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The gastrointestinal (GI) tract is an electrically excitable organ system containing multiple

cell types, which coordinate electrical activity propagating through this tract. Disruption

in its normal electrophysiology is observed in a number of GI motility disorders. However,

this is not well characterized and the field of GI electrophysiology is much less developed

compared to the cardiac field. The aim of this article is to use the established knowledge

of cardiac electrophysiology to shed light on the mechanisms of electrical activation and

propagation along the GI tract, and how abnormalities in these processes lead to motility

disorders and suggest better treatment options based on this improved understanding.

In the first part of the article, the ionic contributions to the generation of GI slow wave

and the cardiac action potential (AP) are reviewed. Propagation of these electrical signals

can be described by the core conductor theory in both systems. However, specifically

for the GI tract, the following unique properties are observed: changes in slow wave

frequency along its length, periods of quiescence, synchronization in short distances and

desynchronization over long distances. These are best described by a coupled oscillator

theory. Other differences include the diminished role of gap junctions in mediating this

conduction in the GI tract compared to the heart. The electrophysiology of conditions

such as gastroesophageal reflux disease and gastroparesis, and functional problems

such as irritable bowel syndrome are discussed in detail, with reference to ion channel

abnormalities and potential therapeutic targets. A deeper understanding of the molecular

basis and physiological mechanisms underlying GI motility disorders will enable the

development of better diagnostic and therapeutic tools and the advancement of this

field.
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propagation
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INTRODUCTION

The heart is responsible for delivering oxygenated blood to, and
removing deoxygenated blood from, active respiring tissues in
the periphery. Its electrical and mechanical activity is tightly
regulated and further modulated by neuroendocrine signals.
By contrast, in the gastrointestinal (GI) tract, the stomach
initiates digestion and delivers gastric contents via the pylorus
to the small intestine in a regulated manner. The intestines
then further digest and absorb the contents. Both the heart and
the gastrointestinal (GI) tract are electrically excitable. Normal
mechanical functions of these organ systems depend on the
highly coordinated activity of this electrical excitation, whose
disruptions can lead to arrhythmias (Tse, 2015, 2016a,b,c; Chen
Z. et al., 2016; Choy et al., 2016; Tse et al., 2016a,b,c,e,f,g; Tse and
Yan, 2016).Whilst the electrophysiological properties of the heart
have been extensively studied, those of the GI tract are relatively
less well characterized. This is perhaps because arrhythmias in
this system is usually not life-threatening (O’Grady et al., 2014),
whereas those in the ventricles can cause sudden cardiac death
(Murakoshi and Aonuma, 2013). However, there is increasing
evidence that electrophysiological abnormalities play important
roles in GI motility disorders such as gastroesophageal reflux
disease (Shafik et al., 2005), achalasia (Faussone-Pellegrini and
Cortesini, 1985a; Goldblum et al., 1994), Allgrove syndrome
(Khelif et al., 2003), gastroparesis (O’Grady et al., 2012), pyloric
stenosis (Langer et al., 1995; Vanderwinden et al., 1996),
functional dyspepsia (Jung et al., 2012), idiopathic rapid gastric
emptying (Bharucha et al., 2011), unexplained nausea and
vomiting (Abell et al., 2009), mesenteric ischaemia (Irimia and
Wikswo, 2008), functional diarrhea (Dellon and Ringel, 2006), or
constipation (Camilleri, 2011), irritable bowel syndrome (Saito
et al., 2009), Hirschsprung disease (Yamataka et al., 1995),
chronic pseudo-obstruction (Feldstein et al., 2003), slow transit
constipation (Lyford et al., 2002), and colonic hypomotility
associated with anorectal malformations (Kenny et al., 1998).
These conditions cause significant morbidity in the population
and it is therefore important to understand their underlying
mechanisms for devising effective treatment. A comparison
between these systems may provide some insight for the GI
electrophysiologists and physicians. Thus, the aim of this article
is to examine the conduction pathways, the ionic currents
responsible for electrical activation of different cell types, and
mechanisms of their propagation in both the heart and the GI
tract. This is followed by a discussion on the clinical relevance
and molecular targets for future therapy.

