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Multiple Sclerosis (MS), an idiopathic progressive immune-mediated neurological

disorder of the central nervous system (CNS), is characterized by recurrent episodes

of inflammatory demyelination and consequent axonal deterioration. It accounts for

functional deterioration and lasting disability among young adults. A body of literature

demonstrates that physical activity counteracts fatigue and depression and may improve

overall quality of life in MS patients. Furthermore, much data indicates that exercise

ameliorates chronic neuroinflammation and its related pathologies by tipping cytokine

profiles toward an anti-inflammatory signature. Recent data has focused on the direct

impact of exercise training on the innate immune system by targeting toll-like receptors

(TLRs), signaling pattern recognition receptors that govern the innate immune response,

shedding light on the physiological role of TLRs in health and disease. Indeed, TLRs

continue to emerge as players in the neuroinflammatory processes underpinning MS.

This review will highlight evidence that physical activity and exercise are potential

immunomodulatory therapies, targeting innate signaling mechanism(s) to modulate MS

symptom development and progression.
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MULTIPLE SCLEROSIS

Multiple Sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous
system (CNS; Calabresi, 2004; Goldenberg, 2012), which is the most common cause of
acquired non-traumatic neurological disability among young adults (Compston and Coles,
2002; Zipp and Aktas, 2006), predominantly affecting those between the age of 20–40 years
(Comabella and Khoury, 2012). MS is regarded as an autoimmune disease since inflammatory
lesions associated with the disease are well-characterized by blood brain barrier (BBB) leakage
and massive lymphocytic infiltration, principally the participation of the CD4+ T cells
(Brück, 2005; Comabella and Khoury, 2012). Both white and gray matter are affected by
neurodegenerative and inflammatory mechanisms (Kutzelnigg et al., 2005; Crespy et al., 2011).
This neurological damage can result in the characteristic spectrum of presenting symptoms
including paraesthesia, numbness, muscle weakness, gait imbalance, spasticity, cerebellar ataxia,
visual impairment, dizziness, urinary dysfunction, fatigue, depression and cognitive abnormalities
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(Andersson et al., 1999; Calabresi, 2004). These symptoms
interfere with activities in everyday life and negatively impact
quality of life. Additionally, MS is a costly disease, such that
in 2010 the costs (direct and indirect) associated with MS in
Europe alone reached a staggering e14.6 billion (Gustavsson
et al., 2011). It is clear that MS is economically, medically and
societally burdensome.

Etiology and Pathogenesis
The pathogenesis of MS is highly complex with the identity
of a single unifying cause underlying its etiology remaining
elusive; however it is believed that an intricate interplay between

FIGURE 1 | Susceptibility to MS is believed to be caused by the complex interaction between genetic, environmental and immunological factors which

triggers an immune attack and the initiation of MS. Physical activity has been shown to target inflammatory and immune genes associated with MS

neuropathology, exerting an anti-inflammtory effect. Additionally many common presenting symptoms associated with MS have been shown to be improved in

response to physical activity.

immunological factors, genetic factors and environmental
influences determines susceptibility to the disease (Figure 1;
Comabella and Khoury, 2012). MS can be characterized
by heterogeneous histopathological modifications associated
with the presence of multi-focal regions of demyelination,
inflammation, axonal loss and reactive gliosis distributed
throughout the CNS (Brück, 2005; Dutta and Trapp, 2011).
While initial CNS damage in MS is linked with immune-
mediated destruction of myelin and oligodendrocytes, it
is suggested that later progressive axonal degeneration is
responsible for neurological disability in MS (Dutta and Trapp,
2011).
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Historically, MS has been regarded as an adaptive immune
response through the activation of autoreactive myelin specific
T-cells, for example activation of autoreactive CD4+ T cells
and their differentiation into T-helper 1 (Th1) cells is of
particular importance in MS (Fletcher et al., 2010; Rostami
and Ciric, 2013). CD4+ T cells have shown specificity
for myelin proteins, such as myelin basic protein (MBP),
myelin associated glycoprotein (MAG), myelin oligodendrocyte
glycoprotein (MOG), and proteolipid protein (PLP), leading to
tissue damage and contributing to lesion formation (Sospedra
and Martin, 2005). However, involvement of innate immunity
in both initiation and progression of the disease has become
increasingly recognized (Gandhi et al., 2010; outlined below).
The innate immune system is highly conserved and it is the
first line of defense against invading pathogens by orchestrating
cells of the immune system including neutrophils, macrophages
and dendritic cells (DC) (Akira et al., 2003). These cells play
a crucial role in discriminating between pathogens and self
through the action of toll-like receptors (TLRs) and by initiating
tailored immune responses to eliminate the invading pathogen.
Much evidence indicates that dysregulation or over-activation
of the innate immune response is associated with neuro-
inflammatory processes which has been linked with numerous
neurodegenerative disorders, including MS (De Faria et al.,
2012).

Current Therapeutic Strategies in MS
Currently available immunomodulatory therapies for MS
include injectable medications such as interferon (IFN)-β
(betaseron R©, extavia R©, avonex R©, rebif R©) and glatiramer acetate
(copaxone), oral medications such as fingolimod (gilenya R©)
dimethyl fumarate (tecfidera R©) and teriflunomide (aubagio R©),
and infused medications such as natalizumab (tysabri R©),
alemtuzumab (lemtradaTM), and mitoxantrone (novantrone R©;
Table 1). Each medication is partially effective in reducing
relapse rate and slowing the progression of the disease, however,
they are not without side effects and complications.

