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We evaluated the effects of swimming training on nitric oxide (NO) modulation to

glutamate microinjection within the rostral ventrolateral medulla (RVLM) in conscious

freely moving rats. Male Wistar rats were submitted to exercise training (Tr) by swimming

or kept sedentary (Sed) for 4 weeks. After the last training session, RVLM guide cannulas

and arterial/venous catheters were chronically implanted. Arterial pressure (AP), heart rate

(HR), and baroreflex control of HR (loading/unloading of baroreceptors) were recorded

in conscious rats at rest. Pressor response to L-glutamate in the RVLM was compared

before and after blockade of local nitric oxide (NO) production. In other Tr and Sed groups,

brain was harvested for gene (qRT-PCR) and protein (immunohistochemistry) expression

of NO synthase (NOS) isoforms and measurement of NO content (nitrite assay) within the

RVLM. Trained rats exhibited resting bradycardia (average reduction of 9%), increased

baroreflex gain (Tr: −4.41 ± 0.5 vs. Sed: −2.42 ± 0.31 b/min/mmHg), and unchanged

resting MAP. The pressor response to glutamate was smaller in the Tr group (32 ± 4

vs. 53 ± 2mmHg, p < 0.05); this difference disappeared after RVLM pretreatment

with carboxy-PTIO (NO scavenger), Nw-Propyl-L-Arginine and L-NAME (NOS inhibitors).

eNOS immunoreactivity observed mainly in RVLM capillaries was higher in Tr, but eNOS

gene expression was reduced. nNOS gene and protein expression was slightly reduced

(−29 and −9%, respectively, P > 0.05). Also, RVLM NO levels were significantly

reduced in Tr (−63% vs. Sed). After microinjection of a NO-donor, the attenuated pressor

response of L-glutamate in Tr group was restored. Data indicate that swimming training

by decreasing RVLM NO availability and glutamatergic neurotransmission to locally

administered glutamate may contribute to decreased sympathetic activity in trained

subjects.

Keywords: baroreflex, RVLM, nitric oxide synthase, heart rate, arterial pressure

INTRODUCTION

Aerobic training induces adaptations in central autonomic areas involved in the control of
the cardiovascular system (Ichiyama et al., 2002; Martins-Pinge, 2011). Such changes modify
the parasympathetic and sympathetic outflow to heart and vessels, with robust changes in the
peripheral sympathetic activity (Mitchell and Victor, 1996). In this sense, the rostral ventrolateral
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medulla (RVLM), the main sympathetic output for heart and
blood vessels (Dampney, 1994), emerges as a potent target for
modulatory action of exercise on autonomic control. However,
only few studies have evaluated functional RVLM changes in
animals previously submitted to exercise training (Becker et al.,
2005; Martins-Pinge et al., 2005; Mueller, 2007; Ogihara et al.,
2014).

RVLM premotor neurons driving the excitatory tone to the
sympathetic preganglionic neurons are mainly glutamatergic
(Guertzenstein and Silver, 1974; Dampney, 1994). Indeed
microinjections of L-glutamate in the RVLM produce pressor
response in both anesthetized (Willette et al., 1987) and awake
rats (Bachelard et al., 1990; Martins-Pinge et al., 2005). In
addition, studies have shown increased release of glutamate
within the RVLM during static muscle contractions (Caringi
et al., 1998; Lillaney et al., 1999; Ishide et al., 2003), suggesting
this neurotransmitter is directly involved in the exercise pressor
reflex (Ally, 1998).

Interestingly, we previously observed smaller pressor
responses to RVLM glutamate administration in conscious
rats previously submitted to a protocol of swimming training
(Martins-Pinge et al., 2005). Experimental evidence indicated
that exercise, through flow-induced shear stress, increases nitric
oxide (NO) production to cause local vasodilation (Green et al.,
2004; McAllister and Laughlin, 2006). It was also demonstrated
the presence of NO synthase (NOS) isoforms in the RVLM
(Chan et al., 2001), which, under physiological conditions are
able to activate the local synthesis of NO. It has been proposed
that NO is produced during the activation of NMDA receptors,
suggesting its involvement in the activation of glutamatergic
pathways (Wu et al., 2001). Indeed the involvement of NO
in glutamatergic neurotransmission within the RVLM was
previously reported (Martins-Pinge et al., 1999). However, the
production of NO in the RVLM as well as its potential effects
on the autonomic control of the circulation following exercise
training has not been investigated yet.

