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Disruptions in the orderly activation and recovery of electrical excitation traveling

through the heart and the gastrointestinal (GI) tract can lead to arrhythmogenesis.

For example, cardiac arrhythmias predispose to thromboembolic events resulting in

cerebrovascular accidents and myocardial infarction, and to sudden cardiac death. By

contrast, arrhythmias in the GI tract are usually not life-threatening and much less well

characterized. However, they have been implicated in the pathogenesis of a number

of GI motility disorders, including gastroparesis, dyspepsia, irritable bowel syndrome,

mesenteric ischaemia, Hirschsprung disease, slow transit constipation, all of which are

associated with significant morbidity. Both cardiac and gastrointestinal arrhythmias can

broadly be divided into non-reentrant and reentrant activity. The aim of this paper is to

compare and contrast the mechanisms underlying arrhythmogenesis in both systems

to provide insight into the pathogenesis of GI motility disorders and potential molecular

targets for future therapy.

Keywords: gastrointestinal electrophysiology, cardiac electrophysiology, electrical excitation, arrhythmia, focal

activity, reentry

INTRODUCTION

Abnormalities in the orderly activation and recovery of impulses traveling through the heart
and the gastrointestinal (GI) tract can lead to arrhythmogenesis (Tse, 2015; Tse and Yeo,
2015; Tse et al., 2016k). Thus, atrial arrhythmias can cause thromboembolic events resulting in
cerebrovascular accidents, whilst ventricular arrhythmias predispose to sudden cardiac death.
By contrast, arrhythmias in the GI tract are usually not life-threatening and perhaps this is
the reason that they are much less well characterized. However, recent studies have implicated
GI arrhythmogenesis with a number of motility disorders, which are associated with significant
morbidity. The aim of this article is to compare and contrast the electrophysiological mechanisms
of arrhythmogenesis in both systems, drawing analogies to shed light on the GI aspects. This is
followed by a discussion on the clinical relevance as exemplified by GI motility disorders and
molecular targets for future therapy.
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IONIC CONTRIBUTIONS TO ELECTRICAL
ACTIVITY

Smooth muscle cells of the GI tract generate slow waves,
whereas cardiomyocytes in the heart produce action potentials
(APs); both types of electrical activity are dependent upon ionic
conductances across the cell membranes. The morphology of
these waveforms dependent on the cell type and location in
the respective specialized conduction systems. Thus, slow waves
by gastric cells are triangular with rapid depolarization and
repolarization phases. Slow waves of the small and large intestinal
smooth muscle cells have an initial depolarizing phase generated
by the pacemaker cells, interstitial cells of Cajal of the myenteric
plexus (ICC-MY) (Dickens et al., 1999), and a second phase
mediated by ICC within the smooth muscle (ICC-IM) (Bauer
et al., 1985; Dickens et al., 2001). Superimposed upon these slow
waves are regenerative Ca2+ spikes, which only develops when
the membrane potential is above a threshold; these spikes are
intrinsic to the smooth muscle cells (Lee et al., 1999; Suzuki and
Hirst, 1999; Lammers and Slack, 2001). Cardiac APs have a rapid
upstroke, rapid repolarization and a plateau phase. The reader is
directed to these articles here for a review of the ionic currents
mediating GI slow waves and cardiac APs (Lammers et al., 2009;
Tse et al., 2016c). Both systems show features of restitution, where
the duration of electrical activity shortens in response to higher
pacing rates. Thus, slow waves in the gastric antrum normally
discharges at a frequency of 1–2 cycles per minute (cpm) (Bauer
et al., 1985; Publicover and Sanders, 1986). Upon a higher rate
of extrinsic stimulation, it can exhibit waves at 7 cpm (Sarna and
Daniel, 1973). This can be explained by restitution mechanisms
that result from shortening or abolishing the plateau phase
(Publicover and Sanders, 1986). Similarly, cardiac restitution is
responsible for normal shortening of APD observed in response
to faster heart rates, and is thought to be an adaptive mechanism
for preserving diastole at these rates.

