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A large body of literature has recently recognized the role of microclimates in controlling

the physiology and ecology of species, yet the relevance of fine-scale climatic data

for modeling species performance and distribution remains a matter of debate. Using

a 6-year monitoring of three potato moth species, major crop pests in the tropical

Andes, we asked whether the spatiotemporal resolution of temperature data affect

the predictions of models of moth performance and distribution. For this, we used

three different climatic data sets: (i) the WorldClim dataset (global dataset), (ii) air

temperature recorded using data loggers (weather station dataset), and (iii) air crop

canopy temperature (microclimate dataset). We developed a statistical procedure to

calibrate all datasets to monthly and yearly variation in temperatures, while keeping

both spatial and temporal variances (air monthly temperature at 1 km² for the WorldClim

dataset, air hourly temperature for the weather station, and air minute temperature over

250m radius disks for the microclimate dataset). Then, we computed pest performances

based on these three datasets. Results for temperature ranging from 9 to 11◦C

revealed discrepancies in the simulation outputs in both survival and development rates

depending on the spatiotemporal resolution of the temperature dataset. Temperature

and simulated pest performances were then combined into multiple linear regression

models to compare predicted vs. field data. We used an additional set of study sites to

test the ability of the results of our model to be extrapolated over larger scales. Results

showed that the model implemented with microclimatic data best predicted observed

pest abundances for our study sites, but was less accurate than the global dataset

model when performed at larger scales. Our simulations therefore stress the importance

to consider different temperature datasets depending on the issue to be solved in order to

accurately predict species abundances. In conclusion, keeping inmind that themismatch

between the size of organisms and the scale at which climate data are collected and

modeled remains a key issue, temperature dataset selection should be balanced by the

desired output spatiotemporal scale for better predicting pest dynamics and developing

efficient pest management strategies.
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INTRODUCTION

Ectotherms rely on environmental heat sources that permit
them to operate at very economical metabolic rates, i.e., low
energetic costs (Sears and Angilletta, 2015). Their internal
physiological sources of heat are relatively small or quite
negligible in controlling body temperature (e.g., plants, small
insects; Huey and Stevenson, 1979; Brown et al., 2004; Cossins,
2012). Therefore, ectotherms regulate their body temperature
making use of their abiotic environments that is both temporally
and spatially heterogeneous. The effect of temperature variability
on the physiology and ecology of ectotherms have generally been
addressed using data from either coarse-scale climatic models
or weather station networks. However, a large body of literature
has acknowledged that large-scale climatic data misrepresent the
thermal environment of living organisms (Holmes and Dingle,
1965; Angilletta, 2009; Geiger et al., 2009; Buckley et al., 2013;
Bennie et al., 2014; Hannah et al., 2014; Kearney et al., 2014),
especially for tiny organisms such as insects. Consequently,
accurately predicting how small ectotherms respond to climatic
variability requires reducing the mismatch between the spatial
scales of climatic data and the body size of the organism studied
(Potter et al., 2013; Faye et al., 2014).

Ectotherms’ responses to temperature are commonly
modeled with performance curves (Angilletta, 2009) that
describe performance (e.g., survival, growth, fecundity) along
a continuous thermal gradient. An important application
of performance functions is the construction of population
models that simulate insect life-history events, phenology,
and distribution under varying environmental conditions
over time. A great variety of temperature-based models [e.g.,
species-distribution models (SDMs, Elith and Leathwick, 2009),
cohort-based models (Logan, 1988); individual-based models
(Buffoni and Pasquali, 2010); cellular automata (Rebaudo et al.,
2011)] have been developed to assess the level of fitness of insect
populations across natural and anthropogenic landscapes. Such
models are becoming a key component of insect population
outbreaks both under current and predicted climatic conditions
(Venette et al., 2010).

A key issue of the use of these models is their sensitivity to the

spatiotemporal resolution of input temperature datasets (from
global to local, annual to hourly). This question has been debated
since the birth of SDMs (Guisan and Thuiller, 2005), with
some authors suggesting that finer-scaled SDMs provide better
predictions (Elith and Leathwick, 2009; Hannah et al., 2014;
Storlie et al., 2014) and others that they do not (Guisan et al.,
2007; Bennie et al., 2014). Fine-resolution spatial data may be less
important for organisms in spatially homogeneous environments
or for wide-ranging studies that focus on a general purpose and
trends. Also, high temporal resolution data may be less important
in environments where diurnal or seasonal variability is limited,
at least relative to the environmental tolerances of organisms
(Potter et al., 2013).

