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The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation

and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral

fatigue can affect the ITT. Repeated contractions at submaximal frequencies were

produced by supramaximal electrical stimulations of the human adductor pollicismuscle

in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during

contractions to induce a superimposed twitch. Human muscles fatigued by repeated

30-Hz stimulation trains (3 s on–1 s off) showed an∼80% reduction in the superimposed

twitch force accompanied by a severely reduced EMG response (M-wave amplitude),

which implies action potential failure. Subsequent experiments combined a less intense

stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which

preserved M-wave amplitude. However, the superimposed twitch force still decreased

markedly more than the potentiated twitch force; with ITT this would reflect increased

“voluntary activation.” In contrast, the superimposed twitch force was relatively spared

when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed

by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles.

Accordingly, results similar to those in the human muscle were obtained when relaxation

was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that

muscle fatigue can confound the quantification of central fatigue using the ITT.

Keywords: voluntary activation, contractile properties, interpolated twitch, M-wave, central fatigue

INTRODUCTION

The interpolated twitch technique (ITT) developed by Merton (1954) is considered the gold
standard to evaluate non-invasively the ability to maximally activate motor units in healthy and
clinical populations (Gandevia, 2001; Millet et al., 2012). It consists of electrically (or magnetically)
stimulating a nerve trunk or axonal terminal branches during a maximal voluntary contraction.
An increase in force elicited by the superimposed stimulation highlights a deficit in voluntary
activation. As such, ITT is the most commonly used method to assess central (neural) alterations
during exercise (Gandevia, 2001; Millet et al., 2012). Despite its wide use, the validity of ITT to
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measure the extent of voluntary activation is still debated (de
Haan et al., 2009; Taylor, 2009; Contessa et al., 2016).

Place et al. (2008) challenged the validity of ITT for central
fatigue assessment with an in vitro model of isolated single fast-
twitch fibers of mouse flexor digitorum brevis (FDB) muscles.
These fibers were fatigued by repeated tetani induced by direct
electrical stimulation while introducing an extra stimulation
pulse during contractions to mimic the ITT. The results showed
a relative increase in the interpolated twitch amplitude with
fatigue. Such a result, had it been observed in humans during
voluntary contraction, would have been interpreted as central
fatigue, a phenomenon that is obviously impossible in isolated
fibers. Subsequently, Gandevia et al. (2013) performed similar
experiments with electrically-evoked tetanic contractions with an
extra stimulation pulse during contractions to simulate the ITT in
human adductor pollicismuscle. In contrast to the results of Place
et al. (2008), they observed a reduction in the interpolated twitch
force with fatigue development.

In the present study we addressed two possible reasons to the
above described conflicting results. First, the mouse FDB fibers
were fatigued by repeated brief contractions, whereas the human
adductor pollicis muscle was exposed to 1 min of continuous
stimulation, which might decrease the interpolated twitch force
due to impaired action potential generation and propagation
(Bigland-Ritchie et al., 1979; Duchateau and Hainaut, 1985;
Lännergren and Westerblad, 1987; Clausen and Nielsen, 2007;
Place, 2008). Indeed, in Gandevia et al. (2013) the decrease in
interpolated twitch force in the fatigued state was accompanied
by a reduced compound muscle action potential (M wave)
amplitude. Second, the conflicting results might reflect the use
of fast-twitch mouse FDB fibers (Calderón et al., 2009) by Place
et al. (2008), whereas Gandevia et al. (2013) used the largely slow-
twitch human adductor pollicis muscle (Johnson et al., 1973). To
address these two points, we fatigued human adductor pollicis
muscles with intermittent contractions and replaced mouse FDB
fibers with slow-twitch rat soleus fibers (Mizunoya et al., 2014;
Soukup and Diallo, 2015).

MATERIALS AND METHODS

Ethical Approval
For human experiments, all participants gave their written
informed consent before participation. The experimental

TABLE 1 | Initial values of force and electromyographic (EMG) parameters.