ARRHYTHMOGENIC MECHANISMS

Both cardiac and gastrointestinal arrhythmias can be classified
into non-reentrant and reentrant mechanisms (Table 1).

Non-reentrant Activity
Non-reentrant activity refers to aberrant initiation due to
either enhanced automaticity or triggered activity. Enhanced
pacemaker activity in the heart can arise from a depolarizing
shift of the maximum diastolic potential, a hyperpolarizing
shift of the threshold potential or a faster rate of rise of
the spontaneous depolarization (Jalife et al., 2009). In the GI
tract, it has been observed in the human stomach (O’Grady
et al., 2011, 2012), and the small intestine during inflammation,
infection and mitochondrial disease (Der et al., 2000; Scheffer
and Smout, 2011; Wu et al., 2013). By contrast, triggered
activity refers to activity initiated by the preceding electrical
activity (Figure 1). In the heart, it is due to early or delayed
afterdepolarization phenomena (EADs and DADs, respectively),
which are secondary depolarization events occurring before
the subsequent AP (Cranefield, 1977; January et al., 1991),

which can initiate arrhythmias (Tse, 2015). EADs are typically
generated when the repolarization phase of the cardiac AP is
prolonged, leading to reactivation of the L-type Ca2+ channels
(ICa) (January and Riddle, 1989) or activation of the Na+-
Ca2+ exchanger (INCX) secondary to spontaneous Ca2+ release
from the sarcoplasmic reticulum (Szabo et al., 1994). DADs are
associated with Ca2+ overload, which activates the following
Ca2+-sensitive currents: the non-selective cationic current, INS,
the sodium-calcium exchange current, INCX, and the calcium-
activated chloride current, ICl,Ca, which together constitute
the transient inward current (ITI) (Guinamard et al., 2004).
These afterdepolarizations are analogous to “second potentials”
that could generate the ectopic beats observed in the GI
tract (Qian et al., 2003). However, the mechanism underlying
their generation is different. Increased automaticity here is
related to increased stretch, enhanced by acetylcholine and
inhibited by adrenaline (Daniel and Chapman, 1963). Their ionic
contributions are yet to be determined, but could potentially
involve Ca2+ entry from the extracellular space or Ca2+

release from the endoplasmic reticulum (Suzuki and Hirst,
1999; Lammers and Slack, 2001). Premature slow waves, which
presumably arise from such secondary potentials, precede and
may be a prerequisite for the initiation of tachygastria (Lammers
et al., 2008).

Reentry
Reentry is a frequently encountered mechanism and occurs when
an impulse fails to extinguish itself and re-excites a region that
has recovered from refractoriness. In the heart, it can take place
in the presence of an obstacle (circus-type), or in the absence of
an obstacle (reflection or phase 2 reentry). Three requirements
for circus-type reentry are reduced conduction velocity (CV),
unidirectional conduction block and an obstacle around which
the AP can circulate. This obstacle can be a permanent
anatomical abnormality (anatomical reentry) (Figure 2), but can
also involve a functional core of refractory tissue that arises
dynamically (functional reentry) (Figure 3; Garrey, 1914).

There are a number of similarities between reentry occurring
in the GI tract and the heart: initiation of a premature beat
precede reentry, reentry can be non-sustained or sustained.
Additionally, anisotropic conduction is important in both
systems in reentry (Angeli et al., 2013). However, several
differences are observed (Lammers et al., 2008). Firstly, gastric
tachyarrhythmia occurs at a much lower frequency of 10–15
cycles per minute, whereas ventricular tachyarrhythmia typically
occurs at rates between 100 and 250 beats per minute (bpm).
Secondly, unidirectional conduction block is a prerequisite of
circus-type reentry (Allessie et al., 1976, 1977; Lammers et al.,
1990), but this is not the case in tachygastria as shown by
electrograms recorded from the canine stomach using a multi-
electrode array (Lammers et al., 2008).