Traditional agricultural landscapes such as those found in a
wide area of the tropical belt, are typically made of a mosaic
of small (<1 ha) crop fields at various stages of maturation
(Dangles et al., 2008). This creates highly heterogeneous thermal

conditions at local scale, resulting in the fact that coarse-scale
climate data hardly capture the climatic reality experienced by
crop insects (Faye et al., 2014). In such systems, the reliability
of pest dynamics models may therefore strongly depend on the
resolution of temperature dataset used. To test this hypothesis,
we implemented pest performance models with air temperature
datasets obtained at three different spatiotemporal resolutions: (i)
WorldClim dataset (global dataset), (ii) air hourly temperature at
the weather station location (weather station dataset), and (iii)
crop canopy temperature data measured every minute at various
phenological stages at the field scale (microclimate dataset).
We then confronted the outputs of these population dynamics
models to field data of crop infestation obtained during a 6-year
long monitoring survey. To achieve this goal, the main step of
our study were (i) to develop a statistical procedure to calibrate all
data sets to monthly and yearly variation in temperatures, (ii) to
run and compare the outputs of the three models (global, weather
station, and microclimate) in terms of pest performance, and (iii)
to compare prediction of the three models with pest performance
data obtained in the field.

MATERIALS AND METHODS

Study Sites
The study area was located in the province of Cotopaxi
(01◦01′36′′S, 78◦32′16′′W), Ecuador, at four sites where pests and
temperatures were monitored (Table 1). Those sites were chosen
along a gradient of elevation (from 2700 to 3300 m.a.s.l.) with
two sites at low elevation and two sites at high elevation. They
were composed of a mosaic of small fields and pastures, generally
smaller than 1 ha (Dangles et al., 2008). Depending on elevation,
the main crops were potato (Solanum tuberosum L.), broad
bean (Vicia faba L.), corn (Zea mays L.), and alfalfa (Medicago
sativa L.). Despite of the occurrence of two main seasons in
the Ecuadorian Andes (higher temperatures from November to
May), temperature amplitude over 1 year is low (Bonebrake and
Deutsch, 2012). The intra-annual standard deviation of mean
monthly temperature measured at our study sites ranged from
0.54 to 0.66◦C. Moreover, temperature variations within a month
are comparable to those recorded within a year (intra-month
standard deviation of mean daily temperature= 1.07± 0.16◦C).

Potato Moth Monitoring
At the four study sites, wemonitored over 6 years the fluctuations
in population levels of three tuber feeding moth species (from
2006 to 2012): Phthorimaea operculella Zeller, Tecia solanivora
Povolny, and Symmetrischema tangolias Gyen (Lepidoptera:
Gelechiidae). P. operculella supposed origin is the mountainous
region of South America (Sporleder et al., 2004). It has been
reported in more than 90 countries worldwide, mostly in tropical
and subtropical potato production areas (Kroschel et al., 2013).
S. tangolias was first reported in Peru in 1931, and progressed
northward to Ecuador (Dangles et al., 2008). T. solanivora
originated from Guatemala and is currently distributed up to
Ecuador (Puillandre et al., 2008). These three species present
a major threat to the food security of farmers in Central
America and the Northern Andes (Dangles et al., 2009), and
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TABLE 1 | Location and characteristics of the four monitored sites in the central Ecuadorian province of Cotopaxi.

Site code Lowland 1 Lowland 2 Highland 1 Highland 2

Site local name La Hoya Anchilivi Palama Medio Palama Bajo

Coordinates in decimal degrees −1.00; −78.57 −1.05; −78.56 −1.00; −78.52 −1.01; −78.53

Elevation (m.a.s.l.) 2713 2727 3280 3152

Number of fields 40 84 74 58

Fields area (ha) 16.8 16.3 22.2 18.0

Average field size (m²) 4198 ± 5376 1937 ± 1177 2999 ± 1794 3104 ± 2383

Mean temperature from the WorldClim 13.3 ± 0.58 13.71 ± 0.63 10.1 ± 0.52 10.81 ± 0.55