SPECIALIZED CONDUCTION PATHWAYS

There are specialized conduction pathways responsible for
electrical conduction through the heart and the GI tract
(Figure 1; Veeraraghavan et al., 2014a). Pacemaker cells
are responsible for the spontaneous initiation of electrical
activity in both systems. In cardiac tissue, the dominant
pacemaker is the sinoatrial node, which is responsible
for initiating action potentials (APs) that spread along
the cardiac conduction system, reaching all parts of the

FIGURE 1 | Comparison between the cardiac and gastrointestinal

conduction pathways. ICC-MY: interstitial cells of Cajal in the myenteric

plexus, pacemaker cells of the GI tract. Broken arrows indicate that the ICC is

normally reset by the dominant pacemaker upstream that has the highest rate

of discharge.

myocardium. They first spread radially through the right
and left atria, converging on the atrioventricular (AV) node,
where conduction velocity (CV) is reduced. This brief delay
ensures atrial and ventricular systole occurs sequentially. The
APs then propagate along the Bundle of His, and then the
left and right bundle branches, activating the Purkinje fibers.
From there they propagate to the apex and then into the
ventricular myocardium. The SA node receives innervation
from both the sympathetic and parasympathetic nervous
systems, which exert positive and negative chronotropic effects,
respectively.

By contrast, the pacemaker region of the gastrointestinal
tract is the interstitial cells of Cajal (ICC) of the myenteric
plexus (ICC-MY) found in stomach, small intestine and colon,
generating slow wave activity that spread into the circular and
longitudinal muscle layers (Suzuki et al., 1986; Langton et al.,
1989; Ward et al., 1994; Huizinga et al., 1995; Dickens et al.,
1999). Interestingly, although ICC have been found in the
esophagus, very few of these are associated with the myenteric
plexus and therefore they have little role in pacemaker activity
(Faussone-Pellegrini and Cortesini, 1985b). Instead, they are
of the intramuscular subtype (ICC-IM) in close contact with
nerves and smooth muscles. Nevertheless, there is some evidence
to suggest that ICC-IM, in conjunction with PDGFRα-positive
fibroblast-like cells, together are responsible for electrical and
mechanical activation of the esophagus (Chen et al., 2013). In
the stomach, ICC-MY is located high up at the greater curvature.
The slow waves propagate radially in both the longitudinal and
circumferential directions and the main direction of propagation
is along the longitudinal direction toward the distal antrum
(Lammers et al., 2009). Interestingly, the slow wave does not
propagate from the stomach to the small intestine, suggesting
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either a loss of ICC (Wang et al., 2005) or electrical coupling
between these regions (Lammers et al., 1998). The latter is
unlikely because conduction of slow waves from the stomach
into the pylorus has been observed (Sanders and Vogalis, 1989;
Lammers et al., 2000; Wang et al., 2005). Thus, slow wave activity
of the stomach and small intestine occurs independently of each
other. This is consistent with the predominant role of the pylorus
in controlling the flow of contents out of the stomach rather than
conducting slow waves to the small intestine. Nevertheless, upon
relaxation of the pylorus, there is coordinated activity between
the stomach and small intestine, where synchronized propagation
of peristaltic activity in the duodenum occur after stomach
contractions. This coordination may involve stretch-activated
or neural activation mechanisms rather than direct electrical
coordination per se, as occurs in the heart for atrioventricular
delays. Peristalsis in the small intestine propagates from the
gastroduodenal junction toward the terminal ileum at a rate of
8–12 bpm, finally arriving at the jejunum (Christensen et al.,
1966). In the colon, slow waves are generated and conducted
throughout its length (Smith et al., 1987). ICC located within the
muscle layers (ICC-IM) have additional physiological functions.
These cells serve as a target for innervation, influencing GI
motility in response to neural inputs (Beckett et al., 2003, 2005;
Powley et al., 2008), set the restingmembrane potential of smooth
muscle cells by releasing the hyperpolarizing gasotransmitter,
carbon monoxide (Farrugia et al., 2003; Sha et al., 2007) and
mechanoreception (Won et al., 2005).