Knowing that RVLM neurons express NOS isoforms and
that NO has a functional role in glutamatergic neurons
(Dampney, 1994), we hypothesized that exercise would change
RVLM NO availability, thus contributing to the small pressor
response observed in swimming-trained rats. Therefore, in the
present study we analyzed the pressor response to glutamate
microinjection in the RVLM in sedentary and swimming-trained
rats before and after pretreatment with NOS blockers and NO
scavenger within the RVLM. In addition, we compared gene and
protein expression of eNOS and nNOS as well as NO availability
in the RVLM of sedentary and trained rats. We also performed
L-glutamate microinjections in RVLM of sedentary and trained
rats previously treated with a NO-donor.

MATERIALS AND METHODS

Animals
Adult male Wistar rats, weighing 220–240 g at the beginning
of protocols were used. They were housed at the Central
Animal Facility of the State University of Londrina, Brazil at

controlled room temperature (22 ± 1◦C) with a 12-h dark-
light cycle and free access to standard chow and water. All
surgical and experimental protocols were in accordance and
recommendations of Brazilian National Council for Animal
Experimentation Control (CONCEA) and approved by the
Ethics Committe of the State University of Londrina, Brazil
(process number: 35247.2011.45).

Exercise Training Protocol
The animals were randomly allocated to two groups: trained
group (Tr) submitted to swimming training and sedentary group
(Sed), which was not submitted to the exercise protocol. The
swimming training, according to Martins-Pinge et al. (2005),
was conducted between 11:00 AM and 1:00 PM in a glass tank
(4000 cm2 of surface area, 60 cm deep) with water heated to 31
± 1◦C. The training protocol consisted of 4 weeks of swimming
being carried out 60min per day, 5 times a week. During the first
week the animals swam 15min on the 1st day, 30min the 2nd
day, 45min on the 3rd day and 60min from the 4th day on.

Guide Cannula Implantation in the RVLM
One day after the last exercise session the rats were anesthetized
with sodium pentobarbital (40mg/kg, ip) and underwent
stereotaxic surgery for implantation of guide cannulas directed
to RVLM. Rats were placed in the stereotaxic apparatus (David
Kopf) with the incisor bar 5mm below the interaural line,
according to Martins-Pinge et al. (1997). At the end of this
procedure, the animals received a prophylactic dose of antibiotic
(40.000 IU) and returned to the Animal Facility for 3 days for
surgical recovery.

Artery and Vein Catheterization and
Cardiovascular Recordings
Twenty-four hours before the experiments, the rats were again
anesthetized (tribromoethanol, 250mg/kg, ip) for implantation
of catheters in the femoral artery and vein for arterial
pressure (AP) and heart rate (HR) recordings and drugs
administration, respectively. The arterial cannula was attached
to a pressure transducer (Model MLT0380, Powerlab) connected
to a computerized system (Powerlab, AD Instruments) and
∼30min were allowed for adaptation to the environment
(individual cage in a quiet room). Baseline AP and HR were
continuously recorded in conscious freely-moving rats for
30min.

Baroreflex Testing
Baroreflex function was analyzed by loading/unloading of
baroreceptors with intravenous bolus injections (100µL) of
phenylephrine (0.1 up to 12.8µg/kg) and sodium nitroprusside
(0.2 up to 25.6µg/kg). Subsequent injections were not made
until the returning of MAP and HR to basal values. MAP and
HR values were measured immediately before (control) and at
the peak of each response. Baroreceptor reflex control of HR,
determined for each rat, was estimated by the sigmoidal logistic
equation fitted to data points, as described previously (Kent
et al., 1972; Head and Mccarty, 1987). The equation linking HR
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responses to pressure changes was: HR = P1+P2/[1+eP3(BP–
P4)], where P1 = lower HR plateau, P2 = HR range, P3 = the
curvature coefficient and P4 = BP50 (the value of MAP at
half of the HR range). The average gain of baroreflex function
(BrS) was also calculated (Kent et al., 1972; Head and Mccarty,
1987). Baroreflex testing was performed in groups of trained and
sedentary rats without guide cannula implantation.