Mean total pest abundance per month 139 ± 91 134 ± 78 86 ± 66 99 ± 57

are found in co-occurrence in Ecuador both in the fields and
the storage facilities (Dangles et al., 2008). T. solanivora only
fed on potato tubers, while S. tangolias and P. operculella can
fed on potato tubers, leaves and stems (Dangles et al., 2008).
The three species pupate in the soil near the plants, in leaf
remains, in potato storages, or in any suitably sheltered sites,
as described in Dangles et al. (2008). They are poikilothermic
organisms sensitive to abiotic factors, and are strongly driven
by temperature (Dangles et al., 2008; Crespo-Pérez et al.,
2015). Although studies have highlighted the importance of
precipitations (Foot, 1974; Whiteside, 1980), little influence has
been observed on moth abundance in the case of equatorial
region (Crespo-Pérez et al., 2015). Under the climatic conditions
of the Ecuadorian highlands, tuber moth populations are active
all year round and neither diapause nor seasonal rhythms have
been reported for these three moth species. Pest monitoring
was performed using pheromone traps specific to each potato
moth species following the protocol described by Crespo-Pérez
et al. (2011) and Dangles et al. (2010). The pheromone traps
were collected every 3 weeks during 6 years. The potato moth
monitoring at these four sites were devoted to the establishment
of predicting models analyzed at the temporal scale.

Additionally, potato moth monitoring was realized in 15
supplementary sites in the Ecuadorian Andes as part of a
larger monitoring network (see Dangles et al., 2008 for further
details). Those sites were used to compare predicted vs. field
abundance of potato moth at the spatial scale, testing the ability
of our previously built models to predict pest crop abundances
outside of the initial altitudinal range. These additional sites
were all located within the central provinces of Ecuador (Bolívar,
Chimborazo, Cotopaxi, Tungurahua; representing 19,939 km2),
along an altitudinal range from 2600 to 3600m. They shared
similar characteristics in term of landscape composition and
agricultural practices.

Temperature Monitoring
At each study site, we monitored temperature at three
spatiotemporal scales, referred as temperature datasets
(Figure 1).

For the global dataset, we extracted the mean air temperatures
over the last 50 years from the WorldClim database (Hijmans
et al., 2005), at an available spatial resolution of 30 arc seconds
(equivalent to squares of 0.86 km2 close to equator). Among

numerous previous studies, the worldClim dataset has been used
to predict the distribution of P. phthorimaea (Kroschel et al.,
2013), T. solanivora (Schaub et al., 2009; Crespo-Pérez et al.,
2013), and to relate abundances of S. tangolias with temperature
(Dangles et al., 2010). This dataset therefore served as a reference
for our study case, while being relevant for other species, given its
popularity in species distribution models (Elith et al., 2006; Lobo
et al., 2010).

For the weather station dataset, we recorded air temperature
using loggers (Hobo U23-001-Pro-V2, Onset Computer
Corporation, Bourne, USA) at each of the four sites. Temperature
data loggers were positioned on a wooden stake at 1.5m high
and then sheltered by white plastic roof to minimize solar
radiation heating. The data loggers recorded temperature every
half an hour with an accuracy of ±0.21K over the 0–50◦C range
together with a resolution of 0.02K at 25◦C, as described by
Faye et al. (2014). We then computed the monthly temperatures
based on these data to compare the air temperature from the
data loggers with the global dataset. This dataset corresponds to
commonly used weather stations data.

For the microclimate dataset, we recorded air temperature
inside crop canopies using various data loggers for all crop types
and phenologies in the 250m radius disk from the location of
the air temperature logger of the weather station dataset (see
Table 1 for more information on the study sites and Figure 1). As
described in Faye et al. (2014), the data loggers were positioned
5 cm bellow the top of crop canopy to avoid the effect of direct
solar radiation. The radius distance of 250m corresponded to the
mean maximum dispersal distance of the pest species considered
in this study (Crespo-Pérez et al., 2011). To obtain this dataset,
we recorded air temperature and air temperature inside canopy
every minute for 15 days in October 2011 (see Faye et al.,
2014 for details), resulting in 162 independent measurements
for our four study sites. This dataset corresponds to the closest
temperature information to temperature actually experienced
by pests, and is therefore referred as the microclimate
dataset.

