA uptake Unaltered Araújo et al., 2013

Placental blood n.r. n.r. Reduced DHA in the placenta blood Decrease Larqué et al., 2014

Placental blood n.r. n.r. Reduced DHA in the placenta blood Decrease Pagán et al., 2013

Fetal blood n.r. n.r. Reduced DHA in the fetal blood Decrease Larqué et al., 2014

Fetal blood n.r. n.r. Reduced DHA in the fetal blood Decrease Pagán et al., 2013

Placenta HADHA Reduced n.r. n.r. Austin et al., 2004

Placenta AGPAT2 Reduced n.r. n.r. Austin et al., 2004

HPECs, human placental endothelial cells; PHT, primary human trophoblasts; PLTP, phospholipid transfer protein; FABP4, fatty acid binding protein 4; ACSL, long-chain acyl-CoA

synthetase; DHA, docosahexaenoic acid; AA, araquidonic acid; HDL, high-density lipoprotein; n.r., not reported.

lipid droplets formation are likely to be different in normal
compared with GDM pregnancies. Other findings show that
GDM-associated reduction in the mother-to-placenta transfer
of the fatty acid docosahexaenoic acid (DHA) is worsened in
mothers with GDM under insulin therapy (Pagán et al., 2013;
Larqué et al., 2014; Sobrevia et al., 2015). Interestingly, DHA
uptake is increased by insulin in human trophoblast from
normal pregnancies (Araújo et al., 2013). Thus, a potential
increase in DHA uptake is unlikely in trophoblast from GDM
pregnancies since plasma insulin in the fetoplacental circulation
is higher in GDM compared with normal pregnancies (∼75
vs. ∼40 pmol/L; Westermeier et al., 2011, 2015a; Salomón et al.,
2012; Guzmán-Gutiérrez et al., 2016). HDL metabolism at the
fetal circulation is also altered in GDM pregnancies mainly
due to upregulation of PLTP expression and activity (Scholler
et al., 2012a; Sreckovic et al., 2014). Since insulin increases
this protein expression in human placental endothelium, it is
feasible that this hormone contributes to the synthesis of a larger
HDL molecule as seen in GDM as well as with the increase in
maternal-to-fetal cholesterol transfer (Scholler et al., 2012a,b).
Worryingly, increased fatty acids or decreased DHA in the fetal
circulation under maternal dyslipidaemia and hyperinsulinemia
associates with fetal macrosomia (Herrera and Desoye, 2015) and
neurological disorders (Araújo et al., 2013; Larqué et al., 2014;
Figure 3).

Modified lipoproteins profile has also been associated
with ERS pathway as previously reviewed (Lenna et al.,
2014). In brief, it has been suggested that oxidized LDL
(oxLDL) may cause atherosclerosis requiring JNK and IRE-
1α activation, thus involving ERS and UPR pathways in this
phenomenon (Sanson et al., 2009). In addition, the pro-
inflammatory phospholipolyzed low-density lipoprotein, which
is increased in atherosclerotic lesions, activated UPR and
interleukins expression in the treatment of HUVECs (Gora
et al., 2010). Thus, fetoplacental endothelial cells are prone
to activate ERS, and perhaps URP pathways in maternal
dyslipidaemia. However, nothing is reported on the potential
effects of insulin and the involvement of IRs isoforms in this
phenomenon.

CONCLUDING COMMENT

Altered vascular function in GDM pregnancies is a critical
condition leading to severe dysfunction of the human placenta
and altered delivery of nutrients and signaling molecules from
mother-to-fetus and vice-versa (Desoye et al., 2011; Leach,
2011; Herrera and Desoye, 2015; Sobrevia et al., 2015). Several
mechanisms leading to abnormal function of the human placenta
regards with metabolic alterations of this organ, including ERS
(Lenna et al., 2014) and metabolism of lipids (Leiva et al.,
2015), as well as metabolic-derived structural modulation of the
placental vascular bed, such as angiogenesis and vasculogenesis
(Gutiérrez et al., 2016; Figure 4). Interestingly, GDM leads to
a state where cell signaling mechanisms associated with insulin
biological effects in cells from the fetoplacental vasculature, and
perhaps in other vascular beds, is altered leading to a potential
state of insulin resistance (Colomiere et al., 2009; Westermeier
et al., 2015b). One of these metabolic conditions is ERS where key
molecules (e.g., ISR-1, JNK, IRE-1α, and potentially AMPK) are
apparently involved. Abnormal insulin signaling in the human
fetoplacental endothelium results in a lower NO bioavailability
and Akt activation, thus reducing fetoplacental vascular reactivity
in vitro. These phenomena could explain the abnormal or even
lack of regulation of a vectorial mother-to-fetus transplacental
transport of nutrients, which could result in altered fetal growth
and development, with subsequent consequences at birth and/or
adulthood.

