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Adequate blood supply to the uterine-placental region is crucial to ensure the transport

of oxygen and nutrients to the growing fetus. Multiple factors intervene to achieve

appropriate uterine blood flow and the structuring of the placental vasculature during

the early stages of pregnancy. Among these factors, oxygen concentrations, growth

factors, cytokines, and steroid hormones are the most important. Sex steroids are

present in extremely high concentrations in the maternal circulation and are important

paracrine and autocrine regulators of a wide range of maternal and placental functions.

In this regard, progesterone and estrogens act as modulators of uterine vessels and

decrease the resistance of the spiral uterine arteries. On the other hand, androgens

have the opposite effect, increasing the vascular resistance of the uterus. Moreover,

progesterone and estrogens modulate the synthesis and release of angiogenic factors

by placental cells, which regulates trophoblastic invasion and uterine artery remodeling.

In this scenario, it is not surprising that women with pregnancy-related pathologies, such

as early miscarriages, preterm delivery, preeclampsia, and fetal growth restriction, exhibit

altered sex steroid concentrations.
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INTRODUCTION

During pregnancy, the placenta has important nutritional, metabolic, and endocrine functions
that constitute the link between the mother and the fetus. The transfer of oxygen and essentials
nutrients from maternal blood to the fetal bloodstream requires an adequate uterine perfusion and
a placental vascular network. Abnormalities in these processes are associated with an increased risk
for miscarriage, preterm delivery, preeclampsia, and fetal growth restriction (FGR) (Regnault et al.,
2002).

The formation of blood vessels involves two consecutive processes: (1) vasculogenesis, which
involves the structuring of primitive vessels from mesenchymal cells; and (2) angiogenesis, which
is the generation of new blood vessels from preexisting vessels to form the vascular placental
network (Charnock-Jones et al., 2004). Both processes are driven and regulated by multiple factors,
including oxygen concentration, growth factors, cytokines, and steroid hormones. Sex steroids are
essential to maintain a normal pregnancy, and they participate in the control of a wide range of
maternal and placental functions as well as in the normal development of fetal organs such as the
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lungs and adrenal glands (Seaborn et al., 2010; Ishimoto and Jaffe,
2011). Moreover, variations in maternal serum concentrations
of sex steroids have been described in conditions associated
with abnormal placentation that impact placental perfusion, thus
leading to pregnancy-related pathologies. Therefore, the aim
of the present review is to summarize the current knowledge
regarding the role of progesterone, androgens, and estrogens in
the uterine-placental vasculature.

REGULATION OF UTERINE VASCULAR
TONE

During pregnancy, uterine blood flow increases dramatically
mainly through a decrease in the uterine vascular resistance as a
result of uterine arteries dilation and remodeling. Many of these
effects are produced by changes in the muscular tone of uterine
arteries that are mediated by the action of nitric oxide (NO) and
prostanoids (prostacyclins, prostaglandins, and thromboxane).
NO increases uterine blood flow through the relaxation of uterine
arteries by a mechanism that involves a decrease in intracellular
Ca2+ concentrations (i[Ca2+]) in vascular smooth muscle cells
(VSMC). NO originates from the metabolism of L-arginine by
the action of endothelial NO synthase (eNOS) in endothelial
cells. Prostacyclin (PGI2) also induces vasodilation. However, has
been observed that PGI2 exerts a compensatory action when NO
production is reduced (Beverelli et al., 1997). Prostaglandin F2α
(PGF2α) and thromboxane A2 (TXA2) induce vasoconstriction.
Prostanoids are produced by the action of the cyclooxygenase
(COX) enzymes, COX-1 and COX-2, on arachidonic acid. Of
note, during pregnancy, serum concentrations of PGI2 increase
dramatically, whereas PGF2α and TXA2 remain constant, thus
favoring vasodilation (Mills et al., 1999).

Other regulators of the uterine vascular tone during
pregnancy include adrenomedullin (Ross et al., 2010) and
the components of the renin-angiotensin system, mainly
angiotensin-(1–7) (Merrill et al., 2002). In rat uterine arteries,
adrenomedullin induces relaxation mediated by the NO–cGMP-
pathway (Ross et al., 2010). Angiotensin (1–7) is released
from syncytiotrophoblasts, which act as a potent vasodilator
in contrast to angiotensin II, which induces vasoconstriction
(Valdes et al., 2006).