Anatomical Reentry

Circus-type reentry involving an anatomical obstacle was first
demonstrated by the ring model using disks made from sub-
umbrella tissue of a jellyfish (Mayer, 1906). Mayer made the
following observations. The disks were paralyzed when they
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TABLE 1 | Arrhythmogenic mechanisms in the GI and cardiovascular systems can be divided into non-reentrant and reentrant activity.

Classification Mechanism Sub-types Clinical relevance References

Non-reentrant Enhanced pacemaker

activity

– GI: Gastroparesis, intestinal infection,

inflammation and mitochondrial dysfunction

Der et al., 2000; O’Grady et al.,

2011, 2012; Scheffer and Smout,

2011; Wu et al., 2013

– Cardiac: increased sympathetic tone,

hypovolaemia, ischaemia, electrolyte

disturbances

Jalife et al., 2009; Tse, 2015

Triggered activity Second potentials (GI) Tachygastria Daniel and Chapman, 1963; Suzuki

and Hirst, 1999; Lammers and

Slack, 2001; Qian et al., 2003;

Lammers et al., 2008

Early afterdepolarizations

(cardiac)

Long QT syndromes, heart failure Weiss et al., 2010; Maruyama et al.,

2011

Delayed afterdepolarizations

(cardiac)

Ca2+ overload Catecholaminergic

polymorphic ventricular tachycardia (CPVT),

heart failure

Priori et al., 2001; Nam et al., 2005

Reentrant Obstacle Anatomical (GI and cardiac) GI: circumferential reentry Sinha et al., 2002; Angeli et al., 2013

Cardiac: AV nodal reentrant tachycardia, AV

reentrant tachycardia and pre-excitation

syndromes, post-myocardial infarction,

fibrosis in cardiomyopathies, myocarditis,

cardio-metabolic disorders

Wong et al., 2013; Vassiliou et al.,

2014; Baksi et al., 2015; Tse et al.,

2015a,b; Tse et al., 2016a

Functional (GI and cardiac) GI: double-loop Gullikson et al., 1980; Stoddard

et al., 1981; Kim et al., 1987;

Lammers et al., 2012; Angeli et al.,

2013

Cardiac: spiral and scroll wave,

figure-of-eight, torsade de pointes

Allessie et al., 1973, 1975, 1976,

1977, 1989; Smeets et al., 1986;

Rensma et al., 1988

No obstacle Reflection (cardiac) Ischaemia Antzelevitch et al., 1980;

Antzelevitch and Moe, 1981;

Rozanski et al., 1984; Lukas and

Antzelevitch, 1989; Auerbach et al.,

2011; Tung, 2011

Phase 2 (cardiac) Ischaemia, Ca2+ overload, Brugada

syndrome

Kuo et al., 1983; Di Diego and

Antzelevitch, 1993; Lukas and

Antzelevitch, 1996; Shimizu et al.,

2005

were separated from their sense organs. They do not pulsate
in seawater, but did so when ring-like cuts were made from
the tissue. Upon mechanical stimulation, the disks then showed
“rhythmical pulsations so regular and sustained as to recall
the movement of clockwork.” Later, Mines used a ring-like
preparation of the tortoise heart, demonstrating that it was
possible to initiate circus-type re-entry by electrical stimulation
(Mines, 1913). He noted that when an excitation wave has a high
CV and a long duration, the whole circuit would be excited at
the same time, causing the excitation to die out. By contrast,
when the wave has slow CV and a short ERP, the tissue ahead
of the excitation wave would recover from refractoriness and can
therefore be re-excited, resulting in circus-type re-entry. Mines
predicted “a circulating excitation of this type may be responsible
for some cases of paroxysmal tachycardia as observed clinically.”
He was the first to formulate the three criteria for circus-type
reentry mentioned above. It was later recognized that conduction
of the excitation must be sufficiently slow to allow the tissue