RVLM Microinjections
The protocol consisted of initial unilateral microinjection of
L-glutamate (5 nmol/100 nL). After microinjection, MAP and
HR responses were followed for 5–10min recovery interval for
returning of cardiovascular parameters to baseline values. Then,
RVLM was treated with one of the following drugs: saline 0.9%
(Sed: n = 4; Tr: n = 5) or NO scavenger, Carboxy-PTIO
(1 nmol/100 nL) (Sed: n = 8; Tr: n = 10) or the nNOS
inhibitor Nw-Propyl-L-Arginine (4 nmol/100 nL) (Sed: n = 8;
Tr: n = 10) or the unspecific NOS inhibitor L-NAME
(15 nm/100 nL) (Sed: n = 8; Tr: n = 7). RVLM L-glutamate
(5 nmol/100 nL) microinjection was then repeated and MAP and
HR responses were followed for 5–10min up to the return of
cardiovascular parameters to baseline values.

Another protocol consisted of previous treatment of RVLM
with DeaNonoate (an NO-donor, 50 nmol/100 nL) followed by
microinjection of L-glutamate in the RVLM of sedentary and
trained animals (Sed: n = 4; Tr: n = 4).

The concentrations of drug used were based on the following
literatures: L-glutamate, and L-NAME:. Martins-Pinge et al.
(2007); carboxy-PTIO and N-Propyl-L-arginine: Busnardo et al.
(2010). Dea-NONOate: Yao et al. (2007). At the end of each
experimental protocol, the animals were euthanized with an
extra dose of anesthetic and then held marking procedures of
microinjection sites and removal of the brain for subsequent
histological analysis.

Confirmation of RVLM Microinjections
At the end of the experimental protocols, the rats were
euthanized with an overdose of sodium pentobarbital. Sites of
RVLM administrations were marked by microinjection of Evans
blue dye (2%/100 nL). Brain was removed and stored in 10%
formaldehyde for subsequent histological analysis. Sequential
slices (40µm) of brainstem were cut in a cryostat, placed in
gelatinized slides and stained with 1% neutral red. The sections
were examined microscopically with the aid of a rat brain atlas
(Paxinos, 1998). Only rats with confirmed RVLMmicroinjection
were included in experimental groups (see Figure 2F).

Tissue Harvesting for qPCR and
Immunohistochemistry Assays
Gene and protein expression in the RVLM were analyzed in
other groups of sedentary and trained rats not submitted to
RVLM cannulation. At the end of experimental protocols, rats
were deeply anesthetized (60mg/kg pentobarbital i.p) and the
brains perfused with phosphate-buffered saline (PBS 0.1 M,
pH 7.4, ∼30mL/min for 4–5min, via a left ventricle cannula)
immediately after the respiratory arrest (Cavalleri et al., 2011). In
8–10 rats/group, fresh brains were rapidly removed and frozen

in a dry ice box. Bilateral punches of RVLM were obtained
from frozen brain stem sections (rostral to the Obex, 1000–
1200µm of thickness) and stored in a deep freezer in individual
eppendorfs with 1mL Trizol R© until processing. In the remaining
3–4 rats/group, after the initial perfusion with PBS, brains
were fixed with 4% paraformaldehyde (PFA, 30mL/min for 20–
30min). Brains were removed from the skull, post-fixed in 4%
PFA for 24–48 h. Series of coronal sections (40µm) from brain
stem were cut using the Leica-CM3050 cryostat and stored in a
cryoprotectant solution (20% glycerol plus 30% ethylene glycol
in 50mM phosphate buffer, pH 7.4, −20◦C) for up to 2 weeks
until histological processing (Schreihofer and Guyenet, 1997).