PACEMAKER ACTIVITY

Pacemaker activity in the heart produces rhythmic atrial and
ventricular contractions. By contrast, GI motility in the baseline
is regulated by slow wave activity generated by the ICC network,
but significant contractions are regulated by a complex interplay
between neurogenic and myogenic factors locally, and endocrine
signals systemically (Cheung and Wu, 2013). The GI tract
produces two types of motion: peristalsis, which are rhythmic
contractions that propel intraluminal contents and encourage
mixing, and segmentation, which are ring contractions that
divide the intraluminal contents but do not produce net
movement along the GI tract (Weisbrodt, 1981; Table 1). In the
human heart, the normal rate of the discharge of the SA node is
between 60 and 100 beats per min (bpm). Subsidiary pacemakers
discharge at slower rates and are normally reset by the SA node.
These include the AV node, which discharges at 40–60 bpm, and
the Purkinje system that discharges at 20–40 bpm. In the GI
tract, ICC-MY at the greater curvature of the stomach discharges
with a rate of 5–8 bpm with a rate of 5–8 bpm (Kelly and Code,
1971; Rhee et al., 2011; Cheng, 2015). Thus, ICC are organized
into a continuous network, such that most regions of the smooth
muscle in the small intestine are capable of generating pacemaker
activity. This network runs circumferentially and longitudinally
within the tunica muscularis of the GI tract. For the intestines,
the dominant pacemaker with the highest rate of discharge is the
duodenum, discharging at 12 bpm, with a decreasing frequency
along the length to 8 bpm in the ileum (Christensen et al., 1966;

Diamant and Bortoff, 1969; Szurszewski et al., 1970). There is
a conduction delay between proximal and distal sites, ensuring
coordinated contraction in this sequence for moving the luminal
contents along the GI tract. Loss of dominant pacemaker will
result in the takeover of subsidiary pacemakers in both the heart
and GI tract (Homma et al., 2004; Tse, 2015). In the GI tract,
three distinct population of cells are found: smooth muscle, ICC,
PDGFR-positive cells, which together constitute an integrated
united called the SIP syncytium (Sanders et al., 2006). It remains
to be elucidated whether smooth muscle or PDGFR-positive cells
are capable of taking over pacemaker activity in many GI motility
disorders where ICC are lost or absent.

Molecular mechanisms underlying cardiac and GI pacemaker
activity involve both voltage- and Ca2+-dependent processes
(Lakatta et al., 2006; Takaki et al., 2010). In the heart, the voltage-
dependent mechanism involves the funny current (If) (Baruscotti
et al., 2005) that has several unusual characteristics (DiFrancesco,
1993), including activation by hyperpolarization, permeability to
both Na+ and K+ ions with a small single channel conductance,
and modulation by cAMP. The Ca2+ mechanism involves
spontaneous Ca2+ release from the endoplasmic reticulum (ER)
(Vinogradova et al., 2005), activating the Na+−Ca2+ exchanger
(INCX). Some have contended that the one mechanism is more
important, entraining the other (Lakatta and DiFrancesco, 2009).
However, numerical studies suggest that both voltage- and Ca2+

mechanisms are synergistically coupled to each other, called
the coupled clock theory (Maltsev and Lakatta, 2013), a notion
that is supported by experimental studies (Yaniv et al., 2014).
Interestingly, transient receptor potential channels and store-
operated Ca2+ entry have been demonstrated in SA node cells,
suggesting that these channels may play a role in modulating
pacemaker activity in the heart (Ju et al., 2007).

By contrast, ICC-MY are the pacemaker cells of the GI
tract (Lees-Green et al., 2011). The maximum diastolic potential
is set mainly by the K+ channel called ether-a-go-go-related
(ERG) channel (Huizinga et al., 2004). Ca2+ release from
inositol 1,4,5-trisphosphate (IP3) receptor-operated stores is
followed by Ca2+ stimulated uptake by the mitochondria
and back to the ER (Suzuki et al., 2000; Ward et al., 2000,
2003). Depletion of intracellular Ca2+ activates the Ca2+-
inhibited, non-selective cationic conductance (Koh et al., 2002).
The identity of this channel may be the transient receptor
potential canonical 4 or related channels (Walker et al.,
2002; Jin et al., 2009). Other currents, such as the voltage-
independent, dihydropyridine-insensitive Ca2+ conductances
and Ca2+-activated Cl− conductance (called Ano1) (Gomez-
Pinilla et al., 2009; Zhu et al., 2009), may also contribute to
pacemaker activity (Lee et al., 2007). This pacemaker current
depolarization then activates the T-type Ca2+ channels (Lee
et al., 2007). Furthermore, experimental evidence suggests that
tetrodotoxin-resistant Na+ channels play a role in slow wave
generation, at least in humans (Strege et al., 2003). The
Na+ channels found in ICC are encoded by SCN5A, bearing
similar electrophysiological properties to the cardiac isoform.
Interestingly, these channels are likely to have a role in setting
the resting membrane potential and modulate the rate of
upstroke and frequency of the slow waves, rather than directing
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TABLE 1 | Conditions caused by abnormal gastrointestinal electrophysiology and their proposed mechanisms.