Consequently we used a global temperature dataset from
the WorldClim database at a 30-arc seconds spatial resolution,
a local weather station dataset at four study points, and a
microclimate dataset integrating all canopy temperatures in
a landscape disk of 250m radius. For convenience, in the
rest of this paper we used the terms “WorldClim” dataset,
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FIGURE 1 | Schematic representation of the three temperature datasets. The global dataset is shown through red lines defining squares of 0.86 km2

corresponding to the WorldClim database. The Weather stations dataset is represented with black points (A–D) corresponding to the coordinates of the data loggers.

The Microclimate dataset is schematized with green circles and colored disks (right side of the figure) with a different color for each crop and phenological stages,

corresponding to the air temperature inside canopy.

“Weather stations” dataset, and “Microclimate” dataset when
referring to the first, second, and third temperature datasets,
respectively.

Temperature Dataset Standardization
To compare the effect of the three temperature datasets on
modeled pest performances and abundances, we used the
WorldClim dataset as a reference. The raw Weather stations
dataset corresponded to temperatures collected during 3 years,
and the raw Microclimate dataset to temperature collected
during 15 days in all fields. Consequently, we transformed
and extrapolated the raw temperatures of the Weather stations
and Microclimate datasets to fit the temporal resolution of
the WorldClim dataset (i.e., monthly temperatures), but kept
the spatial resolution of these datasets, i.e., at one punctual
monitoring site for the Weather stations dataset and the field-
based 250-m landscape radius for the Microclimate dataset. This
process resulted in a single temperature value per month in the
case of the WorldClim dataset, a set of temperature values per
month in the case of theWeather stations dataset (corresponding
to the monthly variance observed among years), and a set of
temperature values per month in the case of the Microclimate
dataset (corresponding to both the spatial variance observed
in the landscape and the monthly variance observed among
years).

The Weather stations dataset was transformed by aggregating
the 30min temperatures for each month. Then we decomposed
themonthly time series to obtain the seasonal variation, the trend
and the random component using the R package “stats” (R Core
Team, 2015). We subtracted the trend to the dataset in order to
avoid the effect of the monitored years on average temperature,
and checked the cross-correlation between the seasonal variation
in the WorldClim dataset and the Weather stations dataset

(significant cross-correlation at lag 0 with ccf = 0.825, 0.862,
0.901, and 0.907 for the four monitored sites, respectively).
According to the cross-correlation, we assumed the WorldClim
dataset seasonality as a reference of seasonality, so that we kept
only the random component of theWeather stations dataset. We
then modeled the distribution of the Weather stations dataset
random component to simulate new monthly temperatures
over multiple years, representative of temperature monitored in
the field. The obtained dataset was therefore representative
of the temperature variance for each month between
years.

For the Microclimate dataset, we first mapped the field
contours in a radius of 250 meters using ArcGIS 10.01 (ESRI,
Redlands, USA). As crop phenologies and rotations have been
shown to affect microclimates in this region (Faye et al., 2014),
we built a model representing the crop rotation (see Table SI
A.1 for classical crop rotations in the study area), using the
GAMA modeling and simulation development environment for
building spatially explicit agent-based simulations (Grignard
et al., 2013; https://github.com/gama-platform/gama/wiki). The
initial stage of each crop was chosen randomly in the crop
rotations, according to the proportions of observed phenological
stages in our study area. Using air temperature datasets and
canopy temperature datasets, we built another model explaining
air temperature inside the canopy as a function of air temperature
(linear model). Assuming that the relationship between air
temperature and air temperature inside canopy was constant
over the year, for each air temperature from the Weather station
dataset, we computed monthly air temperatures inside canopy
for each crop and over multiple years. This model was therefore
representative of the temperature variance at the spatial scale
(all fields within a radius of 250m), and at the temporal scale
(temperature variance for each month between years).
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Crop Pest Performance Modeling
Pest performance models were based on the temperature-
dependent performance curves of the three potato moths
in terms of survival rate, developmental rate, and fecundity
(in number of eggs per female). Temperature dependent
survival and developmental rates were based on the non-linear
thermodynamic model developed by Sharpe and DeMichele
(1977) and modified by Schoolfield et al. (1981) (Equation 1),
and fecundity was based on the gamma function (Equation 2)
as described and fitted in previous studies on these crop pests
(Crespo-Pérez et al., 2011; Rebaudo and Dangles, 2011; Rebaudo
et al., 2011). These models were chosen for their wide range of
application among arthropods (e.g., Fand et al., 2015; Ramalho
et al., 2015); and especially among Lepidoptera (e.g., Kim et al.,
2001; Khadioli et al., 2014).