PLACENTAL VASCULATURE

The placenta originates from the differentiation of trophoblastic
cells from the pre-implantation embryo into cytotrophoblasts
and syncytiotrophoblasts (Gerbaud and Pidoux, 2015). Two
weeks after conception, the blastocyst cells acquire the
ability to invade and migrate through the endometrial wall.
The decidualization reaction of stromal endometrial cells
subsequently results in an important increment in tissue
permeability and vascular density. This reaction favors the
migration of extravillous cytotrophoblasts (EVT) across the
decidua to reach the endothelial cells of the terminal segments
of the uterine arteries occluding their lumen (Figure 1), which
restricts blood flow into the intervillous space and leads to a

drop in oxygen concentration (Figure 1). Between weeks 11–12
until weeks 18–20 of gestation, EVT remodel the uterine spiral
arteries. The remodeling allows the uterine spiral arteries to
acquire a large capacitance and low resistance, thus gradually
increasing maternal blood flow and oxygen levels (Rodesch et al.,
1992).

The growth and development of the placental vascular
network occurs through branching angiogenesis, which involves
the formation of new vessels by the sprouting of preexisting
vessels and a subsequent increase in the number of capillaries; it
also occurs through non-branching angiogenesis, which involves
the elongation of vessels and leads to the formation of capillary
loops (Charnock-Jones et al., 2004).

The members of the vascular endothelial growth factor
(VEGF) family are central in the regulation of placental
vasculogenesis and angiogenesis (Demir et al., 2004). VEGF
family members are produced by trophoblastic cells, Hofbaur
cells, and maternal decidual cells (Figure 1) (Clark et al.,
1996). The VEGF family has five members encoded by
individual genes, including VEGF-A, VEGF-B, VEGF-
C, VEGF-D, and PlGF (placenta growth factor). VEGF-A
increases vascular permeability in endothelial cells, inducing
placental vasculogenesis, and angiogenesis. Moreover, VEGF-A
stimulates the expression of placental eNOS and NO production,
thus inducing vasodilatation and promoting endothelial cell
proliferation (Papapetropoulos et al., 1997) (Figure 1).

In general, VEGF-A, VEGF-B, and PlGF bind to VEGFR-
1 (or Flt-1), whereas VEGF-A also binds to VEGFR-2 (or
KDR). VEGF-A exhibits an increased affinity for Flt-1. However,
KDR is more active in angiogenic stimulation (Stuttfeld and
Ballmer-Hofer, 2009). In the human placenta, Flt-1 is located
in syncytiotrophoblasts and endothelial cells of the placental
villi (Helske et al., 2001). On the other hand, KDR is almost
exclusively expressed in endothelial cells, which mostly occurs
during the first trimester of gestation in parallel to the high
angiogenic activity at that time (Yamazaki andMorita, 2006). The
action of VEGF on angiogenesis is regulated by an impressive
paracrine negative feedback system in which the soluble form
of Flt-1 (sFlt-1) acts as a potent inhibitor of angiogenesis that is
regulated by VEGF.

The hypoxic environment induces the expression of factors
regulating the angiogenesis process, and hypoxia-inducible factor
(HIF)-1α is one of the main factors (Kingdom and Kaufmann,
1999). Of note, villous trophoblasts cultured under hypoxic
conditions (1% O2) express high levels of VEGF-A, Flt-1, and
sFlt-1 mRNA (Munaut et al., 2008). Interestingly, recent evidence
suggests that HIF-1α is also activated by non-hypoxic stimuli,
such as growth factors, immunogenic cytokines, and sex steroids
(Patel et al., 2010).

Other regulators of placental angiogenesis include
angiopoietin (Ang)-1, Ang-2, and their receptor Tie-1. These
proteins are complementary to the VEGF system but participate
in the later stages of angiogenesis. In early pregnancy, Ang-2 is
more highly expressed than Ang-1. However, Ang-2 decrease
during the course of pregnancy (Geva et al., 2002). Finally,
endoglin (Eng), a homodimeric transmembrane glycoprotein
that belongs to the TFG-β (transforming growth factor beta)
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FIGURE 1 | Placental angiogenesis during early pregnancy. The reaction of decidualization of stromal endometrial cells promotes the migration of extravillous

cytotrophoblasts (EVT) across the decidua to reach the endothelial cells of the terminal segments of the uterine arteries occluding their lumen, which restricts the

blood flow into the intervillous space and leads to reduced oxygen concentrations. Moreover, EVT remodel uterine spiral arterioles to increase maternal blood flow. On

the other hand, trophoblastic cells, Hofbaur cells (Hc), and maternal decidual cells secrete VEGF, thus promoting angiogenesis. In addition, trophoblasts increase NOS

activity, thus stimulating nitric oxide (NO) production and vasodilatation.

complex, contributes to placental angiogenesis; however, a
placenta-derived soluble endoglin isoform (sEng) acts as an anti-
angiogenic protein that inhibits TGF-β1 signaling in endothelial
cells.