Injectable Medications
Avonex R© and rebif R© (both IFN-β-1a), and betaseron R© and
extavia R© (IFN-β-1b), exert effects on the BBB and the activity

of lymphocytes (Mendes and Sá, 2011), although their precise
mechanisms of therapeutic action remain unclear. Furthermore
IFN-β drugs reduce relapse rate and the development of
new lesions as shown by MRI analysis (Paty and Li, 1993).
Copaxone is a synthetic mixture of four amino acids found in
MBP which binds major histocompatibility complex (MHC)
molecules and competes with endogenous myelin antigens
for T cell recognition, stimulating an anti-inflammatory
signature with an increase in Th2 cell migration to the brain
(Teitelbaum et al., 1999). Furthermore, data indicates that
copaxone may also exert neuroprotective effects in the CNS by
increasing the expression of brain-derived neurotrophic factor
(BDNF; Ziemssen et al., 2002).

Oral Medications
Gilenya R© modulates sphingosine-1 phosphate receptor activity
resulting in prevention of lymphocyte egress from lymph nodes
(Matloubian et al., 2004), thus reducing infiltration into the CNS
and immune-mediated damage. Additionally, research evidence
indicates that gilenya R© targets oligodendrocyte progenitor cells
which are directly responsible for remyelination (Miron et al.,
2008). Overall gilenya R© treatment reduces relapse rate, disability
progression and T2 lesion volume (Kappos et al., 2010).
Tecfidera R© may exert anti-inflammatory effects by inhibiting
the expression of cytokines and adhesion molecules, in addition
to exerting neuroprotective effects through activation of the
nuclear-factor-E2-related factor-2 (Nrf2) transcription pathway
which protects neurons from oxidative stress, prevents BBB
breakdown and maintains myelin integrity (Kappos et al., 2008).
Tecfidera R© treatment is also associated with a reduced number
of T2- and T1-hypertensive lesions and reduced relapse rate
(Kappos et al., 2008). Aubagio R© is the active metabolite of
leflunomide which was initially approved for the treatment of
rheumatoid arthritis (Rozman, 1998). Therapeutically, aubagio R©

acts as an immunosuppressant, by inhibiting the mitochondrial
enzyme dihydro-orotate dehydrogenase (DHODH) which is
required for the de novo synthesis of pyrimidine and thus reduces
DNA synthesis, overall exerting a cytostatic effect on B and T
cell proliferation (Cherwinski et al., 1995; Greene et al., 1995).
O’Connor et al. (2011) demonstrated that aubagio R© reduces

TABLE 1 | Summary of immunomodulatory therapies for MS.

Generic Name Trade Name(s) Route of administration Proposed mechanism’s of action

Beta interferon 1a Avonex®, Rebif® Intramuscular/Subcutaneous Downregulates T cell activity and inflammatory cytokines

Beta interferon 1b Betaseron® Subcutaneous Downregulates T cell activity and inflammatory cytokines

Glatiramer acetate Copaxane Subcutaneous Inhibits MBP reactive T cell activation and increases Th2 cell population

Fingolimod Gilenya® Oral Prevents lymphocyte egress from lymph nodes

Dimethlyfumarate Tecfidera® Oral Inhibits expression of cytokine and inflammatory molecules

Alemtuzumab Lemtrada
TM

Infused Depletes circulating lymphocytes

Natalizumab Tysabri® Infused Blocks lymphocyte migration into the CNS

Teriflunomide Aubagio® Oral Inhibits DHODH & reduces lymphocyte proliferation

Mitoxantrone Novantrone® Infused Targets T/B cell activity and macrophage proliferation

DHODH, dihydro-orotate dehydrogenase; MBP, myelin basic protein.
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relapse rate, disability progression and disease activity as shown
by MRI (O’Connor et al., 2011).

Infused Medications
Tysabri R© is a monoclonal antibody that therapeutically
modulates immune responses in MS. Tysabri R© has specificity for
the α4-integrin receptor subunit on activated T cells, antagonizes
cell adhesion to vascular endothelium at the BBB, and hence
inhibits immune cell infiltration into the CNS (Yednock et al.,
1992), preventing the destruction of myelin and the impairment
of nerve conduction. Tysabri R© has been shown to reduce
relapse rate, disability progression rate and the number of

T2-hyperintense lesions (Havrdova et al., 2009). Lemtrada
TM

is a monoclonal antibody infused for 5 consecutive days every
12 months which results in a rapid and prolonged depletion of
circulating lymphocytes, followed by a homeostatic repopulation
of regulatory T cells and memory B and T cells, thus improving
disability and suppressing clinical exacerbations (Coles, 2013).
Finally, novantrone R© is an immunosuppressant that targets
T/B cell and macrophage proliferation, in addition to altering T
and B cell activity, augmenting T cell suppressor function and
inhibiting B cell function and the production of antibodies (Fox,
2004). Novantrone R© also reduces disability progression and
relapse rate (Hartung et al., 2002).

INNATE IMMUNE SYSTEM

General Overview
Playing an essential role in immunity, the innate immune
system is recognized as the first line of host defense, providing
immediate protection against pathogenic infectious agents
through initiating complex interactions between the pathogen
and the immune mechanisms of the host (Kumar et al., 2011).
Macrophages and other cells in the innate immune system
express pathogen recognition receptors (PRRs), which recognize
pathogen-associated molecular patterns (PAMPs) expressed by
pathogens (Kumar et al., 2011). This interaction stimulates
the release of a multitude of mediators responsible for an
inflammatory response including cytokines, chemokines and
type 1 IFNs (Figure 2). Thus, the innate immune system provides
early recognition and immediate protection by facilitating the
eradication of the pathogen, and furthermore regulates the
initiation of the adaptive immune response (Mogensen, 2009).

