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Bayés syndrome is an under-recognized clinical condition characterized by inter-atrial

block (IAB). This is defined electrocardiographically as P-wave duration > 120ms and

can be categorized into first, second and third degree IAB. It can be caused by

inflammatory conditions such as systemic sclerosis and rheumatoid arthritis, abnormal

protein deposition in cardiac amyloidosis, or neoplastic processes invading the inter-atrial

conduction system, such as primary cardiac lymphoma. It may arise transiently during

volume overload, autonomic dysfunction or electrolyte disturbances from vomiting. In

other patients without an obvious cause, the predisposing factors are diabetes mellitus,

hypertensive heart disease, and hypercholesterolemia. IAB has a strong association

with atrial arrhythmogenesis, left atrial enlargement (LAE), and electro-mechanical

discordance, increasing the risk of cerebrovascular accidents as well as myocardial and

mesenteric ischemia. The aim of this review article is to synthesize experimental evidence

on the pathogenesis of IAB and its underlying molecular mechanisms. Current medical

therapies include anti-fibrotic, anti-arrhythmic and anti-coagulation agents, whereas

interventional options include atrial resynchronization therapy by single or multisite

pacing. Future studies will be needed to elucidate the significance of the link between IAB

and atrial tachyarrhythmias in patients with different underlying etiologies and optimize

the management options in these populations.

Keywords: Bayés syndrome, inter-atrial block, intra-atrial block, conduction, electrophysiological remodeling,

structural remodeling

INTRODUCTION

The first case of inter-atrial block (IAB) was first described by Bachmann (1941), who recognized
the significance of P-wave splitting on the ECG, some 25 years after he described the anatomy
of Bachmann’s bundle (Bachmann, 1916). Dr Bayés de Luna was the first who provided a clear
description of atrial conduction block in 1979, classifying them into either inter- and intra-atrial
(Bayés de Luna, 1979). In recognition of his numerous contributions to the understanding of IAB
(Bayes de Luna et al., 1985), this disease was later named Bayés syndrome (Conde and Baranchuk,
2014).

The cardiac conduction system starts at the sinoatrial node, which is the pacemaker responsible
for initiating action potentials (APs) that are conducted through the right atrium via three distinct
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inter-nodal pathways to the atrioventricular node. These are the
anterior, middle (Wenckebach) and posterior (Thorel) pathways
(Figure 1; Conde et al., 2015). Inter-atrial conduction from the
right to left atrium occurs most frequently along Bachmann’s
bundle, which branches from the anterior internodal pathway
(James, 1963; Racker, 1989), but it can also pass through the
coronary sinus or the fossa ovalis (Tapanainen et al., 2009).

IAB is caused by impaired conduction along Bachmann’s
bundle. Two definitions of IAB have been proposed. The
classification adopted in the consensus report divides it into
either partial (P wave duration > 120ms) or advanced (P wave
duration > 120ms with biphasic morphology in the inferior
leads; Bayés de Luna, 1979). Alternatively, similar to sinoatrial or
atrioventricular block, it can be divided into first (partial), second
(first degree with intermittent conduction through Bachmann’s
bundle) or third degree (advanced; Figure 2; Bayes de Luna
et al., 2012; Chhabra et al., 2014). Partial or first degree IAB is
characterized by prolonged P wave duration of >120 ms, with
bifid (notching) with dome-and-spike morphology on the ECG.
The definition of a normal P-wave duration is a contentious issue
because 120ms has been considered by some clinicians to be
normal, yet the upper limit was defined by the World Health
Organization and the International Society and Federation of
Cardiology Task Force to be 110ms (Willems et al., 1985). This
may arise from difficulty in accurately measuring the P-wave
duration (Baranchuk et al., 2016), which is in part due to baseline
noise (Magnani et al., 2010). Intra- and inter-observer variability
also contributes to inconsistent reported values (Dilaveris et al.,
1999). Nevertheless, for first degree or partial IAB, a recent
consensus report agreed on the definition of P-wave duration >

120ms (Bayes de Luna et al., 2012). This is in keeping with a
previous study demonstrating the modal P-wave duration to be
120ms in first-degree IAB (Ariyarajah et al., 2006b).