Condition Electrophysiological Basis References

Gastroesophageal reflux disease ICC loss Shafik et al., 2005

Achalasia ICC loss Khelif et al., 2003; Chen et al., 2013

Gastroparesis ICC loss O’Grady et al., 2012

Pyloric stenosis ICC loss; abnormal excitation of the gastric wall muscle; abnormal

propagation through the pyloric muscle

Watanuki et al., 1969; Langer et al.,

1995; Vanderwinden et al., 1996

Functional dyspepsia Na+ channel or other ion channel dysfunction Jung et al., 2012

Idiopathic rapid gastric emptying ? Ion channel dysfunction Bharucha et al., 2011

Unexplained nausea and vomiting ? Ion channel dysfunction; recurrent arrhythmias of abnormal wave

propagation and higher wave frequency in the distal stomach

Abell et al., 2009

Mesenteric ischaemia Ischaemia causes intestinal arrhythmia Seidel et al., 1999a,b Irimia and Wikswo,

2008

Functional diarrhea ? ICC over activity; ? ion channel dysfunction Dellon and Ringel, 2006

Function constipation ICC loss; ? ion channel dysfunction Camilleri, 2011

Irritable bowel syndrome ICC loss; altered ICC network; electrophysiological remodeling; Na+

channel mutations

Saito et al., 2009; Tana et al., 2010;

Eshraghian and Eshraghian, 2011

Tana et al., 2010

Hirschsprung disease ICC loss Yamataka et al., 1995

Chronic pseudo-obstruction ICC loss; altered ICC network Feldstein et al., 2003; Struijs et al., 2008

Slow transit constipation ICC loss Lyford et al., 2002

Colonic hypomotility associated with anorectal

malformations

Abnormal ICC Kenny et al., 1998

That non-electrophysiological mechanisms are not included here.

contributing to the pacemaker current per se (Strege et al.,
2003). The repolarization phase of the slow wave involves several
currents, mediated by Ano1 described above (Zhu et al., 2009)
and K+ currents mediated by the ERG (McKay et al., 2006), Big
K+ (Zhu and Huizinga, 2008), Ca2+-activated K+ (Fujita et al.,
2001), and rectifier channels (Hatton et al., 2001; Huizinga et al.,
2004).

IONIC CONTRIBUTIONS OF THE CARDIAC
ACTION POTENTIAL AND GI SLOW WAVE

Both the cardiac AP and the GI slow wave result from the
sequential opening and closing of ion channels that are located
in the plasma membrane (Roden et al., 2002). In both systems,
differences in the expression and properties of ion channels are
responsible for the heterogeneities in signal waveforms found
in different cell types and ensures its normal unidirectional
spread through the respective conduction pathways (Figure 2;
Nerbonne and Guo, 2002; van Helden et al., 2010; Tse and
Yeo, 2015). In the heart, the different cell types are pacemaker
cells (sinoatrial and atrioventricular nodes) and cardiomyocytes
(epicardium, myocardium and endocardium). In the GI tract,
three distinct population of cells are found: smooth muscle, ICC,
PDGFR-positive cells, as discussed above (Sanders et al., 2006).

Generation of the APs or slow waves is dependent upon
voltage-gated conductances, and their durations are determined
by the balance between inward and outward currents (Figure 2).
APs of cardiomyocytes have a fast upstroke followed by a

spike and plateau morphology, and then delayed repolarization
back to the resting membrane potential. Nodal cells have a
pacemaker current leading to spontaneous depolarization before
the upstroke of the AP.By contrast, in the GI tract, electric activity
produced by a gastric antral cell has a triangular morphology,
with a fast upstroke followed by rapid repolarization. Smooth
muscle in small intestine and colon generate slow waves, which
have two phases: an initial depolarizing phase, the pacemaker
potential, generated by the ICC-MY (Dickens et al., 1999). The
second phase is produced by ICC-IM within the smooth muscle
(Dickens et al., 2001). Some cells are capable of producing
regenerative Ca2+-mediated spikes superimposed upon the slow
wave (Suzuki and Hirst, 1999; Lammers and Slack, 2001).
The durations of both cardiac APs and GI slow waves can
decrease with increasing pacing rates. In cardiac tissue, this was
originally described by the restitution hypothesis, which related
AP duration to the previous diastolic interval (DI) (Nolasco
and Dahlen, 1968). Increased restitution gradient can lead to
the formation of APD alternans, wave break and ventricular
arrhythmias (Hsieh et al., 2009, 2015; Tse et al., 2016c,e).
However, in the GI smooth muscle cells, the restitution curve
is flat (Aliev et al., 2000) and therefore breaks in the slow wave
conduction are unlikely to be attributed to steep APD restitution.