Real-Time qPCR
RVLM mRNA expression was estimated in Tr and Sed by
the real-time qPCR. The total RNA was extracted using the
Trizol R©, dissolved in 10µL of DEPC water and stored at
-80◦C. Then, the samples were treated with DNAse I for cDNA
synthesis by reverse transcription (Revert Aid TMM-MuLV
Reverse Transcriptase) according to the protocol supplied by the
manufacturer. The cDNA obtained was then stored at −20◦C.
The samples were subjected to amplification by Real Time
qPCR method using Platinum SYBRGreen qPCR Supermix-
UDG (Cavalleri et al., 2011) and specific primers for the two
NOS isoforms: eNOS (Gene Bank: NM_021838.2/Fragment
Size: 94pb, sense primer: GCCAAACAGGCCTGGCGCAA,
antisense primer: GTGCTGTCCTGCAGTCCCGA) and nNOS
(Gene Bank: NM_0522799.1/Fragment Size: 118pb, sense
primer: CGCTACGCGGGCTACAAGCA, antisense primer:
GCACGTCGAAGCGGCCTCTT). mRNA expression was
estimated by semi-quantitative real time PCR (7500 Real-Time
PCR System). The specificity of the SYBRGreen assays was
confirmed by analysis of the melting points of the curves. The
endogenous gene was the hypoxanthine guanine phosphoribosyl
transferase—HPRT (Gene bank: NM_012583.2/Fragment Size:
125pb), which is continuously expressed in all cells of the body
and not altered by physical training (Cavalleri et al., 2011).
Analysis of gene expression was made by the geNorm software
VBA applet for Microsoft Excel, considering the values of
threshold cycle (Ct) and the 11Ct method (Cavalleri et al.,
2011). The results were expressed as fold increase. All reagents
and primers were purchased from Invitrogen (San Diego, CA,
USA).

Immunohistochemistry
Endothelial nitric oxide syntase (eNOS) and neuronal nitric
oxide syntase (nNOS) immunoreactivities were detected in
sequential brain stem slices using mouse anti-eNOS/NOS Type
III antibody (1:200, BD Transduction Laboratories) and mouse
anti-nNOS (1:200, BD Transduction Laboratories), respectively,
as previously described (Llewellyn-Smith et al., 2005; Barna et al.,
2012). Biotin-SP-conjugated AffiniPure Donkey Anti-Mouse
IgG (H+L) (1:500, Jackson Immuno Research Laboratories—
immunoperoxidase assay) was used as the secondary antibody.
Brain stem slices were mounted in sequential rostrocaudal
order; slides were dried and covered with Krystalon (EMD
Chemicals Inc, NJ). Brain sections were analyzed in a Zeiss
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Axioskop 2 microscope (Oberkochen, Germany) to check
the location of neurons and vessels marked. RVLM neurons
immunoreactive to nNOS and vessels immunoreactive to eNOS
were identified and quantified by a blind investigator. The images
from both experimental groups were digitized with identical
acquisition settings. Image analysis was performed with Image
J software (Wright Cell Imaging Facility—Toronto Western
Research Institute, ON). An automated tracing procedure that
incorporated the threshold paradigm was applied the acquired
images. The background intensity was calculated from random
adjacent areas in the RVLM. ROIs of predetermined sizes were
used to determine the density of eNOS threshold signal. Values
for each area per rat were averaged to obtain the mean value for
each experimental group.

Nitrite Levels in RVLM
Indirect NO concentration in RVLM was estimated in punches
obtained from sedentary (n = 10) and trained (n = 8)
rats through the measurement of nitrite as described previously
(Navarro-Gonzálvez et al., 1998; Panis et al., 2011). Group
Samples (Sed: 3.6 ± 0.3 and Tr: 3.5 ± 0.4 mg), keeping the
concentration of 100mg of wet weight tissue per milliliter of
PBS, were used. All reagents for the nitrite assay were obtained
from Sigma Chemical Co. The results were expressed in uM of
nitrite/mg of RVLM tissue.