D (T) =

dT
298.16 exp

[

e
R

(

1
198.16−

1
T

)]

1+ exp
[

f
R

(

1
g−

1
T

)]

+ exp
[

h
R

(

1
i−

1
T

)

] (1)

with T the temperature in Kelvin, R = 1.987, and d, e, f, g, h, and
i estimated parameters from previous studies using least square
minimization techniques.

F (T) = o+ p ∗ exp

(

−
T−q

r

)

(

T−q
r +s−1

s−1

)s−1

(2)

with T the temperature in Celsius, and o, p, q, r, and s
estimated parameters from previous studies using least square
minimization techniques.

Data Analysis
Comparison of Modeled Performances among

Species
We used the standardized WorldClim, Weather stations, and
Microclimate temperature datasets as inputs for pest performance
models based on performance curves described above. The
WorldClim and Weather stations datasets served as reference
datasets to compare performances for each pest. We then
computed the relative difference in performances between each
dataset as a function of the average temperature for the
WorldClim dataset.

Comparison of Predicted vs. Field Abundance of

Potato Moth

Temporal analysis
We used the three standardized temperature datasets (see
Section Temperature Dataset Standardization) to simulate potato
moth abundances for each month of a given year. Then, our
6-year potato moth abundance data were transformed to obtain
monthly abundances over the year with 6 repetitions for each
month.We then confronted monthly potato moth abundances as
a function of monthly temperatures and associated performances
as presented below.

To relate species performance simulated with the three
temperature datasets with the pest abundances, we first calculated
mean and quartile values of each temperature dataset and each

performance. We then used multiple linear regressions with a
stepwise analysis to minimize the AIC and find the best model
explaining pest abundances for each temperature dataset and
evaluate the relevance of theMicroclimate dataset (Equation 3).

N∼ S()+D()+ F()+ temp (3)

with N the potato moth abundance, S() the survival rate, D() the
developmental rate, F() the fecundity, and temp the temperature.
For parameters S(), D(), F(), and temp, we considered the mean
and quartiles values in the stepwise analysis.

Spatial analysis
We then tested these models with another set of potato moth
monitoring data composed of 15 sites spread out over a gradient
of elevation from 2600 to 3600m in Ecuador (see Section Potato
Moth Monitoring). This spatial validation aimed at validating to
which spatial extent the models built on the basis of our four
monitored sites could be extrapolated to this altitudinal range,
even in the absence ofWeather stations andMicroclimate datasets
available for those sites.

RESULTS

Temperature Models
The Weather stations dataset random component followed a
Gaussian distribution (Shapiro–Wilk tests, W = 0.993, 0.986,
0.992, 0.977 and p-value = 0.999, 0.970, 0.998, 0.846 for the
four sites, respectively). We therefore simulated the Weather
stations dataset using the WorldClim seasonality component
and a Gaussian distribution for the random component with
parameters fitted for each of the study sites. The resulting model
allowed simulating multiple years with the associated variance in
temperatures for the four sites (Figure 2).

For the Microclimate dataset, the relationship between air
temperature and air crop canopy temperature followed a linear
model (Table 2). The model showed a buffering effect of plant
canopy over air temperature, with warmer temperatures inside
canopy at low air temperature (sites on Figures 2C,D), and
colder temperature at warm air temperature (see sites on
Figures 2A,B). The transformed Microclimate dataset fitted a
normal distribution (Shapiro–Wilk normality test, W = 0.99,
p = 1.439e-13), which can be observed in boxplots of Figure 2.

Discrepancies among Predictions of
Species Performance
Outputs of pest performance models implemented with different
temperature datasets (Weather stations and Microclimate vs.
WorldClim) were similar for some study sites (e.g., survival rate
in Figures 3A,B) but differed for others (e.g., survival rate in
Figures 3C,D). For example, at site C, we observed that survival
rates predicted using the WorldClim dataset were close to zero
for the months of July and August, while both Weather stations
and Microclimate models predicted positive survival rates, up
to 0.2 on the third quartile (Figure 3C). Moreover, while the
WorldClim and the Weather stations datasets resulted in similar
performance means, the buffering effect of the Microclimate
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FIGURE 2 | Standardized temperatures for each month and each dataset. TheWorldClim dataset is represented as black horizontal bars. TheWeather stations

and Microclimate datasets are represented as dark gray and light gray boxplots, respectively. Panels (A–D) for the four study sites.

dataset predicted higher performances, either in terms of survival
rate, developmental rate, or fecundity.