TLR Signaling
TLRs are a family of innate immune system receptors
which either span the cell membrane or are expressed
intracellularly on endosomes in both nonimmune and
immune cells (Figure 2), most notably macrophages and

FIGURE 2 | TLRs reside on the plasma membrane or intracellularly on endosomes and act via the MyD88 or the TRIF pathway leading to the activation

of downstream signaling pathways. TLR activation results in the translocation and transcriptional activation of transcription factors NF-κB and IRF-3, and the

production of pro-inflammatory genes and IFN inducible genes, respectively.
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DCs (Hernández-Pedro et al., 2013). TLRs are members of the
PRR family, which recognize distinct exogenous conserved
pathogenic motifs, PAMPS, and also endogenous damage-
associated molecular patterns (DAMPS) from necrotic or dying
cells (Mills, 2011). TLR activation results in anti-microbial
responses and the production of pro-inflammatory cytokines,
chemokines and IFNs. To date, 10 functional human TLRs have
been identified, while 13 murine TLRs characterized (Capelluto,
2012), each of which detects different microbial components
(Table 2).

TLRs are type 1 transmembrane proteins and are comprised
of a cytoplasmic Toll/IL-1R (TIR) domain and an extracellular
leucine-rich repeat (LRR) domain (Singh and Naik, 2005). After
stimulation by TLR ligands, all TLRs recruit specific adaptor
proteins via a conserved TIR domain and a death domain, which
activate downstream signaling cascades ultimately leading to
the activation of transcription factors such as nuclear factor-κB
(NF-κB) and IFN-regulatory factors (IRFs; O’Neill and Bowie,
2007; Figure 2). This promotes the transcriptional activation of
genes responsible for encoding pro-inflammatory chemokines
and cytokines which subsequently stimulate innate immune
responses and prime antigen specific adaptive immune responses
(Jarrossay et al., 2001; Singh and Naik, 2005; Hernández-Pedro
et al., 2013).

All TLR (apart from TLR3) signaling involves the recruitment
of a key adaptor protein, myeloid differentiation factor 88
(MyD88). Additional adaptor proteins, including MyD88-
adapter-like (MAL) and TRIF-related adaptor molecule (TRAM)
both act as bridging adaptors, with MAL facilitating the
interaction of MyD88 with TLR4 to promote NF-κB activation,
whereas TRAM recruits the adaptor protein Toll/IL-1R domain-
containing adaptor inducing IFN (TRIF) which enables IRF-3
activation (O’Neill and Bowie, 2007). Hence, both the MyD88-
dependent and TRIF-dependent (MyD88-independent pathway)
activation pathways are facilitated by these adaptor proteins.
TLR4 can use both the MyD88 and TRIF pathway to initiate the

production of pro-inflammatory cytokines and IFN-stimulated
genes (Selvarajoo et al., 2008), whereas TLR3 utilizes the TRIF
pathway.

TLR4 is localized on the cell surface of immune cells
and cells of the CNS, and is activated primarily to bacterial
PAMPS such as gram negative bacteria lipopolysaccharide (LPS).
Recognition also requires the accessory molecule MD2 (Kim
et al., 2007). Once TLR ligands bind to the receptor, MyD88
and other associated adaptor proteins are recruited. Indeed,
MyD88 further recruits and forms a complex with a member of
the IL-1R-associated kinase (IRAK) family through their death
domains (Akira et al., 2003) and toll-interacting protein (Tollip;
Capelluto, 2012). This enables IRAK autophosphorylation and
its dissociation from the complex whereby it interacts with
downstream adaptor tumor necrosis factor alpha (TNF-α)
receptor-associated factor 6 (TRAF-6; Akira et al., 2003). TRAF-6
then activates transforming growth factor-β (TGF-β)-activating
kinase (TAK1) which sequentially activates downstream IκB
kinases (IKK). Members of the inhibitory IκB family which
usually sequester NF-κB in the cytosol, are then directly
phosphorylated by IKKs, enabling NF-κB translocation into
nucleus to induce target gene expression (Moynagh, 2005).
NF-κB inducible genes are responsible for the encoding pro-
inflammatory cytokines and chemokines including interleukin
(IL)-1, IL-6, IL-8, and TNF-α (Mogensen, 2009).

TLR3 resides in endosomal compartments of immune
(particularly in DC and B cells) and CNS cells, and recognizes
distinct viral double stranded nucleic acid RNA (Singh and Naik,
2005). TLR3 activation results in the recruitment of the TRIF
adaptor protein, initiating a signaling pathway through TRAF3
(Häcker et al., 2006), TANK-binding kinase 1 (TBK1) and IKK;
this signaling complex then mediates phosphorylation of IRF-3
(Fitzgerald et al., 2003), enabling its translocation to the nucleus
where it binds target DNA sequences, facilitating transcriptional
activation of genes responsible for encoding type I IFNs (Akira
et al., 2003). The TRIF pathway can lead to activation of both

TABLE 2 | Examples of pathogen-derived, endogenous and synthetic ligands for TLRs.