Statistical Analysis
All data are reported as mean± SEM. Nitrite concentration, gene
and protein expression in Gtr and Gsed, baroreflex sensitivity
and MAP and HR responses determined by RVLM drugs
microinjections in both groups were compared by Student T test
or paired “T” test as appropriate. Differences between groups
were analyzed by one-way ANOVA followed by Newman-Keuls
as the post hoc test. Differences were considered significant when
P<0.05.

RESULTS

In all groups of rats studied, swimming training was accompanied
by resting bradycardia (average reduction of ∼9%, when
compared to respective sedentary groups, Table 1). In addition
we observed improved baroreceptor reflex control of HR
(Figure 1A) and increased baroreflex gain (Figure 1B) in
the trained animals compared to sedentary controls (Gtr:
−4.41 ± 0.5 vs. Gsed: −2.42 ± 0.31 b/min/mmHg, P < 0.05).
These responses confirmed the efficacy of exercise training to
improve cardiovascular control. Also, as observed in Table 1,
swimming training did not change baseline MAP in the
normotensive groups of rats.

Accordingly with previous data (Martins-Pinge et al.,
2005), the L-glutamate administrations in RVLM elicited

TABLE 1 | Resting values of mean arterial pressure (MAP) and heart rate (HR) and basal values of MAP before the first and the second Glutamate

microinjections in sedentary and swimming trained groups treated with Saline, Carboxi-PTIO, Nw-Propyl-L-Arginine, and L-NAME within the RVLM.

Saline Carboxi-PTIO Nw-Propyl-L-Arginine L-NAME

Sedentary Trained Sedentary Trained Sedentary Trained Sedentary Trained

RESTING VALUES

MAP (mmHg) 107± 2 (n = 4) 110± 2 (n = 5) 112±2 (n = 8) 112±4 (n = 10) 112±3 (n = 8) 111±2 (n = 10) 112±1 (n = 8) 109±1 (n = 9)

HR (b/min) 356± 1 (n = 4) 315± 12* (n = 5) 363±4 (n = 8) 336±6* (n = 10) 363±9 (n = 8) 338±4* (n = 10) 377±5 (n = 8) 348±6* (n = 9)

BASAL MAP DURING RVLM INJECTIONS

Before treatment 118± 6 (n = 4) 124± 11 (n = 5) 126±2 (n = 8) 125±2 (n = 10) 129±3 (n = 8) 123±1 (n = 10) 119±2 (n = 8) 116±2 (n = 9)

After treatment 127± 4 (n = 4) 120± 4 (n = 5) 124±2 (n = 8) 125±2 (n = 10) 130±3 (n = 8) 128±2 (n = 10) 121±3 (n = 8) 116±3 (n = 9)

(*p ≤ 0.05 compare to corresponding sedentary group; Student t-test).

FIGURE 1 | (A) Sigmoidal function curves expressing the relationship between heart rate (HR) and mean arterial pressure (MAP) during loading and unloading of

baroreceptors in conscious sedentary and swimming-trained rats. (B) Changes of baroreflex gain at different pressure levels. The parameters of curves are:

Sedentary—Lower plateau = 259 b/min, HR range = 162b/min, BP50 = 116mmHg, Maximal gain sensitivity = 0.047b/min/mmHg; Trained—Lower plateau =

215b/min, HR range = 257b/min, BP50 = 111mmHg, Maximal gain sensitivity = 0.067b/min/mmHg. Significance (p < 0.05): * vs. sedentary group.
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FIGURE 2 | Mean Arterial Pressure (MAP) responses (1MAP) to unilateral L-glutamate microinjection in the RVLM of sedentary and trained rats before

(open bars) and after (filled bars) pretreatment of RVLM with Saline (A), Carboxy-PTIO (B), n-Propyl-L-Arginine (C), and L-NAME (D). Significances