Exp1 Exp2 Exp3

Superimposed twitch, N 3.0 ± 1.3 3.3 ± 1.3 4.8 ± 1.3

M-wave amplitude, mV 1.6 ± 1.5 1.5 ± 1.5 3.9 ± 1.5

M-wave latency, ms 6.7 ± 1.1 6.5 ± 0.5 6.6 ± 0.4

Tetanic force, N 59.7 ± 17.8 62.2 ± 18.8 52.9 ± 13.8

Tetanic HRT, ms 88 ± 13 82 ± 7 81 ± 9

Potentiated twitch, N 9.2 ± 2.7 10.7 ± 2.9 10.5 ± 3.0

HRT = half relaxation time. Data are expressed as mean ± SD; n = 14 in Exp1, 8 in Exp2,

and 6 in Exp3.

protocol was approved by the Research Ethics Committees of
the Geneva (13–107) and Vaud cantons (128/14) and were in
agreement with the Declaration of Helsinki. Twenty-four healthy
subjects participated in the study (8 women and 16 men, 28 ± 6
years old).

All animal experiments complied with the Swedish Animal
Welfare Act, the Swedish Welfare Ordinance, and applicable
regulations and recommendations from Swedish authorities. The
study was approved by the Stockholm North Ethical Committee
on Animal Experiments. Five 6–8 week old maleWistar rats were
killed by placing them in a chamber filled with CO2.

Human Experiments
Experimental Setup
Subjects sat on a chair that was adjustable for height, with their
right forearm resting in a custom-made mold and the elbow and
shoulder angles set to 90◦ in the sagittal axis. Two straps tightly
secured the forearm (10 cm above the wrist and 5 cm below
the elbow crease) to the ergometer. The thumb was adjusted
to an angle allowing optimal force development and its first
phalanx positioned on a support connected to the strain gauge
(Z8 500N, sensitivity 2mV/V and 0.0083 V/N; HBM, Darmstadt,
Germany). Force signals were recorded at 1 kHz using an analog-
digital conversion system (MP150; BIOPAC, Goleta, CA, USA).

Transcutaneous electrical stimulation of the ulnar nerve was
delivered by a high-voltage (400 V maximum) constant-current
stimulator (DS7AH; Digitimer, Hertfordshire, UK) driven by
a stimulation train generator (MP150; BIOPAC, Goleta, CA).
The cathode and anode (4-mm plug bar-handle stimulator,
SPES Medica, Genova, Italy) were located over the ulnar nerve
anteriorly and just proximal to the wrist (Neyroud et al., 2013).
We used 0.5-ms rectangular-wave pulses and a current intensity
set to 120% of the intensity producing the maximal twitch force
and compound action potential (M-wave) amplitude.

The surface electromyographic (EMG) activity of the adductor
pollicismuscle was recorded with a pair of circular silver chloride
(Ag/AgCl, 1-cm recording diameter) self-adhesive electrodes
(Meditrace 100, Tyco, Canada), which were cut to obtain
an inter-electrode distance (center-to-center) of 1.5 cm and
positioned over the muscle belly. A reference electrode was
placed over a proximal radius protuberance. Low resistance
between the two electrodes was obtained by cleaning and
lightly abrading the skin. EMG signals were amplified with
a gain of 1000, digitized at a sampling frequency of 2 kHz,
filtered with a bandwidth frequency between 10 and 500 Hz
and recorded by an analog-digital conversion system (MP150;
BIOPAC, Goleta, CA, USA). EMG as well as force signals
were stored and analyzed offline with commercial software
(Acqknowledge, BIOPAC Systems, Goleta, CA, USA).

Experimental Protocols
Initially 1-s current trains (separated by ∼10 s) were evoked, at
10, 15, 20, 30, 50, 80, and 100 Hz, in a counterbalanced order
between subjects, to determine the force-frequency relationship
in the rested state. Thereafter one of three different fatiguing
protocols (Exp1, Exp2, or Exp3) was used. Finally, one 1-s
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contraction at 100 Hz was produced ∼1 min after the end of
fatiguing stimulation.

In the initial set of experiments (Exp1), fatigue was induced
by 28 contractions evoked at 30 Hz with a duty cycle of 3 s
contractions interspersed with 1-s resting periods. To mimic ITT,
an additional electrical pulse (i.e., superimposed) was sent 1.5 s
into every third contraction and 15 ms (see Gandevia et al., 2013)
were separating this additional pulse from the previous regular
pulse. An electrical pulse was also delivered 0.8 s after the end of
every third contraction to measure the potentiated peak twitch
force and the associated M-wave properties.