At low temperatures (9–11◦C), performance simulations
revealed that the use of the WorldClim dataset tended to
underestimate survival rate in comparison to the use of the
Microclimate dataset (up to +100%), while the use of the
WorldClim dataset led to both under- and overestimate the
survival rate in comparison to the use of the Weather stations
dataset (between −300 and +100%, Figure 4). At warmer
temperatures (12–15◦C), performance simulations based on
the three datasets revealed almost identical pest survival rates.
Simulations of developmental rate and fecundity showed less
variation when estimated with the three temperature datasets.

Model Reliability to Predict Pest Field
Abundance
Pest abundances and their standard deviations as a function of
months are represented as bar plots in the top of Figure 3. For
the models presented in Table 3 based on the three temperature
datasets, we found no significant differences between observed
and predicted abundances of potato moth (Student tests, p >

0.43, Figure 5). The lowest AIC and highest r-squared values
were found for the model based on the Microclimate dataset
(Figure 5), indicating a better accuracy of this model over the two
other temperature datasets (Table 3). The shape of the boxplots in

Figure 5 also indicates that predictions based on the WorldClim
and Weather stations datasets tended to smooth abundances
between months over the year (low variance compared to the
observed abundances) while the Microclimate dataset better
represents intra-annual variation in potato moth abundances.

To assess the robustness of our findings at a larger spatial scale,
we compared observed and predicted potato moth abundances
in 15 sites spanning a range of elevations in Ecuador. We
found an average difference of 56, 74, and 80% between
observed and predicted abundances for the models based on
the WorldClim, Weather stations, and Microclimate datasets,
respectively, indicating that theWorldClim dataset best predicted
potato moth abundances at larger spatial extent. We also found
a significant effect of elevation over the goodness of fit (linear
models with significant positive slopes, p < 0.05, r2 = 0.16, 0.17,
and 0.09 for the WorldClim, Weather stations, and Microclimate
datasets, respectively), with a higher difference between observed
and predicted abundances as the elevation increases.

DISCUSSION

Many organisms take advantage of different habitats to perform
their life cycle. For example, arthropods such as moths spend
most of their cycle as a larvae or pupae located in the plant
or soil layers, where temperature experienced is in the range
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TABLE 2 | Relation between air temperature and air temperature inside canopy for all crops at two phenological stages and two altitudinal ranges [low

(A) and high (B) elevation].

Altitudinal range Crop Phenological stage Linear model p-value R-squared

A alfalfa 1 Tplt = 2.6155+ 0.8048 * Tair *** 0.3741

A alfalfa 2 Tplt = 6.2248+ 0.5754 * Tair *** 0.215

A bean 1 Tplt = 3.4655+ 0.6863 * Tair *** 0.9657

A bean 2 Tplt = 0.05918+ 0.9552 * Tair *** 0.4966

A corn 1 Tplt = −3.3529+ 1.2681 * Tair *** 0.8206

A corn 2 Tplt = 2.8026+ 0.7680 * Tair *** 0.8563

A pasture 1 Tplt = −0.2593+ 1.1113 * Tair *** 0.6318

A pasture 2 Tplt = 5.9341+ 0.5464 * Tair *** 0.5804

A potato 1 Tplt = −3.0608+ 1.2029 * Tair *** 0.7089

A potato 2 Tplt = 3.8663+ 0.7018 * Tair *** 0.4248

A bare soil − − − −

B alfalfa 1 Tplt = 0.8681+ 1.0350 * Tair *** 0.4932

B alfalfa 2 Tplt = 7.38339+ 0.31449 * Tair *** 0.3017

B bean 1 Tplt = 7.03727+ 0.35023 * Tair *** 0.674

B bean 2 Tplt = 0.87834+ 0.88096 * Tair *** 0.9315

B corn 1 Tplt = 1.0665+ 0.9809 * Tair *** 0.8702

B corn 2 Tplt = 2.2445+ 0.7935 * Tair ** 0.946

B pasture 1 Tplt = −2.1935+ 1.3620 * Tair *** 0.5521

B pasture 2 Tplt = 3.3894+ 0.6443 * Tair *** 0.3717

B potato 1 Tplt = 0.41817+ 0.96059 * Tair *** 0.9559

B potato 2 Tplt = 3.50316+ 0.71010 * Tair *** 0.4934

B bare soil − − − −

No linear models were computed for the fields corresponding to bare soil, assuming that difference in air temperatures in the first 2m above ground level was negligible (Kearney et al.,