Receptor Expression Pathogen-derived ligands Endogenous ligands Synthetic ligand

TLR1 Extracellular Bacteria: peptidoglycan Pam3CSK4

TLR2 Extracellular Bacteria: lipoproteins Heat shock Pam3CSK4, MALP-2

Fungi: zymosan HMGB1,veriscan

TLR3 Intracellular Virus: dsRNA mRNA Poly(I:C)

TLR4 Extracellular Bacteria: LPS Saturated fatty acids Lipid derivatives

Virus: fusion protein Amyloid-β

Fungi: mannan

TLR5 Extracellular Bacteria: flagellin

TLR6 Extracellular Bacteria: lipoteichoic acid Veriscan

TLR7 Intracellular Virus: ssRNA Self RNA Imidazoquinoline, Bropirimine

TLR8 Intracellular Virus: ssRNA Self RNA Imidazoquinoline,

TLR9 Intracellular Bacteria: CpG- DNA Self RNA CpG-ODN

Virus: CpG- DNA

TLR10 Extracellular Virus: H5N1, H1N1

HMGB1, High mobility group box 1 protein; LPS, lipopolyscaccharide.
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NF-κB and IRF-3 (Akira and Takeda, 2004), and indeed TBK1
and IKK are also implicated in the activation of NF-κB through
the TRIF-dependent pathway (Fitzgerald et al., 2003). TLR4 can
also signal via the MyD88-independent pathway through the
bridging adaptor TRAM, promoting IRF-3 activation and IFN-β
induction.

Role of Innate Immunity in MS
Infections have been thought to increase susceptibility to
autoimmune diseases. For example, many observations implicate
Epstein–Barr virus (EBV) in the pathogenesis of MS (Lünemann
et al., 2007). Furthermore, viral infections have been shown
to correlate with MS attacks and exacerbation of symptoms,
presumably through the modification of the immune system
in response to exogenous events (Panitch, 1994). The most
common mechanism by which pathogens are suggested to
trigger or exacerbate autoimmunity is through molecular
mimicry; whereby pathogens possess antigens of similar
sequence and structure to host T or B cell epitopes. Thus,
upon infection this may result in the initiation of a self-
specific immune response (Cusick et al., 2012), leading to
a cascade of detrimental effects causing prolonged pro-
inflammatory responses and subsequent tissue and organ
degeneration.

MS is driven by pro-inflammatory chemokines and cytokines
(Sørensen et al., 1999). Elevated levels of Th1 and Th17 cell
cytokines such as IL-1, IL-6, IL-12, IL-17, IFN-γ, and TNF-
α in particular, infiltrate the CNS and play a crucial role
in MS pathogenesis. Recovery and remission periods in MS
are also associated with altered CNS expression profiles of
the anti-inflammatory Th2 cell type cytokines, including IL-
10 (Ozenci et al., 2002; Florindo, 2014). Indeed, the use of
cytokine signature patterns may help to stratify drug treated and
drug naïve patient groups (O’Connell et al., 2014). Although
it is unknown what triggers the initial immune response in
MS, the innate immune system is suggested to play a role as
both a promoter and mediator of the disease (Gandhi et al.,
2010).

Infiltrating and resident cells within the CNS both express
TLRs and an increase in TLR expression has been observed
in autoimmune diseases such as MS (Miranda-Hernandez
and Baxter, 2013), even in the absence of a microbial
environment. Microglia cultured from human cerebral tissue
express mRNA encoding TLRs 1-9, while astrocytes primarily
express robust levels of TLR3, as shown by quantitative real-
time PCR. Ligation of TLR3 and TLR4, by poly(I:C) and LPS
respectively, leads to microglial activation and consequently
stimulates secretion of cytokines IL-12, TNFα, IL-6, IL-10 and
chemokine CXCL-10 (a chemoattractant for pro-inflammatory
T cells), which are strongly associated with MS pathogenesis
(Jack et al., 2005). Interestingly, increased in vivo expression
of TLR3 and TLR4 have been identified in MS brain and
spinal cord sections in comparison to controls, as shown by
immunohistochemical analysis (Bsibsi et al., 2002). Additionally,
TLR2 expression in oligodendrocytes is upregulated in MS
lesions, repressing episodes of remyelination (Sloane et al.,
2010).

Using experimental autoimmune encephalomyelitis (EAE),
the murine model of MS, specific roles of TLRs have been
indicated in EAE. Indeed, stimulation of TLR3 with poly(I:C)
has been demonstrated to suppress the development of a murine
model of relapsing EAE, presumably through enhanced levels of
IFN-β and the chemokine, CCL2 (Touil et al., 2006). Thus, it is
suggested that TLR3 signaling through the MyD88-independent
pathway suppresses, or does not support, the development
of EAE. This is significant given that IFN-β is a first line
treatment in RRMS patients. Furthermore, Guo et al. (2008)
demonstrated that type 1 IFN receptor knockout mice and
TRIF knockout mice developed more severe EAE than wild
type mice, manifested by enhanced levels of IL-17 production
(Guo et al., 2008). This illustrates the importance of TRIF-
dependent IFN-β production and downstream signaling in
suppressing the development of Th17 cells and autoimmune
inflammation.

Alternatively, TLR signaling through the MyD88-dependent
pathway is believed to play a part in the development of
EAE. Indeed, Marta et al. (2008) demonstrated that MyD88
deficient mice were completely resistant to EAE development
and subsequently these mice exhibited reduced splenic myeloid
dendritic cell (mDC) IL-6 and IL-23 expression, and Th17
responses were absent (Marta et al., 2008). Further support
for the involvement of MyD88 as a key modulator of
autoimmunity was provided by Prinz et al. (2006) who showed
that MyD88 knockout mice did not respond to immunization
and were indeed resistant to active EAE (Prinz et al.,
2006).