In the next set of experiments (Exp2) we used a lower
duty cycle (1.5 s contraction, 3 s rest period) than in Exp1.
During each of these contractions, an additional electrical
stimulus was delivered 1 s into the contraction with 15 ms
separating this additional pulse from the previous regular pulse.

An electrical pulse was also delivered 1.5 s after the end of
each evoked contraction (i.e., potentiated twitch). As pilot
experiments showed very limited fatigue with this duty cycle,
stimulation was performed under ischemia induced by inflating
to 250 mmHg a 13 × 85-cm cuff (SC12D, Hokanson, Bellevue,
USA) wrapped around the upper arm, fully occluding the
circulation (Taylor et al., 2000). The cuff pressure was briefly
released between the pre-fatigue force-frequency relationship
and the beginning of the fatiguing task to limit the duration
of occlusion. The cuff was then kept inflated throughout the
fatiguing task and until the 100-Hz stimulation train delivered
post-fatigue.

In the final set of experiments (Exp3) we used the same
procedures as in Exp2 but contractions were produced at 20
Hz instead of 30 Hz since the latter stimulation frequency
can produce close to maximal forces, whereas reducing the

FIGURE 1 | The intense stimulation in Exp1 resulted in major decreases in force and M-wave amplitudes. Human adductor pollicis muscles were stimulated

at 30 Hz, 3 s on–1 s off. (A), the upper part shows representative force records of the first and last fatiguing contractions and the lower part mean data of tetanic and

peak twitch (Tw) forces; expanded superimposed twitches are shown above the tetanic force records. (B), EMG records (left) and mean M-wave amplitude and

latency (right). Black and red lines in original records correspond to the first and the last tetanus; respectively; arrow indicates the extra stimulation. Data are mean ±

SD expressed in percentage of the initial value (n = 10). *p < 0.05 shows significant difference from the first tetanus (one-way repeated measures ANOVA).
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stimulation frequency would provide more room for a potential
superimposed twitch to increase.

Data Analysis
For all parameters, the different values obtained throughout the
course of the fatiguing task are expressed as a percentage of their
value obtained during the first tetanus.

Force

Every third evoked contraction of the fatiguing task was
considered for analysis. For these contractions, amplitudes of
potentiated and superimposed twitch forces as well as the force
level just before the superimposed twitch (referred to as tetanic
force from now on) were measured. The half-relaxation time
(HRT) was measured in the first and last fatiguing contractions as
the time from the end of stimulation until force had declined to

50% of the tetanic force. For the force-frequency relationship, the
mean force over a 0.5-s window was measured at each frequency
and expressed as a percentage of the force produced by the
100-Hz stimulation train.

EMG

The M waves associated with the superimposed electrical
stimulus (superimposed M-wave) were analyzed. However,
during fatiguing stimulation, the high stimulation frequency led
to a truncated M-wave in between two stimulation artifacts in
some participants and therefore peak-to-peakM-wave amplitude
and duration could not be consistently measured. Therefore, the
M-wave amplitude was quantified as the amplitude of the first
peak of the M-wave (referred to as M-wave amplitude from now
on, see Rodriguez-Falces and Place, 2016). The latency of the
M-wave (reflecting action potential propagation along both the

FIGURE 2 | The less intense stimulation with ischemia in Exp2 resulted in marked reductions in superimposed twitch (Tw) force despite only minor

changes in M-wave properties. Human adductor pollicis muscles were stimulated at 30 Hz, 1.5 s on–3 s off. (A), the upper part shows representative force records

of the first and last fatiguing contractions and the lower part mean data of tetanic and peak twitch forces; expanded superimposed twitches are shown above the

tetanic force records. (B), EMG records (left) and mean M-wave amplitude and latency (right). Black and red lines in original records correspond to the first and the last

tetanus; respectively; arrow indicates the extra stimulation. Data are mean ± SD expressed in percentage of the initial value (n = 7). *p < 0.05 shows significant

difference from the first tetanus (one-way repeated measures ANOVA).
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axons and muscle fibers) was quantified as the time between the
stimulation artifact to the first peak of the M-wave (Rodriguez-
Falces and Place, 2013).