Conduction of the electrical excitation through the cardiac
myocardium and along the GI tract involve mechanisms
common to both systems, but additional differences are observed
(Saez et al., 2003; van Helden et al., 2010; Veeraraghavan et al.,
2014d, 2015; Tse and Yeo, 2015). In the heart, action potential
conduction was originally described by the cable theory, positing
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FIGURE 2 | Different waveforms of the cardiac AP and GI slow wave in

different cell types.

that the myocardium functions as a syncytium coupled by
resistive pathways with capacitances due to the phospholipid
bilayer of the cell membranes (Weidmann, 1952). The related
core conductor equation makes no assumptions on the structure
of the cell membrane. Subsequent experiments revealed that the
myocardium consisted of individual cardiomyocytes, which are
coupled to each other via nexuses termed gap junctions (Dewey
and Barr, 1962; Barr et al., 1965). The latter are hexagonal
proteins originally described in the Mauthner cell synapses in
goldfish brains (Robertson, 1963). They are non-specific pores
that allow the spread of ions and molecules up to 1 kDa in
molecular mass (Harris, 2001; Weber et al., 2004). Each gap
junction consists of two hemi-channels termed connexons, with
each connexon made of six connexin (Cx) subunits. Over 20 Cx
isoforms have been identified thus far. In cardiac tissue, Cx43 is
expressed in the atria and ventricles (Koval et al., 2014). Cx40 are
expressed in the atria and His-Purkinje system and responsible
for increasing electrical coupling and CV of the APs in this area
(Schrickel et al., 2009). Cx45 alone is sufficient for maintaining

electrical conduction through the atrioventricular node, and is
also found in the ventricles (Schrickel et al., 2009). Cx30.2 has the
lowest unitary conductance out of the cardiac connexins, and its
expression in atrioventricular node is responsible for decreasing
the CV of AP propagation through this node (Kreuzberg et al.,
2006). Other isoforms of Cx, such as 30, 37, and 46 are also
found throughout the heart, the reader is referred to this article
here for additional information on their respective functions
(Verheule and Kaese, 2013). Recent studies have proposed the
role of ephaptic coupling in mediating cardiac conduction (Rhett
and Gourdie, 2012; Lin and Keener, 2013; Rhett et al., 2013;
Veeraraghavan et al., 2014d, 2015, 2014b,c; George et al., 2015).

In the GI tract, two schools of thought were proposed
to describe the conduction of slow waves through the GI
tract, the core conductor and the coupled oscillator theories
(Publicover and Sanders, 1989; Daniel et al., 1994). Like in
the heart, the core conductor theory was used to describe
electrical propagation along the GI tract, but this theory alone
does not fully explain the differing waveforms and frequencies
as well as periods of quiescence observed for slow wave
propagation. These can be explained by the oscillator model, a
clock governs the frequency and a transformer determines the
morphology of the waveform (Bardakjian and Diamant, 1994).
Two popular models are the Hodgkin-Huxley and Fitzhugh-
Nagumo oscillators, incorporating features of both oscillator
and conductor theories (Aliev et al., 2000). They accurately
describing the physiology of slow wave propagation: changes in
frequency along the GI tract, synchronization in short distances
and desynchronization over long distances (Aliev et al., 2000;
Lin et al., 2006). Recent mapping experiments demonstrated
that the pyloric junction is the dominant pacemaker, initiating
slow waves that propagate through the small intestine, with
decreasing CV and spontaneous conduction blocks along its
length (Lammers and Stephen, 2008). Gap junctions may be
responsible for facilitating the spread of electrical activity within
the ICC network and between different cell types (Daniel et al.,
1998; Daniel and Wang, 1999; Seki and Komuro, 2001; Cousins
et al., 2003; Daniel, 2004; Hanani et al., 2005). They regulate
many aspects of GI physiology, including motility, stomach acid
secretion, mucosal barrier function and mediate oral tolerance
by antigen transfer (Iino et al., 2001; Ey et al., 2009; Fukushi
et al., 2014; Mazzini et al., 2014). Thus, Cx26, 32, and 43 have
been found in the stomach, predominantly in the antrum and
greater curvature, but rarely in the fundus and pylorus (Maes
et al., 2015). Experiments in mouse intestine showed that they
may not be necessary for conduction of pacing activity from the
ICC to circular smooth muscle (Cho and Daniel, 2005; Daniel
et al., 2007). However, gap junction blocker carbonaloxone
did decrease the amplitude, frequency and velocity of circular
smooth muscle contraction and within the circular smooth
muscle network (Schultz et al., 2003), suggesting a modulatory
role of gap junctions. However, another blocker, heptanol, did
not affect these parameters (Parsons and Huizinga, 2015). Other
experiments have shown that gap junctions are not needed
for electrical coupling, but instead an electric field mechanism,
i.e., ephaptic coupling, is sufficient (Vigmond and Bardakjian,
1995; Sperelakis and McConnell, 2002). It is thus likely that
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gap junctions play a diminished role in electrical conduction
through the GI tract and play more important roles in metabolic
regulation, as opposed to electrical coupling in cardiac tissue.
Moreover, anisotropic conduction is more important in the heart
compared to the GI tract (Spach, 1999; Lammers et al., 2002).
In cardiac tissue, CV is much more rapid in the longitudinal
compared to the transverse direction. In the gut, the presence
of an ICC network means that propagation does not differ
significantly in the longitudinal and circumferential directions
(Huizinga et al., 1995). In one study, CV was more rapid in
the circular compared to longitudinal direction (Lammers et al.,
2002), although no significant anisotropy was observed in a
different study (Gao et al., 2013). Exacerbations in anisotropic
conduction can lead to arrhythmias in both the heart and the GI
tract (Allessie et al., 1989; Angeli et al., 2013).