(p < 0.05) are vs. sedentary group: * before; † after RVLM treatment. Scheme on panel (E) and photomicrograph on (F) illustrate the localization of microinjections

within the RVLM area. XII cranial nerve; C1, first cervical nerve; NTS, nucleus of the solitary tract; nA, nucleus ambiguous; Sp5, spinal trigeminal nucleus; py, pyramidal

tract; RVLM, rostral ventrolateral medulla. Scale bar in (F) represents 500µm.

marked pressure increases that were significantly reduced
by swimming training, and the same was observed in
all groups analyzed here before the different treatments
(Figure 2). In sedentary rats, the pressor response to L-
Glu in the RVLM before and after local microinjections of
saline were, respectively, 53 ± 2mmHg (Figure 2A, open
bar) and 52 ± 6mmHg (Figure 2A, dark bar) and, in the
trained rats were 35 ± 2mmHg (Figure 2A, open bar) and
32 ± 2mmHg (Figure 2A, dark bar). However, previous
microinjection of Carboxi-PTIO canceled the differences in
the pressor responses to L-glutamate between sedentary and
trained animals (Figure 2B). The RVLM previous treatment
with Nw-Propyl-L-Arginine, a nNOS inhibitor, caused the same
results (Figure 2C). A similar observation was made after L-
NAME (a nonselective NOS inhibitor) administration in the
RVLM, in which, the pressor responses to L-Glu in the
RVLM were not different between sedentary and trained rats
(Figure 2D).

As depicted in the map of the ventral surface of the
medulla (Figure 2E) and in a coronal section of the brain stem
(Figure 2F), dye injection at the end of experiments confirmed
that all microinjections were directed to the RVLM.

The gene expression of NOS isoforms within the RVLM was
also analyzed in both groups. There was a marked reduction
of RVLM eNOS expression in the trained group (from 1.20
± 0.25 in Sed to 0.41 ± 0.08 in Tr, P < 0.05, Figure 3C)
and a small decrease in nNOS mRNA expression that did
not attain significance (Sed: 1.46 ± 0.42 vs. Tr: 1.04 ± 0.27,
P > 0.05, Figure 3B). Immunohistochemistry for eNOS in
the RVLM revealed a “blood vessels pattern,” confirming the
presence of eNOS mainly in the endothelium of capillaries
within the RVLM (Figures 4B,B1,C,C1). In agreement with the
increased capillary supply observed in brain areas of trained
animals (Dunn et al., 2012; Huang et al., 2013) quantitative
analysis showed that trained rats exhibited increased eNOS
immunoreactivity when compared to sedentary controls (Sed:
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FIGURE 3 | Comparison of nitrite concentration (A), mRNA gene

expression of nNOS (B), and eNOS (C) in punches of RVLM of

sedentary and trained rates. Significance (*p < 0.05) vs. sedentary group.

2.3 ± 0.2 vs. Tr: 11.7 ± 0.2, P < 0.05, Figure 4A). On the
other hand, nNOS immunoreactivity in the RVLM was present
essentially in neuronal cell bodies (Figures 4E,F). There was
a slight training-induced reduction in RVLM nNOS positive
neurons (-9.4%), but values did not attain significance (Sed: 3.2
± 0.2 vs. Tr: 2.9 ± 0.1, P > 0.05, Figure 4D). Interestingly,
the comparison of nitrite concentration indicated lower NO
availability within the RVLM of trained rats (Sed: 9.1± 2.0 vs. Tr:
3.4± 0.4µMof nitrite/mg of tissue, a reduction of 63%, P < 0.05,
Figure 3A).

Considering that NO seems to be decreased in RVLM of
trained rats, we performed L-glutamate microinjection in TR
and Sed rats after treatment with DeaNonoate (Figure 5A). After
the NO-donor, L-glutamate pressor responses were increased in
trained rats (Sed: 45.29 ± 5.76 vs. Tr: 65.03 ± 5.24, P > 0.05,
Figure 5B).