Pertussis toxin (PT) administered at the time of immunization
is suggested to regulate P-selectin expression and enhance
leukocyte/endothelial cell interactions, facilitating T cell
infiltration into the CNS by increasing BBB permeability. PT
induces TLR4 signaling and consequently controls leukocyte
recruitment in wild type mice. These effects were not detected
in TLR4 knockout mice and they were less susceptible to
PT-induced EAE in comparison to wild type mice (Kerfoot et al.,
2004). These findings suggest that TLR4 signaling participates
in the initiation of EAE. In contrast, Marta et al. (2008)
demonstrated that TLR4 knockout mice presented enhanced
levels of mDC (IL-6 and IL-23) and an increase in the Th17
population, overall presenting more severe clinical symptoms
than the wild type animals (Marta et al., 2008). Interestingly,
germ-free mice, characterized by impaired innate immune
responses and reduced TLR4 expression (Wang et al., 2010),
display significantly attenuated EAE (Lee et al., 2011), overall
indicating the complex role of TLR4 in EAE pathogenesis.

Differential TLR responses of immune cells isolated from
MS patients also suggest the complex role of TLR signaling
in MS pathogenesis. Indeed, Crowley et al. (2015) recently
demonstrated that peripheral blood mononuclear cells (PBMCs)
isolated fromMS patients are hypersensitive to TLR4 stimulation,
promoting a pro-inflammatory signature (Crowley et al., 2015).
Downer et al. (2011) also demonstrated that PBMCs from MS
patients are refractory to poly(I:C) treatment, in terms of IFN-β
expression, thus indicating that blood cells fromMS patients may
show TLR3 tolerance (Downer et al., 2011).
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IMPACT OF EXERCISE ON THE INNATE
IMMUNE SYSTEM

Exercise activates an array of immunological and hormonal
responses, and much evidence indicates that exercise training
can ameliorate chronic neuroinflammation and its related
pathologies by targeting pro- and anti-inflammatory cytokines
(Florindo, 2014). Indeed, in chronic illness, exercise can skew
cytokine profiles toward an anti-inflammatory signature, which
contributes to the health benefits of exercise and protects
against chronic diseases associated with low-grade inflammation
(Petersen and Pedersen, 2005). In addition, new data now
indicates that exercise training directly impacts the innate
immune system by targeting TLR signaling, which sheds light on
the physiological regulation of TLR expression and function in
humans in health and disease.

Acute Strenuous Exercise (One Exercise
Session) in Healthy Human Subjects
Acute exercise can profoundly affect immune cell profiles,
particularly during and immediately after exercise. Indeed,
marathon running enhances the circulating DC population,
while decreasing the number of plasmacytoid DC, in healthy
elite and non-elite runners, suggesting that immunomodulatory
mechanisms are central in the response to acute excessive exercise
(Nickel et al., 2011). In the same study Nickel et al. (2011)
demonstrate that the levels of IL-6, IL-10, TNF-α, and C-reactive
protein (CRP) are increased in serum samples post-marathon
(Nickel et al., 2011). Similarly, circulating levels of neutrophils,
plasma cytokines (IL-6 and IL-10) and neutrophil TLR4 and
IRAK3 expression are enhanced in healthy-endurance trained
individuals undertaking a single exercise trial (cycling for 1 h
at 105% power output followed immediately by running for 1
h at ∼10-km time trial pace; Neubauer et al., 2013). In support
of this, Booth et al. (2010) demonstrate that cycling (60 km
time trial at fastest pace) increases the total cell numbers of
neutrophils, lymphocytes and monocytes, while also increasing
the expression of TLR2 and TLR4 in monocytes isolated from
elite cyclists immediately after exercise (Booth et al., 2010). Their
findings also indicate that the expression of the MHC class
II receptor HLA.DR, is reduced on monocytes following the
time trial (Booth et al., 2010). The stimulatory effect of acute
exercise on plasma IL-6 has also been identified immediately
following a shorter bout of ergometry training (60% of VO2max
for 30 min) in healthy volunteers (and RRMS patients; Castellano
et al., 2008). Interestingly, Sureda et al. (2014) have recently
demonstrated that acute exercise associated with a single bout of
scuba diving (50m depth for 35 min), enhanced mRNA levels of
a panel of inflammatory genes in neutrophils, including NF-κB,
TLR4, COX2, IL-6, IL-8, IL-10, IL-1, and iNOS, demonstrating
that the acute exercise associated with scuba diving enhances
the inflammatory response in neutrophils (Sureda et al., 2014).
Given that strenuous aerobic cycling (two repeated bouts of 50%
of VO2max for 60 min) in healthy volunteers enhances plasma
non-esterified fatty acids (NEFAs; Stich et al., 2000), alongside
evidence that circulating levels of LPS are enhanced following

completion of an ultra-distance triathlon in healthy triathletes
(Bosenberg et al., 1988), a single bout of exercise may upregulate
innate immune signaling mechanism via TLR stimulation in
human blood.

It is important to note that several studies indicate that acute
exercise reduces innate immune receptor expression, and may
account for post-exercise immuno-depression. Indeed, marathon
running reduces the expression of TLR7 on PBMCs (Nickel et al.,
2011) and moderate intensity exercise (1.5 h of cycling exercise
at ∼65% VO2max) in the heat (34

◦
C in 30% relative humidity)

reduces the expression of TLRs (1, 2, and 4), CD86 and MHCII
in monocytes in healthy volunteers (Lancaster et al., 2005). In
parallel, the stimulatory effect of TLR agonists zymosan (for
TLR2/6), LPS (for TLR4), or poly(I:C) (for TLR3) on markers
of monocyte activation (CD80, CD86, MHCII, and IL-6) is
ameliorated following exercise compared with at rest (Lancaster
et al., 2005). In support of this, prolonged cycling (1.5 h at
75% VO2peak) in healthy subjects increases to total number of
circulating monocytes, while reducing monocyte TLR4 protein
expression, which may in part be responsible for post-exercise
immuno-depression (Oliveira and Gleeson, 2010).