Electrical excitation of cardiac muscle and GI smooth muscle
cells induce mechanical contractions via excitation-contraction
coupling. In the heart, activation of cardiac muscle elicits an AP,
during which Ca2+ entry through L-type Ca2+ channels provides
the necessary current for transverse tubular depolarization and
subsequent Ca2+-induced Ca2+ release from the sarcoplasmic
reticulum via the ryanodine receptors (Ozaki et al., 1991). By
contrast, phasic contractions in the GI tract involve coordination
within the SIP syncytium (Sanders et al., 2014). GI smooth
muscle cells receive direct depolarizing current from the ICC
for L-type Ca2+ channel activation. Its distension also causes
depolarization by stretch-sensitive ion channels (Bülbring, 1955;
Thorneloe and Nelson, 2005; Kraichely and Farrugia, 2007).
Moreover, the migrating myoelectric complex is a band of
excitation that travels slowly across the stomach and intestine,
and within this band, slow wave-driven peristalsis occurs (Hall
et al., 1982; Sarna et al., 1983; Siegle and Ehrlein, 1987).

STUDYING CARDIAC AND GI
ELECTROPHYSIOLOGY IN HUMANS AND
ANIMAL MODELS

In clinical practice, it is possible to record electrical activity
of the heart and the stomach from the skin surface non-
invasively using electrocardiography and electrogastrography.
Magnetic resonance imaging is an excellent non-invasive method
for characterization of structural and metabolic abnormalities in
both the cardiovascular and gastrointestinal systems (Leung et al.,
2004; Vassiliou et al., 2014; Chan et al., 2015; Tse et al., 2015a,b).
Recent developments have focused on the measurement of
magnetic signals for studying electrical characteristics in these
organs. Thus, magnetocardiography can be used to diagnose and
predict the risk of cardiac arrhythmias (Steinhoff et al., 2004;
Sato et al., 2012; Kwong et al., 2013; Ito et al., 2014; Yoshida
et al., 2015). Similarly, magnetogastrography can be used to study
the electrophysiological basis of GI motility disorders (Bradshaw
et al., 2016).

Many physiological findings described above have been
derived from experiments conducted in animal models, but
their limitations must be recognized. Significant differences in
physiology are observed between different species, largely due