SEX STEROIDS AND UTERINE VASCULAR
TONE

The role of progesterone and estrogen in the regulation of
the uterine vascular tone has been recognized for a long
time. However, the effects of testosterone have only been
recently addressed. In the placenta, androgens are metabolized
to estrogens by the P450 aromatase. Dihydrotestosterone (DHT),
which cannot be metabolized to estrogen, is subsequently
reduced by aldo-keto reductase family 1 C into androstenediol
(5α-androstane-3β, 17β-diol [3β-diol]), which has estrogen-like
activity through ERβ (Lund et al., 2004). Therefore, androgenic
and estrogenic effects cannot be easily separated in this tissue.

Progesterone
Progesterone plays an important role in uterine vessel
vasodilation before the 10th week of gestation (Dickey and
Hower, 1996). This feature, along with the decreased resistance
of the placental bed, contributes to a reduction of systemic blood
pressure until 28 weeks of gestation.

Progesterone binds to its own receptors located in the nucleus
and on the plasma membrane, mediating genomic, and non-
genomic actions. In general, nuclear progesterone receptor (PR)
comprises five isoforms, of which PR-A (81 kDa) and PR-B
(116 kDa) are the most widely expressed in different tissues (Li
and O’malley, 2003).

Progesterone has been implicated in the rapid increase of
eNOS activity and the production of NO in human endothelial
cells (Simoncini et al., 2007). In a similar manner, progesterone
stimulates PGI2 production because it enhances the expression
and activity of COX-1 and COX-2 (Hermenegildo et al., 2005). In
addition, membrane progesterone receptors (mPRs) are present
in VSMC, and they promote the decrease of the i[Ca2+] and lead
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to vasodilation (Minshall et al., 2002; Moussatche and Lyons,
2012). In this regard, in human umbilical vein endothelial cells
(HUVECs), progesterone induces NOproduction throughmPRα

(Pang et al., 2015).

Androgens
Testosterone promotes the proliferation of human myometrial
microvascular endothelial cells through the activation of the
MAPK/ERK-kinase pathway and VEGF-A production (Dietrich
et al., 2011). In rats, the administration of androgen during
pregnancy reduced uterine blood flow and elevated the maternal
blood pressure due to an increased resistance of uterine
vessels, which was due to the suppression of eNOS activity
(Chinnathambi et al., 2013). Moreover, testosterone contracted
the uterine arteries and reduced vascular relaxation due to the
decline of endothelial NO production and the expression of
prostacyclin and small conductance calcium-activated channel-
3 (SK3). In contrast, hypoxia-responsive genes were increased,
indicating poor uterine oxygenation induced by testosterone
(Chinnathambi et al., 2014).

Estrogens
Estrogens have an important function in the regulation of blood
flow and microvascular volume because they control specific
genes involved in vascular tone (Pastore et al., 2012). In this
regard, NO is stimulated by both estrogen receptor isoforms
(ERα and ERβ). Of interest, NO inhibition blunts the action
of estradiol, suggesting that estrogen relaxation of myometrial
arteries is mediated by both NO-dependent and -independent
mechanisms (Rosenfeld et al., 1996). In addition, estrogens act on
a 7-transmembrane G protein-coupled receptor named GPER.
However, its activation reduces vascular tone in the rat uterus
during pregnancy (Tropea et al., 2015).

Estradiol relaxes preconstricted human myometrial and
placental arteries by binding to ERα and ERβ. However, this
effect is lower than that in the myometrial than placental vessels
(Corcoran et al., 2014). Moreover, estradiol can stimulate PGI2
synthesis due to upregulation of COX-1 expression, as observed
in HUVEC and ovine fetal pulmonary artery cells. This effect is
Ca2+ dependent andmediated by the activation of ERβ (Jun et al.,
1998; Calkin et al., 2002; Sherman et al., 2002).

SEX STEROIDS AND PLACENTAL
ANGIOGENESIS

The role of sex steroids in placental angiogenesis has not been
widely studied. Preliminary evidence suggests that sex steroids
can regulate both endometrial and placental angiogenesis.