ahead in the circuit to recover from refractoriness so that it can be
re-excited. It is useful to describe this excitation as a propagating
wave (Weiss et al., 2005), with a wavefront that represents action
potential depolarization, and a tail that represents repolarization
(Weiss et al., 2000) with the assumption that APD is equal to the
effective refractory period (ERP) (Tse et al., 2016i). The length
of this excitation wave (λ) is given by CV × ERP (Wiener and
Rosenblueth, 1946), and must be smaller than the length of
the circuit in order for re-entry to be successful. Thus, reduced
and increased λ is associated with greater and lesser likelihood
of circus-type reentry, respectively (Smeets et al., 1986; Vaidya
et al., 1999; Osadchii and Olesen, 2009; Osadchii et al., 2009,
2010; Osadchii, 2010, 2012a,b, 2014a,b, 2016; Tse et al., 2012,
2016b,c,d,e,f,g,h,j; Tse and Yan, 2016; Tse, 2016a,b,c).

Anatomical reentry is relevant in different types of
tachyarrhythmias, such as AV nodal reentrant tachycardia,
AV reentrant tachycardia and pre-excitation syndromes
including Wolff-Parkinson-White Syndrome. It can be also
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FIGURE 1 | Triggered activity can result from second potentials in the GI tract (left) or afterdepolarizations in the heart (right). Second potentials may be

due to Ca2+ entry from the extracellular space or Ca2+ release from the endoplasmic reticulum. Early afterdepolarizations (EADs) are due to reactivation of L-type

Ca2+ channels or Na+-Ca2+ exchanger (NCX). Delayed afterdepolarizations (DADs) develop during Ca2+ overload, which activates Ca2+-sensitive channels:

non-selective cationic channel, NCX and calcium-activated chloride channel.

the mechanism underlying atrial and ventricular tachycardia,
where the AP wave circulates around a fixed fibrotic scar, such
as post-myocardial infarction (Sinha et al., 2002). Moreover,
micro-reentry around areas of fibrosis, which is observed in
conditions such as cardiomyopathies, myocarditis and cardio-
metabolic disorders of hypertension and diabetes mellitus
(Wong et al., 2013; Vassiliou et al., 2014; Baksi et al., 2015;
Tse et al., 2015a,b, 2016a). Anatomical reentry involving a
fixed pathway has also been observed in the small intestine:
re-entrant activity propagating around the circumference has
been termed circumferential reentry (Angeli et al., 2013), which
is analogous to the anatomical reentry (Allessie et al., 1977). In
both cases, this is a fixed circuit whose length is determined by
the perimeter of the anatomical obstacle, with an excitable gap
between the depolarization wavefront and the repolarization tail.
The revolution time is inversely proportional to the CV.

Functional Reentry

For functional reentry without an anatomical obstacle, seminal
experiments in rabbit atrial preparations provided its direct
evidence in support of Garrey’s prediction. Allessie applied
electrical stimulation at the center of the atrial preparation
and found that electrical activation elicited by regular stimuli
spread normally throughout the atrial tissue (Allessie et al.,
1973). Contrastingly, premature stimuli elicited electrical activity
that only propagated in the direction of shortened ERPs and
at a reduced CV. Spatial dispersion in the refractory periods
(Allessie et al., 1976) was responsible for unidirectional block
of the premature AP (Allessie et al., 1975). To explain the
lack of activity in this core, it was proposed that center of the
circle was held above threshold by the electrotonic influences
of the depolarization wavefront propagating centripetally, which
rendered it inexcitable. The AP would continue to revolve
around this functional core of refractory tissue. Subsequent
experiments utilizing transmembrane potential recordings led
to the development of the leading circle model (Allessie et al.,
1977). The circuit is defined entirely by the electrophysiological
properties of the tissue. The smallest circuit permitting successful
re-entry, called the leading circle, is one in which the circulating
wavefront can just re-excite the tissue ahead that is still in

its relative refractory period. A variation of functional reentry
termed spiral wave reentry was described later (Krinsky, 1966).
A spiral wave is a two-dimensional wave of excitation emitted by
a self-organizing source of functional reentrant activity, termed a
rotor. The three-dimensional equivalent of a spiral wave is a scroll
wave.