2014), and that the air temperature was representative of the temperature experienced by insects. P-values below 0.005 are represented with “***” and p-values below 0.05 with “**”.

of their optimums (Scherrer and Körner, 2011; Suggitt et al.,
2011; Scheffers et al., 2014), while others actively modify
local conditions [e.g., aggregations in colonies (Danks, 2002);
thermoregulation (Willott, 1997; Pincebourde and Casas, 2006)].
In our case, results showed that the model based on the
microclimate temperature dataset predicted the best result, which
is, in that sense, rather intuitive. Pests likely take advantage of
the landscape they live in for finding food and seeking optimum
temperatures, but also for finding shelter from lethal conditions
(Hart and Resh, 1980; Füreder, 1999), and thereby reducing
their exposure to climate extremes (Scheffers et al., 2014). The
Ecuadorian Andes are characterized by highly heterogeneous
agricultural landscapes, whichmay offer better chances of finding
optimal thermal habitats within a relatively low distance (Faye
et al., 2014). It is therefore sound that, at the local scale,
predicting abundances on the basis of temperature datasets
that ignore this heterogeneity proved to be poorly effective.
The species considered in this study are highly sensitive to
temperature variations (Dangles et al., 2008, 2009; Kroschel et al.,
2013), which placed them as specialist in the thermosensibility
scale. This is mostly the case of all small ectotherms which
are thermoconformers, a major constraining factor in their
dispersion (Overgaard et al., 2014). Our findings thus applied
to similar organisms sensitive to local conditions (Woods et al.,
2015), while other species may be modeled regardless of the
temperature spatiotemporal resolution. Moreover, for the species
considered in this study, part of the cycle occurs in the soil layer

(Dangles et al., 2008), which was not monitored. Knowledge
of the temperature experienced by species in the soil could
have explained in better details the observe abundances, as
temperature in the soil layer differs from air temperature (Parton
and Logan, 1981), in relation to its composition, exposure, and
humidity. This implies that temperature dataset should be based
on the species considered (body length and dispersal capacity;
Potter et al., 2013; Hannah et al., 2014) and the spatiotemporal
heterogeneity of temperature in the landscape (spatiotemporal
heterogeneity of the climatic conditions in which the study
organism evolved along its life cycle).

However, results revealed that the model based on the
Microclimate dataset failed to explain abundances outside of
the range of the four study sites, and that sites located at
higher elevations were more prone to mis-predicted abundances.
This limitation may be due either to the model itself that
could be sensitive to changes in elevation, or because the
extrapolation of the temperatures from our monitored sites
does not apply to this case. Therefore, two challenges should
be overcome in future studies: (i) the lack of microclimate
dataset available at large scale, as already acknowledged in
numerous studies and despite promising directions offered by
downscaling models (Potter et al., 2013; Kearney et al., 2014)
or recent advances in microclimatic data collection (Faye et al.,
2015), and (ii) the choice of scale at which a model can be
applied, which is a recurrent question in species distribution
modeling (Wiens, 2002; Guisan and Thuiller, 2005). Our study
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FIGURE 3 | Pest abundances and performances for each site based on the three temperature datasets. Pest abundances represent the mean sum of

abundances for the three potato moth species. Black triangles display the standard deviations for each month. Performances were computed for each site using the

mean values for the three potato moth species. WorldClim dataset based performances are represented as black horizontal bars. Weather stations and Microclimate

datasets based performances are represented as red and blue points for the first and third quartiles, and as horizontal bars for the median. Panels (A–D) for the four

study sites.

TABLE 3 | Multiple linear regression models explaining the potato moth abundances for each temperature dataset.