Progesterone
Progesterone has an important role in the activation of the
decidual reaction in endometrial stromal cells, increasing the
vascular permeability in the endometrial stroma through the
activation of the nuclear receptor subfamily, group A, member
1 independently of VEGF action (Figure 2A; Goddard et al.,
2014). Progesterone increases the number of uterine natural killer
(uNK) cells (Bulmer and Lash, 2005), which most likely occurs

indirectly through the decidualization reaction (Figure 2A). In
this regard, uNK cells secrete a wide variety of angiogenic factors
during early pregnancy, including VEGF-C, PlGF, Ang-1, Ang-2,
and TGF-β1, promoting the vascular development of the decidua
(Hanna et al., 2006).

In early pregnancy, PR is expressed in the endothelial cells
of decidual tissue, and the binding of progesterone stimulates
endothelial cell proliferation. This process is partly mediated by
VEGF with no necessary estrogen priming (Wang et al., 1992).
Moreover, progesterone regulates early trophoblast invasion
because it reduces the invasive properties of EVT in vitro
and the secretion of matrix metalloproteinase (MMP)- 2 and
-9, which are primary mediators of vascular remodeling and
angiogenesis in decidual tissue (Goldman and Shalev, 2006)
(Figure 2B). However, progesterone promotes the migration
of EVT by the upregulation of an insulin-like growth factor
binding protein-1 and Dickkopf-related protein-1 (Halasz and
Szekeres-Bartho, 2013). In addition, progesterone can promote
the differentiation of a subfraction of decidual cells (named
decidua-derived CD31−CD146−subfraction of side population
(SP) cells) into endothelial cells and smooth muscle cells,
suggesting that progesterone may play a role in the formation of
new blood vessels in the placenta (Wang et al., 2013).

Androgens
Androgen receptor is present in the cells of the
syncytiotrophoblast and in the decidua during the first
trimester of gestation (Horie et al., 1992). Rat models have
shown that elevated androgen levels during pregnancy induce
a reduction in placental weight and the activity of amino
acid transporters (Sathishkumar et al., 2011; Sun et al., 2012).
Moreover, androgens induce the downregulation of genes related
to vascular development and angiogenesis (Ccr3, Stra6, Dhcr7,
Arid1a, Ptprj, Col1a2, Lef1, Col1a1, and Mmp2) in the placenta
(Figure 2C). Along with this antivasculogenic gene expression
profile, the authors reported a reduction in radial and spiral
artery diameters and branching angiogenesis (Gopalakrishnan
et al., 2016). Thus, androgens could negatively regulate placental
oxygenation, which is reflected by an increase in pimonidazole
binding and HIF-1α levels (Gopalakrishnan et al., 2016).

Estrogens
P450 aromatase is expressed in stromal uterine cells, indicating
a local production of estrogen. Here, estrogen appears to
facilitate decidualization and uterine neovascularization
(Figure 2A), inducing the expression of HIF2α, Ang-2, Ang-4,
and adrenomedullin (Das et al., 2009). Estrogen receptors
(ER) α and β are expressed within villous trophoblasts of the
human placentas (Bukovsky et al., 2003a,b). In this regard,
the estrogen signaling has also been involved in the regulation
of trophoblast differentiation and its invasive capacity in the
hypoxic environment of the first trimester primate placenta.
For example, similar to progesterone, estrogens act as regulators
of the extent of remodeling during early pregnancy because
they inhibit the invasive capacity of EVT (Figure 2B), reduce
VEGF protein expression in the placenta anchoring villi and
reduce the expression of integrins in cells from the anchoring
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FIGURE 2 | Sex steroids regulate the uterine-placental vasculature. (A) During secretory phase of the endometrial cycle, progesterone, and estrogen induce

endometrial stromal decidualization to increase vascular permeability, recruit uterine natural killer cells (uNK), and increase endothelial cell proliferation. (B) During

implantation, progesterone promotes remodeling of the arteries, most likely with the support of uNK. On the other hand, progesterone and estrogen regulate the

invasiveness of extravillous trophoblast (EVT). (C) In early pregnancy, estrogen promotes the expression of vascular endothelial growth factor (VEGF), thus stimulating

early placental angiogenesis. On the other hand, androgens inhibit the angiogenesis process. In addition, estrogen regulates the invasion of the uterine spiral artery by

placental EVT. During the entire process, estrogen and progesterone increase uterine blood flow. However, testosterone reduces blood flow.

villi and the cytotrophoblastic shell (Bonagura et al., 2012).
Moreover, estradiol can regulate placental angiogenesis by the
degranulation of mast cells that secrete important amounts of
VEGF, suggesting a role of inflammation in this process. In this
regard, estradiol and progesterone attract mast cells to the uterus
(Corcoran et al., 2014).