In second degree IAB, the P-wave shows an initial invariant
component but a second component with varying morphology
within the same ECG. This is commonly seen in atrial aberrancy
(Chung, 1970), with concealed atrial conduction from post-
ectopic inhibition (Chung’s phenomenon; Chung and Chung,
1972). Bachmann’s bundle has a long effective refractory period
(ERP; Vollmann et al., 2005), during which Na+ channels
cannot be reactivated. Therefore, a premature AP will not be
able to pass through this bundle, but has to take another and
potentially longer path. Second degree IAB can occur in an
absence of a premature atrial beat. A limitation of the definition
of second degree IAB is that to diagnose intermittent conduction
through Bachmann’s bundle, a constant interval between two
P-waves is needed. If this interval is not constant, then it is
possible that variable morphologies can be explained by APs with
different initiation sites, for example, opposite sides of the crista
terminalis.

In advanced or third degree IAB, there is a biphasic P-wave
in the inferior leads with a negative terminal deflection below
the isoelectric line. As conduction via Bachmann’s bundle is
completely blocked, the AP wave must pass through another
pathway, such as the coronary sinus. This may result in
retrograde activation of the left atrium in the caudo-cranial
direction, producing a negative terminal deflection (Bayes de

Luna et al., 1988; Cosio et al., 2004). However, if the wave passes
through the rim of the fossa ovalis, then retrograde activation
may not necessarily occur.

Advanced IAB is clinically important as there is a high chance
of developing supraventricular tachycardia if it is left untreated
(Bayes de Luna et al., 1999). Left atrial enlargement (LAE) is
often associated with, but should be distinguished from, IAB
(Mehrzad and Spodick, 2014). LAE leads to prolonged inter-atrial
conduction times because of increased stretch and lengthening
of Bachmann’s bundle (Boineau, 2005). This delay is due to
increased distance of conduction rather than block in the bundle
per se. In the inferior leads, there are biphasic P-waves but
without the terminal negative deflections seen in third degree
IAB. LAE can be diagnosed on the ECG by a biphasic P-wave on
V1 together with an area under the curve for the second phase
<40mm.ms (Chhabra et al., 2014).

The prevalence of IAB is age-dependent, increasing from
5.4% at <20 years old to 60% at >50 (Jairath and Spodick,
2001; Asad and Spodick, 2003; Ariyarajah et al., 2005; Gialafos
et al., 2007; Martinez-Selles et al., 2016b). This is likely
the result of aging-related fibrosis, which would result in
impaired AP conduction through the atria (Gramley et al.,
2009; Fleg and Strait, 2012). The risk factors for developing
IAB are coronary artery disease, hypertension, diabetes mellitus
and hypercholesterolemia (Figure 3; Ariyarajah et al., 2006a).
IAB can be caused by structural defects of the conducting
pathway, such as atrial septal defect (Thilen et al., 2007)
or aneurysm (Okutucu et al., 2010), or infiltration of the
bundle from cardiac lymphoma (Engelen et al., 2005; Peyrou
et al., 2013) or amyloidosis (Rocken et al., 2002). Alternatively,
inflammation can induce cardiac structural remodeling, which
can occur in hypertrophic cardiomyopathy (Szili-Torok et al.,
2014) or systemic inflammatory diseases such as scleroderma
and rheumatoid arthritis (Mizuno et al., 1999; Acar et al.,
2009). Transient IAB may be related to autonomic dysfunction,
increased atrial strain or electrolyte abnormalities. For example,
it was observed in decompensated heart failure with increased
atrial strain from volume overload, which disappeared after its
resolution using diuretic therapy (Song et al., 2002; Proietti
et al., 2012), or hemodialysis patients with vomiting (Enriquez
et al., 2015). In terms of disease progression, it takes around
66 months to progress from a normal P-wave duration to
advanced IAB (Ariyarajah et al., 2007b). IAB is important
because of increased risks of atrial arrhythmias (tachycardia,
flutter, fibrillation) complicated by LAE and electro-mechanical
discordance (Ariyarajah et al., 2007a). This predisposes to
increased thrombosis in obstructive sleep apnea (Can et al.,
2009; Cagirci et al., 2011; Maeno et al., 2013) and to myocardial
ischemia (Myrianthefs et al., 1991), cerebral vascular accidents
(Lorbar et al., 2005), and mesenteric ischemia (Chhabra et al.,
2012).