Spiral waves were described earlier in the Belousov–
Zhabotinsky chemical reaction, in which cerium catalyzes the
malonic acid oxidation by bromate (Belousov, 1958; Zaikin and
Zhabotinsky, 1970). The ratio of cerium (IV) to cerium (III)
undergoes repeated temporal oscillations, producing spiral waves
with alternating colors (Müller et al., 1985; Epstein, 2006). Later,
spiral waves were reproduced in theoretical models of cardiac
tissue (Moe et al., 1964; Courtemanche and Winfree, 1991; Leon
et al., 1994) and demonstrated in thin slices of epicardial muscle
using a potentiometric dye, whose spectral properties are altered
by voltage (Salzberg et al., 1973). Previous experiments have
demonstrated an excitable phase singularity, although it remains
non-excited and can act as a functional obstacle around which
the spiral wave can travel (Ikeda et al., 1996). Spiral waves are
not fixed in space but can drift (Pertsov et al., 1993). This is
accompanied by a Doppler effect, in which the frequency of
excitation at a given measurement site depends on its location
relative to the drifting spiral wave (Davidenko et al., 1992).
Therefore, the sites anterior to the wave are excited faster than
those posterior to the wave. Such a mechanism may underlie
torsade de pointes (Dessertenne, 1966), whereby two widely
separated foci discharging at different frequencies were suggested
to underlie periodic torsion of the QRS axis.

Functional reentry in the GI tract can have analogous
mechanisms (Gullikson et al., 1980; Stoddard et al., 1981; Kim
et al., 1987; Lammers et al., 2012; Angeli et al., 2013). In the
stomach, functional reentry can take a circular route (O’Grady
et al., 2011) or have a double loop morphology, consisting of
two wavefronts traveling in opposite directions (Lammers et al.,
2008). The latter is similar to the cardiac figure-of-eight reentry
generated by two counter-rotating spiral waves separated by a
small distance (El-Sherif et al., 1981). Functional reentry has
also been observed in the small intestine (Lammers et al., 2012;
Angeli et al., 2013), which is analogous to Allessie’s leading circle
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FIGURE 2 | Anatomical reentry in the GI tract can take place in the

serosal surface, or around the circumference (left). In the heart, reentry

can similarly take place around an anatomical obstacle, which may be a

fibrotic scar, or areas of fibrosis (right).

FIGURE 3 | Functional reentry in the GI tract (left) and the heart (right)

involves circular activity around a central refractory obstacle. This may

arise from centripetal electrotonic forces that continuously provide

subthreshold depolarization to the core, rendering it inexcitable, or from

premature activation of the tissue concerned leading to absolute or relative

refractoriness.

model of reentrant tachycardia in the atria with the following
similarities (Allessie et al., 1977). Firstly, the length of the circuit
is determined by electrophysiological rather than anatomical
characteristics. Secondly, the dimensions of the circuits are
variable rather than fixed. Thirdly, the depolarization front and
the repolarization tail are in close proximity to each other,
and so there is only a partially excitable gap between the two.
Fourthly, the center of the circuit contains excitable rather than
inexcitable tissue, which would permit termination of the re-
entrant tachycardia if an impulse shorts the circuit by crossing the
circle. Finally, the time for one rotation is inversely proportional
to the RP of the tissue rather than to the CV of the wave. As
pointed out, these circuits can meander along the tissue and
are more unstable than anatomical reentrant circuits (Lammers,
2013). This supports previous modeling studies suggesting that
self-sustaining spiral waves can be generated in anisotropic
smooth muscle syncytium in the intestines (Miftahof, 2005).