In many species, including humans, estradiol induces the
expression of the VEGF protein in the cytotrophoblast and
increases the percent of vascularized area and vessel density in
placental tissue (Albrecht et al., 2004; Robb et al., 2004; Albrecht
and Pepe, 2010) (Figure 2C). In baboon cytotrophoblasts,
VEGF mRNA increases in parallel with the increase in serum
estradiol levels during early pregnancy (Hildebrandt et al.,
2001). However, during the last two-thirds of pregnancy, the
inhibition of P450 aromatase does not affect VEGF action in
blood vessel development, suggesting that the cytotrophoblast
loses its control by estrogen action during pregnancy
(Albrecht and Pepe, 2010).

CLINICAL IMPLICATIONS

An abnormal blood supply to the uterine-placental region leads
to early miscarriage, preterm delivery, preeclampsia, and FGR. In
this regard, modifications to the circulating levels of sex steroids
and/or uterine and placental sex steroids receptors are associated
with poor obstetric and prenatal outcomes.

Women with unexplained recurrent pregnancy loss exhibit
elevated uterine arterial impedance, which is negatively
correlated with circulating progesterone levels. Of note, the
administration of dydrogesterone, a synthetic progestin, reduced
the resistance to blood flow in the uterine arteries, suggesting
that insufficient progesterone action could be involved in a poor
uterine blood supply and lead to miscarriage (Habara et al.,
2002). Moreover, the elevated expression of Dickkopf-related
protein-1 and low expression of PR-A have been observed in
women with unexplained recurrent spontaneous miscarriage
(Papamitsou et al., 2011; Bao et al., 2013). On the other
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hand, in growth-restricted pregnancies, PR expression in the
placental tissue is positively correlated with IGF-1 expression
and infant anthropometry, and it is independent of the presence
of pregnancy pathologies (Akram et al., 2011). A group of
studies has demonstrated that preeclampsia is associated with
increased levels of progesterone along with increased expression
of CYP11A, which inhibits trophoblastic proliferation and
potentially the production of prostacyclin; this association affects
the development of placental vasculature (Walsh and Coulter,
1989; He et al., 2013). Another group of studies demonstrated
low circulating levels of progesterone and aldosterone in women
with preeclampsia affected the secretion of endothelin-1, which is
a potent vasoconstrictor. These results indicate that progesterone
could be involved in the maintenance of normal blood pressure
(Kiprono et al., 2013; Uddin et al., 2014). Therefore, normal
development of placental vasculature is potentially dependent on
physiological ranges of progesterone concentrations.

Because estrogen is an important regulator of uterine blood
flow and the production of angiogenic factors in placental tissue,
it is possible to hypothesize that estrogens are involved in the
pathophysiology of pregnancy-related pathologies. At the 27th
gestational week, estriol is positively associated with birth weight,
birth length, and placental weight (Wuu et al., 2002). However, in
rats, pharmacological doses of estradiol benzoate induce growth
restriction, the reduction of placental weight, and trophoblastic
degeneration (Matsuura et al., 2004). ERβ appears to be an
important inducer of vasoconstrictor prostanoids because it
increases the resistance of the feto-placental blood flow (Su et al.,
2011).

Elevated androgen levels are a recurrent finding in
preeclamptic women (Troisi et al., 2003; Salamalekis et al.,
2006; Sharifzadeh et al., 2012), and this finding is likely related

to a sex-related dysregulation in P450 aromatase (Steier et al.,
2002; Sathishkumar et al., 2012). In women with polycystic

ovary syndrome, which causes elevated androgen levels during
pregnancy, the placenta presents an abnormal uterine blood flow

as well as placentation with reduced endovascular trophoblast
invasion (Palomba et al., 2010, 2012, 2013). Interestingly,
placental tissues from these patients exhibit increased ERα

expression (Maliqueo et al., 2015). Therefore, abnormalities
observed in PCOS women could be attributed to estrogen
or androgen action. However, it is not clear whether these
alterations are directly associated with elevated androgen
levels, as PCOS mothers also exhibit elevated insulin levels
and a pro-inflammatory pattern (Sir-Petermann et al., 2007;
Palomba et al., 2014), which may also influence placental
function.

CONCLUSIONS

Adequate uterine perfusion is necessary to achieve successful
implantation. Moreover, placental vasculogenesis and
angiogenesis ensure optimal transfer of oxygen and nutrients
along with fetal detoxification. All these processes are essential
for an adequate fetal development. The available data clearly
note that sex steroids contribute to the modulation of uterine
blood flow through the regulation of uterine vessels and placental
vasculogenesis and angiogenesis, which involves controlling
trophoblast invasion and the remodeling of uterine arteries.
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