AUTHOR=Faull Olivia K. , Cox Pete J. , Pattinson Kyle T. S. TITLE=Psychophysical Differences in Ventilatory Awareness and Breathlessness between Athletes and Sedentary Individuals JOURNAL=Frontiers in Physiology VOLUME=7 YEAR=2016 URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2016.00231 DOI=10.3389/fphys.2016.00231 ISSN=1664-042X ABSTRACT=

Purpose: Breathlessness is a complex set of symptoms that are comprised of both sensory and affective (emotional) dimensions. While ventilation is now understood to be a potential limiter to performance in highly-trained individuals, the contribution of breathlessness-anxiety in those nearing maximal ventilation during intense exercise has not yet been considered as a limiter to performance.

Methods: In this study, we compared the physiology and psychology of breathlessness in 20 endurance athletes with 20 untrained age- and sex-matched sedentary controls. Subjects completed baseline spirometry and anxiety questionnaires, an incremental exercise test to exhaustion and a steady-state hypercapnic ventilatory response test, with concurrent measures of breathlessness intensity and breathlessness-anxiety.

Results: Compared with sedentary subjects, athletes reported equivalent breathlessness intensity but greater breathlessness-anxiety at maximal exercise (athletes vs. sedentary (mean ± SD): breathlessness intensity (0–100%) 80.7 (22.7) vs. 72.5 (17.2), p = 0.21; breathlessness-anxiety (0–100%), 45.3 (36.3) vs. 22.3 (20.0), p = 0.02). Athletes operated at higher proportions of their maximal ventilatory capacity (MVV) (athletes vs. sedentary (mean ventilation ± SD; % MVV): 101.6 (27.2) vs. 73.7 (30.1), p = 0.003). In the athletes there was a positive linear correlation between ventilation and breathlessness score during the hypercapnic challenge that was not observed in the sedentary controls.

Conclusion: The results of this study indicate that whilst operating at high proportions of maximal ventilation, breathlessness-anxiety becomes increasingly prominent in athletes. Our results suggest that ventilatory perception pathways may be a target for improved athletic performance in some individuals.