Dataset Model AIC R-squared

WorldClim N ∼ S() + D() + F() + temp 314 0.51

Weather stations N ∼ F() + temp + q3S() + q3D() + q3F() + q3temp 311 0.57

Microclimate N ∼ S() + F() + temp + q1D() + q1F() + q1temp + q3F() + q3temp 307 0.64

N represents potato moth abundances. S(), D(), F(), temp represent the mean survival rate, developmental rate, fecundity, and temperature, respectively. q1 and q3 represent the first

and third quartiles. The AIC corresponds to the lowest value computed from the stepwise analysis.

supports that in the absence of microclimate dataset, global
climate models are best suited to predict species abundances
at large scale (and low resolution), while microclimate datasets
best predict abundances at fine scale (and high resolution), as
highlighted in other studies on the effect of spatial resolution
on species distribution (Gillingham et al., 2012). Regarding
the specific effect of elevation on predicted abundances, our
results highlight the complexity of insect responses to altitudinal
gradients (McCoy, 1990; Lomolino, 2001; Hodkinson, 2005;

Sundqvist et al., 2013), impeding our models to accurately
predict potato moth abundances at higher elevations. The change
in the composition of potato moth species as a function of
elevation (Dangles et al., 2008, 2009), and the difference in farmer
practices (Rebaudo and Dangles, 2011), may add another layer of
complexity to the complex agro-ecosystem in place.

In addition, the models used in this study were built on
the basis of laboratory experiments performed under controlled
climatic conditions in rearing units (Crespo-Pérez et al., 2011;
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FIGURE 4 | Comparison between pest performances computed with the different temperature datasets as a function of the WorldClim temperature.

For each performance, circles, triangles, and plus signs represent the difference between the WorldClim and the Weather stations, the WorldClim and the

Microclimate, and the Weather stations and the Microclimate datasets, respectively.

FIGURE 5 | Observed and predicted abundances computed with the

different temperature datasets for the four studied sites. Pest

abundances are represented as boxplots and correspond to all pest

abundances per month.

Rebaudo and Dangles, 2011; Rebaudo et al., 2011). If their
applicability could predict presence absence successfully at
regional scales with coarse resolution (Crespo-Pérez et al.,
2011), increasing the resolution of temperature dataset could
logically yield more accurate results. Consequently, temperature
datasets should be employed with models built on comparable
resolutions (i.e., in the model range of applicability, Rykiel,
1996). Moreover, the type of demographic models to be used
will obviously influence the resulting predictions: models making
uses of extreme temperatures, known to constrain ectotherms
(Hoffmann et al., 2013), or night-time temperatures (Zhao et al.,
2014), may predict species abundances more accurately at higher
temporal temperature scales, while niche-based models may be
better suited for large scales (Thuiller et al., 2005). In addition,

our models, based on multiple linear regressions, were designed
to correlate temperature and associated performances with pest
abundances, and extra-principles such as carrying capacity,
pest dispersion, farmers’ practices, and Allee effects were not
addressed. We fed our models with monthly temperatures using
worldClim as a reference dataset. However, diurnal temperature
fluctuations are known to influence insect behavior (Taylor,
1963), physiology (Lambrechts et al., 2011), and development
(Hagstrum and Milliken, 1991) and may be further considered
to improve the predictions of our models. While these could be
limitations in order to predict dynamic trajectories, we focused
on predicting pest abundances at a given month, compared to
pest abundances recorded for this given month over multiple
years. This strategy was aimed to diminish the effect of these
time-dependent variables, even if reducing the accuracy of our
results.

In conclusion, this study supports that in the absence of
microclimate dataset, global climate models are best suited to
predict species abundances at large scales (and low resolution),
while microclimate datasets best predict abundances at fine
scales (and high resolution). Therefore, this study stresses the
importance to consider different temperature datasets depending
on the issue to be addressed. The first point to consider is
the species thermosensibility: if small ectotherms would be

sensitive to local conditions, most endotherms, less sensitive,
would be accurately modeled without the need for microclimate
datasets. In the first case, availability of microclimate datasets
still represents a challenge to overcome. Second, and jointly with
species thermosensibility, the landscape heterogeneity should
be taken into account: homogeneous landscapes are likely to
share common temperatures at different resolutions. Third, we
should consider the accuracy needed to accurately answer the
model question: presence absence models at a coarse resolution
would require less temperature information than fine-scale
abundances models. Based on the case of three moth pests
in the Ecuadorian Andes, our study brings new insights into
spatiotemporal temperature choice ongoing debate (Austin and
Van Niel, 2011; Deblauwe et al., 2016).
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