Chronic Exercise (Repeated Exercise
Sessions) in Healthy Human Subjects
A body of literature in human trials indicates the impact
of chronic exercise on cytokine and inflammatory signaling
networks may have a dose-dependent relationship with exercise
intensity. Indeed, the immunomodulatory effect of repeated
bouts of exercise is well characterized. Resistance training (72
exercise sessions over 6 months) in healthy elderly women
reduces TLR4 expression on monocytes (McFarlin et al., 2004),
while resistance training (16 resistance training sessions over 8
weeks) in healthy elderly individuals has been shown to be anti-
inflammatory in PBMCs, reducing cellular protein expression of
TLR2, TLR4, MyD88, TRIF, NF-κB, IKKi/IKKε, and phospho-
IRF-3/7 (Rodriguez-Miguelez et al., 2014). In addition, Shimizu
et al., 2011) have demonstrated that resistance training (leg
extension, leg press, hip abduction, and hip adduction) twice
a week for 12 weeks in elderly control subjects increases
the number of CD28-expressing T cells and CD80-expressing
monocytes, indicating that training may upregulate monocyte
and T-cell-mediated immunity in elderly individuals (Shimizu
et al., 2011). Finally, Lambert et al. (2008) have shown that a
combination of resistance and aerobic training (90 min/day, 3
days/week for 12 weeks) in a cohort of obese elderly individuals
reduces the gene expression of IL-6 (and TNF-α and TLR4) in
skeletal muscle (vastus lateralis) (Lambert et al., 2008). Overall, it
is evident that both acute and repeated chronic bouts of exercise
training directly impacts the expression profile of TLRs in blood
cells, cytokine signature patterns and the function of the innate
immune system in healthy individuals.

Acute and Chronic Exercise in Animal
Studies
It is well known that exercise is anti-inflammatory and
promotes neuroregeneration, plasticity and memory in rodents
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(Bechara et al., 2013). Indeed, resistance training (predominantly
composed of concentric forces) in rats (exercised for 12 weeks;
two times per day; two times per week), decreased TNF-α
mRNA expression in the plantar muscle (Zanchi et al., 2010).
In contrast, exhaustive exercise in rats (treadmill running at 70%
VO2max for 50 min followed by an elevated rate that increased
at 1 m/min until exhaustion) increases both TNF-α and IL-
10 (gene and protein expression) in both extensor digitorum
longus and soleus muscles (Rosa Neto et al., 2009). This group
have also demonstrated that exhaustive exercise in rats enhances
MyD88, TRAF-6 and IκBα expression in adipose tissue within
6 h post-exercise (Stich et al., 2000). In contrast, data elsewhere
indicates that exercise training downregulates pro-inflammatory
cytokine gene expression in adipose tissue. Indeed, exercise (65-
70% VO2max) on motorized treadmills (40 min/day, 5 days/wk,
6 or 12 wk) reduces TNF-α expression in adipose tissue of
obese mice (Vieira et al., 2009). In support of this, Kawanishi
et al. (2010) indicate that exercise (12–20 m/min for 60 min/day
for 16 weeks) significantly inhibits ICAM-1 gene expression in
adipose tissue of obese mice, and suggest that exercise may
promote the phenotypic switching from M1 macrophage to M2
macrophage in obese adipose tissue (Kawanishi et al., 2010).
Indeed, running mice on a treadmill to the point of exhaustion
significantly lowers plasma levels of both TNF-α and IFN-α
concentrations, indicating that exhaustive exercise can result
in immune-depression (Yano et al., 2010). In support of this,
treadmill running in rats (12m/min for 30min/day, 5 days a week
for 2 weeks) blunted the enhanced expression of TLR2, TLR4,
NF-κB, and MyD88 in rat cortex after middle cerebral artery
occlusion-reperfusion (Ma et al., 2013).

EXERCISE AND MS

Overall, an imbalance between pro- and anti-inflammatory
cytokines exists in MS, exhibiting a shift toward a pro-
inflammatory cytokine profile. This makes pro-inflammatory
cytokines a good therapeutic target. Numerous sources have
indicated that regular exercise can reverse chronic inflammation,
with evidence indicating that physical activity decreases pro-
inflammatory cytokines as well as promoting an increase in anti-
inflammatory cytokines. Indeed in MS, evidence suggests that
regular exercise can induce anti-inflammatory effects and may be
beneficial in the modulation of MS progression (Figure 1).

Exercise and the Immune System in
MS—Animal Studies
Using EAE, the murine model of MS, several studies have
indicated that exercise can combat the clinical development
of the disease (Rossi et al., 2009). Indeed, Bernardes et al.
(2013) indicate that swimming exercise in mice (30 min/day,
5 days/week for 6 weeks) reduces the severity of EAE while
decreasing the protein expression of IL-1, IL-6, TNF-α, and IL-
10 in the brain post-EAE induction (Bernardes et al., 2013). In a
recent study by a same group, forced swimming exercise in mice
(30 min/day, 5 days/week for 6 weeks) was shown to attenuate
the number of B and T cells infiltrating the spinal cord in EAE

mice (Bernardes et al., 2016). Voluntary wheel running in mice
(1 h daily access for 3 days prior to EAE, and each day 1 post
EAE induction) delays the onset of EAE and reduces the number
of CD45-positive leukocytes and CD+ T cells infiltrating the
spine (Benson et al., 2015). This exercise protocol also reduced
the number of Iba-1-positive microglia in the spinal cord at the
onset of EAE (Benson et al., 2015). Interestingly, forced treadmill
training in rats (15-30 m/min for 60 or 90 min/day over 10
consecutive days) failed to impact clinical disability development
in EAE groups, and furthermore failed to regulate the EAE-
induction of total brain TNF-α (Patel and White, 2013). These
findings indicate that exercise has the proclivity to target disease
development in EAE by targeting glia, immune cells and cytokine
signatures, and that these effects are dependent on the type of
exercise training.