IAB can be managed with pharmacological therapy, such
as angiotensin-converting enzyme (ACE) inhibitors, which
can delay the progression from first degree to third degree
IAB (Ariyarajah et al., 2007b). It can also be managed by
interventional procedures, such as multi-site or single site
pacing at the triangle of Koch or Bachmann’s bundle. It is
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FIGURE 1 | Conduction of action potentials from the sinoatrial node across the right atrium to the atrioventricular node occurs via three inter-nodal
tracts. Conduction from the right atrium to the left atrium occurs via Bachmann’s bundle.

unclear whether there is any benefit in early treatment. Atrial
resynchronization therapy can be used to correct for left-sided
atrioventricular dyssynchrony arising from IAB (Daubert et al.,
2004).

ELECTROPHYSIOLOGICAL MECHANISMS
OF BAYÉS SYNDROME

To understand the electrophysiological mechanisms of IAB and
how it increases atrial arrhythmic risk, the determinants of AP
conduction through the myocardium must first be considered
(Kléber and Rudy, 2004; Tse and Yeo, 2015; Tse et al., 2016b).
This can be described by the core conduction theory (Barr
et al., 2003). Conduction velocity (CV) depends on both passive
and active electrical properties. Passive properties refer to
the resistive and capacitive components and the architecture
of the myocardium. They include the axial resistance (ri)
of both the myoplasm (Thomas et al., 2003) and the gap
junctions between cardiomyocytes (Rohr et al., 1998; Chen
et al., 2007), resistance of the extracellular space (ro), and the
membrane capacitance (Cm). Active membrane properties refer
to the voltage-gated ionic conductances: the most important
conductance is that of Na+ channels, which mediates INa
and determine the AP upstroke. Reduced CV can arise from
increased ri, ro or Cm, decreased maximum upstroke velocity
(dV/dtmax, from reduced Na+ current density, Nattel, 2008;
Tse et al., 2016g) or decreased myocardial excitability given by
1/(Threshold Potential–Resting Membrane Potential). Cardiac
fibrosis can decrease CV by the following mechanisms: reduced
cardiomyocyte-cardiomyocyte coupling, which increases ri, or
increased fibroblast-cardiomyocyte coupling, which increases
Cm (Tse and Yeo, 2015). Moreover, fibroblast-cardiomyocyte
coupling can depolarize cardiomyocytes (Rohr, 2012; Kohl and
Gourdie, 2014; Thomsen and Calloe, 2016), leading to Na+

channel inactivation and reduced dV/dtmax. It is increasingly
recognized that passive and active properties are not independent
of each other, since gap junctions and Na+ channels co-localize
in the connexome, and their close proximity to each other
could enable ephaptic conduction (Rhett and Gourdie, 2012;
Veeraraghavan et al., 2012, 2014a,b,c, 2015; Rhett et al., 2013;
George et al., 2015). Increased risk of arrhythmogenesis by either
circus-type or spiral wave reentry can be explained by a reduction
in excitation wavelength (λ) given by CV × ERP (Wiener and
Rosenblueth, 1946; Smeets et al., 1986; Vaidya et al., 1999; Tse,
2015; Tse et al., 2016f, in press). Selective atrial fibrosis could
increase the heterogeneity of conduction by allowing micro-
reentry to take place in smaller areas in atrial fibrosis (Spach and
Josephson, 1994; Verheule et al., 2004).

Inter-Atrial Block Can Arise from Abnormal
Function or Expression of Sodium
Channels and Gap Junctions
The conditions predisposing or causing IAB can affect any of
these parameters. Animals have been extensively used to study
cardiac arrhythmogenesis in a number of clinical conditions
because of their amenability to genetic and pharmacological
manipulation (Chen et al., in press; Choy et al., 2016).
In these systems, electrical activity can be recorded using
different techniques such as monophasic action potential and
bipolar electrogram methods, optical mapping and surface
electrocardiography (Vigmond and Leon, 1999; van Rijen
et al., 2001; Vigmond, 2005; Vigmond et al., 2009; Tse et al.,
2016c,h). Although few mouse models have been generated
specifically for studying IAB, experiments in different systems
have increased our understanding on themolecular determinants
of AP conduction (Tse et al., 2012, 2016d,e,i; George et al.,
2015; Veeraraghavan et al., 2015) and how abnormalities in
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FIGURE 2 | Normal inter-atrial conduction (A), partial (B), and advanced
(C) inter-atrial block (IAB), with distinct electrocardiographic findings.
IAB should be distinguished from left atrial enlargement (LAE) (D), where there

is conduction delay from lengthening of Bachmann’s bundle in the absence of

block.

ion channels or cardiac remodeling lead to intra- or inter-atrial
conduction defects (Figure 4).