AUTONOMIC MODULATION

Coumel originally proposed a triads of conditions necessary for
arrhythmogenesis, which are trigger, substrate and modulating

factors (Coumel et al., 1967, 1978; Coumel, 1993). In both
systems, arrhythmias are susceptible to autonomic modulation
(Smeets et al., 1986; El-Sherif et al., 1987; Ouyang et al., 2015).
In the heart, parasympathomimetic agents such as acetylcholine
reduces CV, APD and ERP, thereby decreasing the excitation
wavelength to promote reentry (Smeets et al., 1986; Oliveira
et al., 2011). In the presence of sympathomimetic agents such as
noradrenaline, the Ca2+ transient increased (Bers, 2002a,b), and
forward activation of NCX, with consequent EADs and triggered
activity (Patterson et al., 2006). Sympathetic activation in long
QT syndromes and catecholaminergic polymorphic ventricular
tachycardia can exacerbate ventricular arrhythmias (Shen and
Zipes, 2014). This may be due to increased heterogeneities in
repolarization and refractoriness, thereby producing a favorable
substrate for reentry. Autonomic dysfunction, particularly
affecting vagal nerves, is known to result in GI motility
disorders in diabetes mellitus (Feldman and Schiller, 1983).
Slow wave arrhythmias in the small intestine mediated by
hyperglycaemia is likely the result of higher sympathetic
compared to parasympathetic activity (Ouyang et al., 2015).
Interestingly, diabetic rats have a higher likelihood of developing
functional reentry in the small intestine compared to the control
rats (Lammers et al., 2012). The underlying cause is unclear,
abnormalities in the enteric nervous system or the smoothmuscle
itself may be affected but autonomic dysfunction can well play an
important role.

CLINICAL RELEVANCE

The question remains, even if arrhythmias occur in the
GI tract, are they clinically significant? To answer this, the
following evidence should be considered. Gastric tachy- and
brady-arrhythmias have been associated with gastroparesis
(Bortolotti et al., 1990), in which reduced CV of slow
waves has been observed (O’Grady et al., 2012). They also
appear to be predictive of dyspeptic symptoms in systemic
sclerosis (McNearney et al., 2009). Gastric tachyarrhythmias
can be observed following administration of opiate drugs, after
anesthesia or post-operatively (Stoddard et al., 1981). Anesthetic
agents can act on Ca2+ channels directly (Ahn and Karaki,
1988), thereby leading to abnormal slow wave propagation
and reentrant arrhythmias. Unexplained nausea and vomiting
involves recurrent arrhythmias with abnormal wave propagation
and higher frequency in the distal stomach, as demonstrated
by gastric serosal electrophysiological study (Abell et al., 2009).
Intestinal arrhythmias occur in diabetes mellitus (Lammers et al.,
2012; Ouyang et al., 2015) and mesenteric ischemia (Seidel
et al., 1999; Irimia and Wikswo, 2008) and may play a role
in post-operative ileus, as suggested previously (Angeli et al.,
2013).

However, only limited evidence exists on the mechanisms
of arrhythmias occurring in these situations, but theoretical
considerations suggest reentry playing a key role. Thus,
spiral waves are inducible in the myocardium or intestinal
smooth muscle because of intrinsic electrical heterogeneities
and anisotropic properties (Miftahof, 2005) and their formation
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would be made more favorable in the above pathological
conditions, which increase tissue heterogeneity and anisotropy
(Gizzi et al., 2010). Alternatively, inflammation could result
in loss of ICC-MY activity, suggesting that pacemaker activity
is impaired (Yanagida et al., 2007; Gizzi et al., 2010). A
better understanding of electrophysiology is key to developing
effective treatment for these motility disorders. For example,
almost all anti-arrhythmic agents in the heart are modulators
of ion channels, which can also be targeted in the GI
tract.