to isometric scaling. For example, heart rate in humans are
between 60 and 100 bpm but occurs at 600 bpm in mice (Tse
et al., 2016c). Similarly, for the gastrointestinal tract, peristalsis
occurs at a frequency of 8–12 bpm in humans but 30–40 bpm in
mice (Christensen et al., 1966; Huizinga et al., 1995). There are
also differences in the cellular electrophysiology. Thus, atrial and
ventricular APs in mouse hearts have a triangular morphology
without the characteristic plateau phase seen in humans and
other species such as guinea pigs (Nerbonne and Kass, 2005;
Tse et al., 2012, 2016c,d,i; Osadchii, 2014a,b, 2016). In the GI
tract, the morphology of gastric slow waves between mouse
and humans is largely similar, and in the small intestine and
colon, slow waves with superimposed spikes are observed in both
species (Sanders et al., 2014), meaning that results from mouse
studies are highly translatable to human GI electrophysiology.
Animal models are useful as a variety of experimental recording
techniques can be used. Thus, cardiac electrical recordings can
be obtained from single cells using microelectrode techniques
intracellularly (Sano et al., 1959; Allessie et al., 1976), or from
the intact organ by extracellular recording techniques such as
the monophasic action potential or bipolar electrogram methods
(Vigmond and Leon, 1999; Vigmond, 2005; Vigmond et al.,
2009; Tse et al., 2016h), which are techniques used routinely in
cardiac electrophysiological studies (Yoshida et al., 2012). Optical
mapping can provide high resolution of electrical activation
patterns and used to determine depolarization or repolarization
abnormalities locally in both organ systems (Hsieh et al., 2009;
O’Grady et al., 2012; Angeli et al., 2013).

CLINICAL RELEVANCE: MOTILITY
DISORDERS AND TARGETS FOR FUTURE
THERAPY

A number of diseases can arise from disturbances in GI
electrophysiology, which is summarized in Table 1. Starting from
the top of the GI tract, gastroesophageal reflux disease occurs
when the reflux of gastric contents causes troublesome symptoms
and has been associated with a loss of ICC in the esophagogastric
junction (Shafik et al., 2005). Achalasia, defined as absence
of esophageal peristalsis and impaired relaxation of the lower
esophageal sphincter, has been attributed to a loss of ICC-IM
in the lower esophagus (Chen et al., 2013). Allgrove syndrome
is a rare autosomal recessive disorder characterized by a triad
of achalasia, alacrima and Addsonian features. The underlying
pathology involves lymphocytic infiltration of myenteric plexus
and may involve loss of ICC-MY or ICC-IM (Khelif et al.,
2003). Gastroparesis, i.e., paralysis of the stomach muscle, is
characterized by delayed emptying and caused by abnormal
slow wave initiation secondary to ICC-MY loss (O’Grady et al.,
2012). Pyloric stenosis, which affects infants, is characterized
by hyperplasia and hypertrophy of the pyloric muscle. As far
back as 1969, it was suggested that the “hypertrophy” of the
pylorus may be caused by spasm of the pyloric muscle, which
was associated with abnormal excitation of the gastric wall muscle
or disturbance of propagation in the pyloric portion (Watanuki
et al., 1969). Reduced number of ICC has also been implicated
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in this disorder (Langer et al., 1995; Vanderwinden et al., 1996).
Functional dyspepsia is persistent epigastric pain and fullness
and early satiety without an organic cause. Some proposed
mechanisms are abnormal gastricmotor function, altered visceral
sensitivity and Helicobacter pylori infection. Loss-of-function in
the SCN5A gene encoding for the α-subunit of the Na+ channel is
known to cause Brugada syndrome, a primarily right ventricular
arrhythmogenic disorder (Brugada and Brugada, 1992). A recent
study of patients with either Brugada syndrome or functional
dyspepsia revealed that some Brugada patients with SCN5A
mutations have functional dyspepsia (Jung et al., 2012). Thus,
the role of abnormalities in Na+ and other channels in functional
dyspepsia awaits further clarification.

By contrast, idiopathic rapid gastric emptying could involve
increased gastric contractility or reduced resistance to gastric
outflow at the pylorus (Bharucha et al., 2011). Its mechanism is
uncertain but could conceivably involve ion channel dysfunction,
such as stretch-activated channels involved in mechanosensation
or any of the ion channels mediating gastric slow wave initiation
and propagation. In unexplained nausea and vomiting, both
neuropathic changes and abnormal gastric electrophysiology
have been detected (Abell et al., 2009). Gastric serosal
electrophysiological study using serosal electrogastrographic
recordings demonstrated recurrent arrhythmias of abnormal
wave propagation and higher frequency in the distal stomach.
The precise electrophysiological mechanism of arrhythmia, such
as focal activity or reentry, will need to be elucidated. Like
idiopathic rapid gastric emptying and unexplained nausea and
vomiting, arrhythmogenesis is also observed in mesenteric
ischaemia, but this is a consequence of rather than the cause
(Seidel et al., 1999b). The problem of this condition is that
it has a high mortality, due to the disease process itself and
the fact that diagnosis is often delayed because of non-specific
symptoms. Thus, there is a need of developing means to
detect ischaemia early. A highly sensitive magnetometer, such as
superconducting quantum interference device (SQUID), could
detect a decrease in basic electrical rhythm frequency, which
is suggestive of ischaemia (Seidel et al., 1999a). Indeed, a
recent study used magnetoenterographic imaging with a SQUID
biomagnetometer to measure spatiotemporal return map in
pigs. Before induction of ischemia, no intestinal arrhythmias
were observed, and the spatiotemporal return map perimeter
was relatively constant in time. However, after mesenteric
artery ligation, arrhythmias were detected, and associated
with spatiotemporal return map perimeter showing statistically
significant variations in information dimensionality (Irimia and
Wikswo, 2008). However, the need to use a magnetically shielded
room and high costs have prohibited the use of SQUID in clinical
practice.