Conduction between successive cardiomyocytes occurs via
gap junctions. Each gap junction consists of two connexons,
each of which is a hexamer of proteins called connexins (Cx).
Cx40 and 43 are the isoforms expressed in the atria (Beyer et al.,
1987; Gourdie et al., 1993a,b). Cx40−/− mice showed intra-atrial
conduction delay (Hagendorff et al., 1999; Verheule et al., 1999).
Mice with cardiomyocyte-directed expression of CREM-Ib1C-
X, an isoform of transcription factor CREM (Kirchhof et al.,
2013), showed evidence of fibrosis, atrial dilatation and IAB,
associated with downregulation of Cx40 and ryanodine receptor
2 (RyR2)-mediated Ca2+ leak from the sarcoplasmic reticulum
(Li et al., 2014). Increased leak could have a knock on effect by
downregulating Na+ channels and decreasing INa (Curran and
Louch, 2015).

Liver kinase B1, which has been termed the master
upstream kinase, normally activates AMP-activated protein
kinase (AMPK) and other related kinases (Gan and Li, 2014). Its

deletion led to downregulation of both Cx40 and Na+ channels,
resulting in complete absence of inter-atrial conduction (Kim
et al., 2015). This was later complicated by atrial enlargement
and fibrosis without inflammation, hypertrophy or apoptosis.
Interestingly, mice with knockout of regulator of G-protein
signaling 5 (Rgs5−/−), a negative regulator of G protein-
mediated signaling, showed increased P-wave duration in the
absence of atrial dilatation or fibrosis (Qin et al., 2012). These two
experiments on mouse model support the notion that although
IAB and LAE frequently co-exist, they have different underlying
pathologies.

Increased Oxidative Stress,
Renin-Angiotensin System Activation and
IAB
For cardio-metabolic disorders such as hypertension and
diabetes, the common link appears to involve increased reactive
oxygen species (ROS) production leading to excess oxidative
stress (Tse et al., 2016a; Zhang et al., 2016). In hypertension,
there is increased renin-angiotensin system (RAS) activation with
elevated levels of angiotensin II (Murugan et al., 2015; Zhang
et al., 2015). Mice infused with angiotensin II showed inter-atrial
conduction delay, which was dependent on the leptin signaling
pathway (Fukui et al., 2013). This resulted in upregulation of
transforming growth factor beta, Monocyte Chemoattractant
Protein-1 and RANTES, ultimately leading to fibrosis from
deposition of collagen types 1 and 3. Ang-II has been shown
to mediate cardiac fibrosis and inflammation via the Smad/NF-
κB pathway (Wei et al., 2013). NF-κB can bind to the promoter
region of the gene encoding for the Na+ channel (Shang and
Dudley, 2005) to reduce its transcriptional activity (Shang et al.,
2008).

Moreover, cardiac-restricted ACE overexpression produced
conduction defects and reduced expression of atrial connexin
40 (Cx40) and connexin 43 (Cx43) proteins. Activation of
the AT1 receptor by Ang-II stimulates Nox2 to generate
oxygen free radicals, which can diffuse to and promote
further ROS release at the mitochondria, by activation
of the mitochondrial permeability transition (MPT) to
mediate ROS-induced ROS release (RIRR; Zorov et al.,
2000). Mitochondrial ROS can decrease the expression
of Cx43 via c-src activation (Sovari et al., 2013), as well
as induce myocardial fibrosis via NOX4/MAPK signaling
(Aragno et al., 2006; Kuroda et al., 2010). Diabetes produces
a cardiomyopathy characterized by diastolic dysfunction and
structural remodeling. Cardiac fibrosis is observed in many
models of diabetes. Thus, OVE26 mice modeling type 1
diabetes mellitus showed increased nuclear factor-κB and matrix
metalloproteinase (MMP) activities and cardiac fibrosis (Li et al.,
2011).

Leptin-deficient ob/ob mice modeling human diabetes
mellitus showed reduced pro-MMP-8, -9, and -13 gene
expression and increased stimulation of pro-collagen Iα,
resulting in cardiac fibrosis (Zibadi et al., 2011). Leptin receptor-
deficient db/db mice similarly show increased fibrosis (Cox
and Marsh, 2014). In diabetes, RyR2 gating is abnormal
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FIGURE 3 | Diseases leading to IAB.