Reduced NO synthesis could also be a condition leading to
abnormal angiogenesis (Gutiérrez et al., 2016). Interestingly, fetal
hyperinsulinemia in GDM pregnancies results to be a key factor
leading to an abnormal fetal outcome, including macrosomia
(Olmos et al., 2012; Leiva et al., 2015) and endothelial dysfunction
(Sobrevia et al., 2015). The possibility of a reduced vascular
reactivity to insulin in GDM pregnancies is likely and it is
a phenomenon that could explain the diminished response of
the fetoplacental vascular endothelium to this hormone. Even
when women coursing with GDM pregnancies that do not
reach normal glycaemia by diet/exercise are passed into insulin
therapy [Verier-Mine, 2010; American Diabetes Association
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FIGURE 4 | Insulin resistance in the fetus from gestational diabetes mellitus. Gestational diabetes mellitus (GDM) is a disease coursing with fetal

hyperinsulinemia and associated with metabolic alterations that result in reduced bioavailability of nitric oxide (NO) and altered expression of insulin receptors (IRs).

These alterations, and perhaps hyperinsulinemia itself, may result in abnormal expression and activity of several molecules associated with endoplasmic reticulum

stress (ERS) [IRE-1α, JNK, PERK, and likely AMPK (AMPK?)], which could also lead to the activation of the unfolded protein response (UPR) pathway. ERS via this set

of alterations could result in Insulin resistance in the fetus/newborn. Insulin resistance could alternatively be caused by Other mechanisms, including membrane

transport of L-arginine, the substrate for NO synthesis, adenosine receptors (ARs) expression and/or activation, hypoxia or high extracellular concentration of

D-glucose, and arginases (ARGs) activity, a metabolic pathway that consume L-arginine in endothelial cells. All these factors could result in increased inhibitor

phosphorylation of IRS-1, perhaps involving the subtype A of IRs (IR-A) with a deficient signaling pathway mediated by p44/42mapk (MAPK) and protein kinase B/Akt.

These phenomena lead to reduced synthesis and/or bioavailability of NO in the endothelial cells from the human placenta. Since insulin signaling is crucial maintaining

a normal metabolism of lipids and angiogenesis and vasculogenesis in the human placenta from normal pregnancies, GDM-associated fetal insulin resistance could

result in altered mother-to-fetus transplacental transfer due to altered expression and activity of cholesterol transporters, and metabolism of lipids leading to

accumulation of fatty acids, docosahexaenoic acid (DHA), or cholesterol. A generalized metabolic disturbance referred as Dyslipidaemia. The latter is also associated

with increased expression of ERS markers, and could also be due to hyperinsulinemia (Hyperinsulinemia ?). Additionally, insulin resistance results in a lack of

modulation of physiological Angiogenesis and vasculogenesis in pregnancy where and increase in vascular growth factors, hyperinsulinemia, IRs and ERS molecules,

including AMPK activity, are potentially involved. All these phenomena, i.e., GDM, ERS, angiogenesis and dyslipidaemia, develop with altered expression and activity

of common molecules due to the state of insulin resistance in the fetoplacental vasculature. The final result is an abnormal function of the fetal endothelium (Fetal

endothelial dysfunction) that ends with Adverse fetal outcome characterized by increased risk of fetal/newborn atherosclerosis, macrosomia, neurological disorders,

and insulin resistance.
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(ADA), 2015; Sobrevia et al., 2015], it is unknown whether
treatment with insulin in this group of women, which in
fact normalizes their glycaemia, will result in normalization of
the microvascular and macrovascular fetoplacental endothelial
function.

In summary, we propose insulin as a key factor playing
a modulatory role in GDM-associated altered angiogenesis,
ERS, and metabolism of lipids in the human fetoplacental
vascular bed. Since GDM courses with fetoplacental insulin
resistance state at birth, the potential beneficial effect of this
hormone on these phenomena is restricted. The possibility
that clinical management of insulin sensitivity is considered
a therapeutic target in the treatment of mothers with this
disease could result in reversing along with insulin resistance,
the GDM-associated alterations in ERS, angiogenesis and lipids
metabolism. However, we emphasize to take with caution the
broad spectrum of results reported in primary cell cultures, cell
lines, or experimental models, as summarized in this review,
so not to extrapolate the findings to what is happening in
the mother and their newborn in GDM. Certainly, a better
understanding of the mechanisms behind these alterations
caused by GDM, including pregnant women with this disease
but treated with diet/exercise or under insulin therapy, and the
potential effect of insulin in this phenomenon, is crucial in the
aim of preventing adverse fetal outcome from this disease of
pregnancy.
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