DISCUSSION

First of all, since several studies in the literature described
increased baroreflex sensitivity after aerobic training (Brum et al.,
2000; Medeiros et al., 2004; Ceroni et al., 2009; Cavalleri et al.,
2011; Masson et al., 2014), we also investigated the ability of
swimming training to alter baroreceptor reflex control of HR.
We observed that 4 weeks of swimming training markedly
improved baroreflex gain and increased the operational range
of the reflex. Training-induced improvement of baroreflex
sensitivity by providing a better ability to correct instantaneous
pressure oscillations reduces pressure variability and consequent
capillary lesions thus improving cardiovascular homeostasis.
This study also confirmed previous observations in the literature
that swimming training did not change pressure levels of
normotensive rats, but induced resting bradycardia (Medeiros
et al., 2004; Mehanna et al., 2007; Mastelari et al., 2011; Sant’Ana
et al., 2011).

In the present study, some new observations were obtained
with the swimming training protocol of 4 weeks: (1) similar to
other training protocols, swimming training was also able to
improve the baroreceptor reflex control of HR; (2) the lower
training-induced RVLM NO content significantly contributes
to the lower pressor response to glutamate since the difference
between trained and sedentary rats disappear after the local
administration of NO scavenger or NOS inhibitors; (3) reduced
NO availability in trained rats may decrease RVLM glutamatergic
activity, thus reducing glutamate-induced sympathoexcitation;
(4) both isoforms are able to release NO in the RVLM, nNOS and
eNOS seems to be involved in the reduced NO content during
RVLM glutamate administration. (5) After adding a NO-donor,
the attenuated pressor response to L-glutamate in Tr group was
restored. Together these data indicate that swimming training,
although not changing basal pressor levels, is able to refrain
glutamate-stimulated pressure increases by reducing RVLM NO
modulation of sympathetic activity.

In trained rats, the lower pressor response to glutamate
administration in the RVLM confirmed previous data from our
laboratory (Martins-Pinge et al., 2005). In addition, the present
results by comparing in the same rats the pressure responsiveness
to glutamate before and after the blockade of NO availability (by
either NO scavenger and blockade of NOS isoforms), showed
that the smaller pressor response exhibited by trained rats was
due to a low NO content in the RVLM. Indeed the measurement
of nitrite content within this area confirmed the reduced NO
availability after swimming training. On the other hand, pressor
responsiveness was not changed in sedentary rats submitted to
the same RVLM treatments. Since the difference in the pressor
response was only observed in trained rats before treatments, was
not present after NOwithdrawal in the trained group and was not
significantly affect by NO removal in sedentary rats, we suggest
that training abrogated pressor responsiveness to glutamate by
decreasing NO release and its excitatory effects on glutamatergic
neurons. We also confirm this hypothesis when after adding a
NO-donor, the increase in MAP by L-glutamate was restored.

Regarding the effects of NO in the RVLM, there are
controversies in the literature. Some investigators reported blood
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FIGURE 4 | Immunohistochemistry (ir) for eNOS (upper panels) and nNOS (lower panels) in the RVLM of sedentary (Gsed) and trained (Gtr) groups. (A)

Quantification of RVLM eNOS density in Gsed and Gtr. Significance (p < 0.05) * vs. sedentary group. (B,C) Representative photomicrographs of RVLM eNOS-ir in 2

different magnifications in sedentary (B,B1) and trained rats (C,C1). (D) Quantification of nNOS-ir/RVLM slice in Gsed and Gtr. (E,F) Representative photomicrographs

showing RVLM nNOS-positive neurons in sedentary (E) and trained (F) rats. Scale bar represents 200µm. Sp5, spinal trigeminal nucleus; py, pyramidal tract. Black

arrows indicate NOS-positive neurons.