Bradyarrhythmias, although not discussed in this review,
are also observed in many GI pathologies. Thus, the use
of opiate drugs can abolish slow waves or lead to irregular
patterns of slow waves, termed amyogenesia and dysmyogenesia,
respectively (Sarna and Otterson, 1990). Other causes, where
loss of GI pacemaker cells is observed, include achalasia (Chen
et al., 2013), gastroparesis (O’Grady et al., 2012), functional
dyspepsia (Jung et al., 2012), Hirschsprung disease (Yamataka
et al., 1995), and slow transit constipation (Lyford et al.,
2002).

Irritable bowel syndrome, a triad of altered bowel habits,
bloating and abdominal pain without an organic cause (Sinagra
et al., 2016) with either a diarrhea- or constipation- predominant
phenotype, is a chronic debilitating relapsing and remitting
condition. Loss of ICC-MY (Eshraghian and Eshraghian, 2011),
Na+ channel mutations (Saito et al., 2009) and alteredmicrobiota
profile (Tana et al., 2010; Ng et al., 2013) increasing the
intestinal Cl− channel activity have been demonstrated (Chang
and Talley, 2010). These changes could lead to impaired
initiation of slow wave activity in the intestines. Furthermore,
these abnormalities are accompanied by alterations in ICC-
MY network and electrophysiological remodeling (Akbarali
et al., 2010) caused by chronic inflammation (Der et al.,
2000), and could conceivably serve as favorable substrates for
reentrant arrhythmogenesis. Interestingly, clinical evidence does
not support the notion that autonomic dysfunction plays a
role in the symptoms associated with gastrointestinal motility
disorders such as chronic dyspepsia or constipation (Vazeou
et al., 2004).

Recently, a new syndrome characterized by Chronic Atrial
and Intestinal Dysrhythmia, termed CAID syndrome, has been
discovered, in which features of both sick sinus syndrome
(SSS) (of alternating bradycardia-tachycardia, Chen et al., 2016b)
and chronic intestinal pseudo-obstruction (CIPO) are observed
(Chetaille et al., 2014). In CAID, mutation in SGOL1, a
component of the cohesin complex, was the underlying cause.
Both SSS and CIPO are caused by pacemaker dysfunction:
SSS can be caused by loss-of-function mutations in the
SCN5A gene encoding for the sodium channel, whereas
CIPO is caused by loss of the ICC-MY (Feldstein et al.,
2003; Struijs et al., 2008). Moreover, atrial fibrillation gut
syndrome (AFGS) was used to describe reduced gastrointestinal
motility, e.g., gastroparesis, following radiofrequency catheter
ablation for atrial fibrillation (Lee and Lee, 2014). This may

arise from vagus nerve injury from electrical injury used for
ablation.

FUTURE TREATMENT OPTIONS AND
CONCLUDING REMARKS

Improved understanding of the abnormal electrophysiology
underlying GI motility disorders can lead to the development of
more effective treatment options. In terms of pharmacotherapy,
ion channels represent attractive targets. For example, functional
constipation or constipation-predominant IBS can be managed
by the chloride channel protein 2 agonist, lubiprostone (Camilleri
et al., 2006; Andresen et al., 2007), whereas functional diarrhea
or diarrhea -predominant IBS can be managed by its inhibitor
crofelemer (Manabe et al., 2010; Yeo et al., 2013). For
intervention, analogous to cardiac pacing for heart blocks, gastric
electrical stimulation can be used in severe cases of gastroparesis
(Abrahamsson, 2007). Similarly, colonic electrical stimulation
can potentially be used for chronic functional constipation or
constipation-predominant IBS (Chen et al., 2016a). Ablation
has been used extensively for the management of atrial
fibrillation, but it role in gastrointestinal arrhythmogenesis is
unclear.

Despite the importance of GI electrophysiology, it is
considerably underdeveloped compared to the cardiac
electrophysiology, which is a sub-specialty of cardiology
(O’Grady et al., 2014). A deeper understanding of the
molecular basis and physiological mechanisms underlying
GI motility disorders will enable the development of better
diagnostic and therapeutic tools and the advancement of this
field.
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