FIGURE 4 | Potential molecular mechanisms leading to conduction abnormalities in IAB. RAS, renin-angiotensin system; Ang-II, angiotensin II; AT1R,

angiotensin II receptor isoform 1; NOX, NADPH oxidase; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein-1; MMP, matrix

metalloproteinase; MPTP, mitochondrial permeability transition pore; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; RANTES, Regulated on

Activation, Normal T Cell Expressed and Secreted; ROS, reactive oxygen species; RIRR, ROS-induced ROS release; TGF-β, transforming growth factor-beta; RyR2,

ryanodine receptor isoform 2.

due to channel oxidation by ROS (Eager et al., 1997; Xu
et al., 1998; Bidasee et al., 2003) and phosphorylation by
Ca2+/calmodulin-dependent protein kinase II (Witcher et al.,
1991; Hain et al., 1995; Wehrens et al., 2004), which
would lead to INa downregulation as discussed above. Taken
together, inflammation or infiltration lead to electrophysiological
remodeling of Na+ channel and gap junction downregulation, as
well as structural remodeling of fibrosis. Together, these produce

conduction abnormalities that underlie conduction block in
Bayés syndrome.

FUTURE PERSPECTIVE

Our understanding of Bayés syndrome has increased significantly
due to the development of mapping systems and the use
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of genetic and pharmacological mouse models for studying
cardiac electrophysiology. Despite its clinical significance, this
condition is under-diagnosed. Raising the awareness of IAB
in healthcare professionals could improve its diagnostic rates
(Baranchuk and Bayes de Luna, 2015). Risk stratification is
important for determining individuals who are most at risk of
cardiac arrhythmias (Tse, 2016a,b,c; Tse and Yan, 2016), and
should include patients with Bayés syndrome (Martinez-Selles
et al., 2016a). Measurement of magnetic fields in the heart has
been useful for characterizing cardiac structural abnormalities
(Vassiliou et al., 2014; Tse et al., 2015a,b), which can be useful
for detecting atrial fibrosis. Magnetocardiography can be used to
diagnose and predict the risk of cardiac arrhythmias in clinical
practice (Steinhoff et al., 2004; Kuijpers et al., 2011; Sato et al.,
2012; Kwong et al., 2013; Ito et al., 2014; Yoshida et al., 2015) and
has the potential for early detection of IAB (Jurkko et al., 2009).

IAB results in delayed and asynchronous activation of the
left atrium (Agarwal et al., 2003; Budeus et al., 2005; Caldwell
et al., 2014). IAB, particularly in its advanced form, is frequently
associated with supraventricular tachy-arrhythmias (Bayes de
Luna et al., 1999; Conde et al., 2015) and higher cardiovascular
and all-cause mortality (Ariyarajah et al., 2007c; Magnani et al.,
2011). The pathogenesis of AF in the context of IAB has
been studied in detail, demonstrating the occurrence of the
following event sequence: abnormal atrial activation can lead to
increased atrial pressure, with subsequent electrophysiological
and structural remodeling, such as atrial dilatation and fibrosis.
Furthermore, endothelial damage and dysfunction, together with
impaired atrial mechanical activity, is thrombogenic (Martinez-
Selles et al., 2016a). Regarding the optimal management of IAB
and AF, anti-arrhythmic treatment can reduce the recurrence
rate of atrial fibrillation (AF) associated with IAB (Bayes de
Luna et al., 1988, 1989). Anti-coagulation is needed to reduce
the risk of thrombo-embolic complications. Anti-coagulation is

likely to be beneficial for patients with IAB, even before the
development of AF (Martinez-Selles et al., 2016a). A recent paper
proposed that anticoagulation treatment should be initiated
based on the following criteria: P wave duration ≥ 160ms,
structural heart disease, >40 atrial premature beats/h and/or
runs in Holter monitoring and CHA2DS2-VASc score ≥ 2.
ACE inhibitors are now increasingly recognized for their anti-
fibrotic effects and trials should be conducted to determine
their relative efficacies in reducing arrhythmic risk, morbidity
and mortality in patients with IAB. Interventional management,
such as synchronous biatrial pacing, can be used to prevent the
recurrences of AF associated with IAB (D’Allonnes et al., 2000).
However, resynchronization therapymay be difficult in situations
such as hypertrophic cardiomyopathy or heart failure, where
patients will have abnormal cardiac hemodynamics. Thus, future
studies will be needed for its clarification.
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