Exercise and the Immune System in
MS—Human Studies
In MS patients, Golzari et al. (2010) have demonstrated that
combined exercise involving endurance and resistance training
for 24 sessions during 8 weeks, significantly reduced IL-17 and
IFN-γ production in plasma and PBMCs in female MS patients
[Expanded Disability Status Scale (EDSS) score of 0–4; Golzari
et al., 2010]. IL-17 is one of themost important pro-inflammatory
cytokines in MS progression (Stromnes et al., 2008), and IL-
17 (mRNA and protein) has been demonstrated in perivascular
lymphocytes, astrocytes and in active regions of MS lesions
(Tzartos et al., 2008). In addition IL-17 has been identified to play
a crucial role in the development of EAE by disrupting the BBB
(Huppert et al., 2010). Therefore significant reduction in IL-17
production in response to physical activity would demonstrate a
beneficial anti-inflammatory effect inMS patients. These findings
are supported elsewhere. Castellano et al. (2008) showed that
following 30 min of aerobic exercise at 60% VO2peak, IFN-γ
plasma concentration was significantly reduced from baseline 3
h post-exercise in RRMS patients (EDSS of 0–5.5; medications
included copaxone, rebif R© and avonex R©; Castellano and White,
2008). However, chronic exercise over 8 weeks tended to increase
IFN-γ plasma concentration in MS patients (Castellano and
White, 2008). This highlights the differential effects of exercise
on plasma IFN-γ. IFN-γ is a potent pro-inflammatory cytokine
and can stimulate the production of the cytokine IL-12 which
further promotes Th1 type immune responses (Ozenci et al.,
2000). Similarly, White et al. (2012) assessed several immune
markers in PBMCs from RRMS (immunomodulatory treatment
included IFN-β and copaxone) patients undertaking a single
session of combined arm and leg exercise (70% of age-predicted
maximal heart rate using a Schwinn Air-Dyne ergometer; White
et al., 2012). Importantly their findings indicated that blood
cells from MS patients had a greater post-exercise (0.5 and 8 h)
decrease in the expression on the TLR4 mRNA, while IL-6 and
IL-10 mRNA were decreased immediately after exercise (0.5 h;
White et al., 2012). Overall, these findings highlight that exercise
training may have anti-inflammatory therapeutic potential in
MS. Furthermore, Schulz et al. (2004) demonstrated that a 30
min endurance test in trained MS patients (immunomodulatory
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treatment included IFN-β and copaxone) who have undertaken
an 8-week aerobic training programme (cycle ergometry at 60%
of VO2max; 2 times/week) marginally enhanced levels of soluble
IL-6 receptor (sIL-6R) in plasma (Schulz et al., 2004).

Exercise and MS Clinical Characteristics
In addition to the alterations in inflammatory signature, physical
activity is proposed to target multiple clinical manifestations
in MS; however the optimal exercise prescription has not yet
been established for MS patients. A body of data illustrates that
physical activity is an effective strategy for overall health, which
is accessible to most individuals and is without any intolerable
side effects that generally coexist with pharmaceutical treatment.
Indeed, Learmonth et al. (2014) have shown that a 15 min bout
of moderate-intensity exercise had no adverse effects on pain or
function and thus no negative impact onMS patients (Learmonth
et al., 2014). Similarly, Collett et al. (2011) showed that low,
high and combined intensity exercise on a cycle ergometer were
all safe protocols for MS patients. Higher intensities may be
less tolerated but are postulated to produce faster and larger
improvements (Collett et al., 2011). There is sufficient evidence to
suggest that exercise amongMS patients may have positive effects
on aerobic fitness (Briken et al., 2014; Schmidt andWonneberger,
2014; Skjerbæk et al., 2014), mobility (Kileff and Ashburn, 2005;
Rampello et al., 2007; Collett et al., 2011), muscle strength
(Golzari et al., 2010), mood/depression (Ahmadi et al., 2013;
Briken et al., 2014), fatigue (Ahmadi et al., 2013; Learmonth
et al., 2014; Schmidt and Wonneberger, 2014), and cognitive
disturbances (Sangelaji et al., 2015; outlined below).

Mobility is a critical concern for individuals with MS,
interfering with performance in daily living activities. A high
prevalence rate of falls also occurs amongMS patients (Finlayson
et al., 2006), and a fear of falling can consequently limit mobility
in patients. The primary implicating factor of falling among
MS patients is due to gait imbalance and muscle weakness, and
hence this coincides with restricted activity due to concerns
about falling (Matsuda et al., 2012); this causes a vicious
cycle and progressive mobility decline, resulting in reduced
independence and quality of life. A randomized controlled
trial involving supervised balance rehabilitation sessions (10–
12 sessions over 3 week) has been shown to improve balance
and sequentially significantly reduce fall risk in middle aged MS
patients (Cattaneo et al., 2007). Rampello et al. (2007) identified
that following an 8 week aerobic cycling program involving 3 ×

30 min sessions per week was sufficient to exhibit a significant
improvement in overall mobility in MS patients (Rampello et al.,
2007). Furthermore, combined resistance-endurance training
(24 sessions during 8 weeks) significantly improved muscle
strength and balance in MS patients (Golzari et al., 2010).
Additionally, the incidence of osteoporosis and fractures are
elevated among MS patients due to decreased mobility and
the use of steroid medications. Resistance training improves
bone strength and muscle power (Gupta et al., 2014) and may
be a useful intervention for MS patients to improve overall
mobility.