pressure increases after administration of L-arginine and NO
donors (Hirooka et al., 1996; Martins-Pinge et al., 1999), while
others observed a significant decrease (Shapoval et al., 1991;
Zanzinger et al., 1995; Tseng et al., 1996; Kagiyama et al., 1997).
It is possible that these contradictory effects are grounded in
different concentrations used by researchers: while high NO
doses in the RVLM lead to decreases, lower doses produce
arterial pressure increases (Morimoto et al., 2000). It is important
to note that pharmacological studies in the central nervous
system of different species showed that NO may interact with
both the glutamatergic excitatory and GABAergic inhibitory
neurons thus being able to cause neuronal excitation or neuronal
inhibition (Tseng et al., 1996; Chen et al., 2001; Ishide et al.,
2003; Martins-Pinge et al., 2013). However, considering the
predominance of sympathetic premotor neurons in the RVLM
that are glutamatergic (Dampney, 1994; Mischel et al., 2015), and
the observations that blockade of endogenous NO release by NO
scavengers in the RLVM was accompanied by hypotension and
bradycardia (Chan et al., 2001) and reduced pressor response
(present set of data) we may suggest that NO within the RVLM
modulates preferentially the sympathoexcitation mediated by
glutamatergic neurons. In addition, RVLM blockade of NOS
isoforms by both Nw-Propyl-L-Arginine and L-NAME was

accompanied by smaller pressor response to locally administered
glutamate. These data together with previous studies showing
MAP, HR, and renal sympathetic nerve activity reductions
after NOS blockade in the RVLM (Hirooka et al., 1996; Chan
et al., 2003; Martins-Pinge et al., 2007) indicate an excitatory
effect of locally released NO that is blunted by swimming
training.

Both isoforms are able to synthesize NO when properly
stimulated by the increased neuronal activity (nNOS) or by the
augmented shear stress (eNOS). Our data showed that trained
rats exhibited a huge increase in eNOS protein expression and a
possible compensatory downregulation of eNOS gene expression
due to the increased capillary profile observed after training
(Dunn et al., 2012; Huang et al., 2013). Notice that RVLM
glutamate injection was made when trained and sedentary rats
are resting in their home cages, therefore not exhibiting a
hyperkinetic circulation to stimulate eNOS via increased shear
stress. On the other hand the slight reduction in nNOS expression
(gene and protein) observed in the RVLM of trained rats may
account for the reduced NO availability upon neuronal activation
by glutamate administration. This does not preclude additional
activation of eNOS and endothelial NO production during acute
bouts of exercise. Indeed Ishide et al. (2003, 2005) showed that
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FIGURE 5 | Mean Arterial Pressure (MAP) responses (1MAP) to unilateral L-glutamate microinjection in the RVLM of sedentary and trained rats after

pretreatment of RVLM with DEA-NONOate. (A) Typical tracing of one sedentary and one trained rat. (B) Mean values of L-glutamate microinjections in sedentary

and trained rats after DEA-NONOate. Significance (p < 0.05) * vs. sedentary group.

both, nNOS and eNOS are involved in RVLM NO synthesis
during muscle contractions. Importantly, our data showed that
4 weeks of swimming training caused a marked reduction of NO
availability in the RVLM, as measured by nitrite concentration.
The ability of swimming training to reduce both the increased
NOS expression and the elevated NO synthesis observed in
hypertensive rats was recently demonstrated in the RVLM of
2K-1C trained rats (Sousa et al., 2015).

In summary, our data indicate that swimming training
decreases RVLM NO availability, therefore reducing
glutamatergic activity in sympathetic premotor neurons
and the stimulated pressor response. The present set of
data demonstrates an important modulatory role of RVLM
glutamatergic neurons by locally released NO in exercise trained
subjects.

AUTHOR NOTE

The present study evaluated glutamate and nitric oxide
interactions in the RVLM of normotensive rats previously
submitted to swimming training. The functional studies were
performed in conscious rats, avoiding anesthesia influence on
neural function, focusing on glutamate effects in RVLM and the

contributions of eNOS and nNOS isoforms and its cardiovascular
control.We observed that exercise training decreased nitric oxide
production in RVLM, collaborating to decrease sympathetic
activity in trained subjects. Also, no studies have been evaluating
those aspects in conscious rats.
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