IBS is a chronic relapsing and remitting functional disorder
of the GI tract. It consists of a triad of altered bowel
habits, bloating, and abdominal pain without an organic
cause (Sinagra et al., 2016). It can take on a diarrhea-
or constipation- predominant phenotype, which must be
distinguished from functional diarrhea (Dellon and Ringel,
2006) or constipation, respectively (Dellon and Ringel, 2006;
Camilleri, 2011; Cheung et al., 2013). Loss of ICC has been

suggested as a pathophysiological mechanism underlying this
condition (Eshraghian and Eshraghian, 2011). Mutations in Na+

channels have been implicated in IBS (Saito et al., 2009). There
is increasing evidence that altered microbiota profile in the
intestines may be responsible for the symptoms of irritable bowel
syndrome (Tana et al., 2010; Ng et al., 2013), and may increase
the activity of intestinal Cl− channels (Chang and Talley, 2010).
Inflammatory changes in IBS (Der et al., 2000) can alter ICC
network and result in electrophysiological remodeling (Akbarali
et al., 2010). Hyperexcitability of nociceptive dorsal root ganglia
could explain the abdominal pain (Beyak and Vanner, 2005).
Finally, the following disorders involve reduced motion of the
colon: Hirschsprung disease (Yamataka et al., 1995), chronic
pseudo-obstruction (Feldstein et al., 2003; Struijs et al., 2008),
slow transit constipation (Lyford et al., 2002) and colonic
hypomotility associated with anorectal malformations (Kenny
et al., 1998). In each of these condition, loss or abnormal ICCs
has been demonstrated.

How can elucidation of the electrophysiological mechanisms
underlying GI motility disorders enable the development of
better treatment? Ion channels have been targets for anti-
arrhythmic therapy in the heart, and have enormous potential
to be targeted for the management of GI motility disorders.
For example, lubiprostone is an agonist of the chloride channel
protein 2, which promotes the Cl− efflux out of intestinal cells
into the lumen, for the management of functional constipation or
constipation-predominant IBS (Camilleri et al., 2006; Andresen
et al., 2007). Crofelemer, by contrast, inhibits both chloride
channel protein 2 and also the cystic fibrosis transmembrane
regulator channel to reduce Cl− efflux. It has been licensed for
HIV-associated diarrhea (Yeo et al., 2013), and has therapeutic
potential in conditions such as functional diarrhea or diarrhea-
predominant IBS (Manabe et al., 2010). TRPCs, which mediate
nociception, may be useful targets for managing abdominal pain
symptoms in IBS (Hicks, 2006). Analogous to bradyarrhythmias
such as sick sinus syndrome or atrioventricular blocks in
the heart, pharmacotherapy or pacemakers can be used to
manage GI hypomotility disorders, depending on the disease
severity. In gastroparesis, dopamine receptor antagonists with
prokinetic effects such as metoclopramide and domperidone,
or macrolide antibiotics, can be used. In more severe cases,
pacemaker implantation for gastric electrical stimulation is
an effective treatment with improvements in gastric emptying
rates (Abrahamsson, 2007). Colonic electrical stimulation has
demonstrated efficacy of increasing colon transit time in animal
studies, and is a potential treatment option for chronic functional
constipation or constipation-predominant IBS refractory to
medical therapy in humans (Chen S. et al., 2016). For fast
rhythms in the heart, anti-tachycardia pacing is a treatment
option (Aonuma et al., 1985); whether this could also be
useful in gastrointestinal tachyarrhythmias remains to be
elucidated.

In conclusion, most GI motility disorders have an
electrophysiological basis, and ion channel dysfunction is
increasingly recognized as potential causes. GI electrophysiology
is a fascinating subject with much to be learnt. A
detailed understanding of the complex spatiotemporal
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dynamics of GI excitation will enable the development
of novel therapy for managing GI motility disorders
effectively.
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