Briken et al. (2014) recently showed significant improvements
in aerobic fitness in moderately disabled MS patients following

an exercise training programme (arm ergometry, rowing and
bicycle ergometry) consisting of 2–3 sessions per week for 8–10
weeks (Briken et al., 2014). Skjerbæk et al. (2014) also recently
demonstrated that even severely disabled patients can improve
fitness levels in just 10 exercise sessions over 4 weeks through
upper body endurance training (Skjerbæk et al., 2014).

Fatigue, a debilitating symptom experienced by most MS
patients, further disrupts aspects of everyday activities and
interferes with normal life. While the effect of exercise on
fatigue in MS patients remains unclear, improvement in fatigue
appears to depend on the type of exercise. In one study, analysis
suggested that a decrease in fatigue (as determined using visual
analog scales) emerged in MS patients after a single bout (15
min) of aerobic cycling (Learmonth et al., 2014). Additionally,
Schmidt and Wonneberger (2014) demonstrated that long-term
endurance training (3 × 30 min sessions per week for 12
months) significantly improved fatigue (as determined using the
Fatigue Severity Scale) in MS patients who had fatigue at baseline
(Schmidt and Wonneberger, 2014).

Anxiety and depression are elevated amongst MS patients in
comparison to healthy individuals (McCabe, 2005). Data from
Ahmadi et al. (2013) showed that both treadmill training and
yoga practice (24 sessions over 3 weeks) promote significant
improvements in depression and anxiety in MS patients with
mild—moderate disability (EDSS: 1–4) as assessed by the Beck
Depression Inventory and Beck Anxiety Inventory, respectively
(Ahmadi et al., 2013). Additionally, arm and bicycle ergometry
training programmes (2–3 sessions/week for 8–10 weeks)
promoted a significant decrease in depressive symptoms in
moderately disabled MS patients, compared to a control group,
as assessed by the Inventory of Depressive Symptoms self-report
questionnaire (Briken et al., 2014). Thus, numerous types of
exercise exert a favorable effect on depression and anxiety in MS
patients, and this is consistent with studies showing beneficial
effects of exercise in major depression (Mota-Pereira et al., 2011;
Trivedi et al., 2011; Silveira et al., 2013). Importantly, recent
studies suggest that the beneficial effect of exercise in depression
might be a consequence of counteracting the impact of the
associated inflammation on tryptophan metabolism along the
kynurenine pathway (Agudelo et al., 2014).

Cognitive disturbances affect ∼40–65% of MS patients (Rao
et al., 1991) and it is associated with negative consequences
on quality of life and further contributes to disability status.
Exercise is neuro-protective, improving memory and promoting
hippocampal neurogenesis in rodents (Bechara et al., 2013).
Intertestingly, hippocampal volume has been shown to increase
in response to exercise in both an elderly cohort with probable
cognitive impairment (ten Brinke et al., 2014), and cognitively
impaired MS patients (Leavitt et al., 2014), and exercise may
also enhance cognitive function in MS (Briken et al., 2014;
Leavitt et al., 2014). Indeed, Sangelaji et al. (2015) recently
demonstrated that combined training (10–20mins treadmill, 10–
20 mins stationary bike and 30 mins balance exercises) of 24
sessions over 8 weeks resulted in a significant increase in long-
term storage and permanent long-term retrieval of information,
in addition to a significant increase inDigit SymbolModality Test
(DSMT) score among MS patients (Sangelaji et al., 2015).
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CONCLUSION

MS is a chronic disease accounting for lasting disability among
young adults and hence MS rehabilitation is essential for patients
to maintain an independent lifestyle and to ensure an improved
quality of life. Originally MS patients were advised to avoid
exercise since elevated body temperature was suggested to
exacerbate symptoms, as observed by Uhthoff (Humm et al.,
2004). MS patients demonstrate difficulties with gait imbalance
and muscle weakness, which is associated with restricted levels
of physical activity. However, since the 1980’s, many studies have
highlighted thatMS patients benefit from exercise.While exercise
is essential for good general health and quality of life, it is also
helpful to alleviate multiple symptoms associated with MS. A
body of literature now suggests that exercise has the potential
to modulate MS pathology and may potentially modify the
progression of the disease (Dalgas and Stenager, 2012). Indeed,
low levels of physical activity correspond with a higher disease
burden (increase in T2 lesions and relapse rates) in pediatric MS
patients (Grover et al., 2015), suggesting a protective effect of
exercise in MS.

There is no cure for MS, with a number of approved
medications in the clinic demonstrating proclivity to reduce
frequency of relapses and long-term accrual of disability. The
observation that disability often continues to worsen despite
immunotherapy has prompted some MS patients to seek

alternative treatments for the disease. Since MS is an immune-
mediated disease and MS patients demonstrate a shift toward a
pro-inflammatory signature, neuro-immune signaling represents
a clear therapeutic target. Recent data suggests the potential role
of the innate immune system in the initiation and progression
of MS, and also indicates that exercise may modulate the
innate immune system by directly targeting TLR signaling
events. Given these findings, characterizing the impact of aerobic
exercise on the expression profile of TLRs and associated
inflammatory cytokines linked with MS neuropathology requires
full investigation. Such investigation will elucidate the clear
biological basis for exercise in MS, and will furthermore assist
in delineating the therapeutic potential of exercise training in
individuals afflicted by the disease.
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