Animal Experiments
Experimental Protocol
Whole soleus muscles were removed from the hindlimbs of the
rats and mechanically dissected into bundles of ∼3–5 fibers
with intact tendons. Aluminium T-clips were attached to the
tendons and the fiber bundles were mounted in a chamber
between a force transducer (Akers 801, Kronex Technologies,
Oakland, California, USA) and an adjustable holder. Fibers were
electrically stimulated with 0.5-ms current pulses via platinum
electrodes placed on both sides of the fiber bundle. Fiber length
was adjusted to achieve maximal tetanic force. The fibers were
continuously superfused at room temperature (23◦C) with a
standard Tyrode solution (in mM): 121 NaCl, 5.0 KCl, 1.8 CaCl2,
0.5 MgCl2, 0.4 NaH2PO4, 24.0 NaHCO3, 0.1 EDTA, and 5.5
glucose. The solution was bubbled with 95% O2–5% CO2, giving
a bath pH of 7.4. Fatigue was induced at 23◦C with repeated 3-
s contractions at a frequency giving close to 70% of maximum
tetanic force. These contractions were produced every 4 s until
force decreased to 50% of the initial value. During each of these
contractions, an additional electrical stimulus was delivered 2.5 s
into the contraction with 10 ms separating this additional pulse
from the previous regular pulse. An electrical doublet pulse, with
a 10-ms inter-pulse duration, was also delivered 1 s after the first
and last contraction of the repeated stimulation protocol.

In another set of experiments designed to assess the effect of
contractile slowing on ITT, force-frequency relationships were
obtained at two temperatures (23 and 18◦C). Three second
duration tetani were evoked at 1-min intervals at 10, 15, 20, 30,
40, and 50 Hz at 18◦C, and also at 70 and 100 Hz at 23◦C. At each
frequency, an additional electrical stimulus was delivered 2.5 s
into the contraction with 10 ms separating this additional pulse
from the previous regular pulse. As for the fatiguing experiments,
an electrical doublet pulse with a 10 ms interpulse interval was
delivered 1 s after each tetanus (i.e., the potentiated twitch).
Peak forces were measured for tetani, and for the superimposed
and potentiated twitches. The superimposed twitch force was
measured as the force prior to the additional electrical stimulus
up to peak force following the superimposed stimulus. HRT was
measured as the time from the end of stimulation until force had
declined to 50% of the tetanic force.

Statistical Analysis
For human experiments, depending on the outcome of the
Shapiro-Wilk normality test, one-way or Friedman repeated
measures ANOVAs [time (tetanus 1, 4, 7, 10, 13, 16, 19, 22, 25,
and 28)] were performed for all parameters. When significant
differences were found, Dunnett’s post hoc was applied to test for
differences from initial values. Unpaired t-tests were performed
to compare differences in relative changes between Exp1 and
Exp2, and between Exp2 and Exp3 as well as in initial values
between Exp2 and Exp3. A paired t-test was used to compare the
forces evoked by the 20 and 30-Hz stimulation trains before the
fatiguing task. For the rat soleus fiber experiments, paired t-tests

were used to compare values obtained during the first and last
contraction of the fatiguing stimulation, as well as to compare
values obtained at each stimulation frequency between 18◦C vs.
23◦C. One-way ANOVA was performed to detect differences in
the tetanic HRT between human adductor pollicismuscle and rat
soleus fiber bundles. The α-level for statistical significance was set
at p < 0.05. Sigmaplot software for Windows (version 11, Systat,
Chicago, IL) was used for all statistical analyses. Data are reported
as mean± SD.

RESULTS

Human Experiments
Fourteen participants took part in Exp1 (25± 6 years), 8 in Exp2
(31 ± 6 years), and 6 in Exp3 (30 ± 3 years). Table 1 presents
force and EMG data from the first tetanic contraction of the three
different fatiguing protocols.

Exp1
Typical original force and EMG recordings from the start and end
of the fatiguing stimulation in Exp1 are shown in Figure 1A. This
intense stimulation protocol (3 s on, 1 s off) resulted in marked
decreases in tetanic force (∼55%) and even larger decreases in
superimposed (∼80%) and potentiated (∼70%) twitch forces
(Figure 1A). Moreover, the M-wave properties were severely
affected with the amplitude being decreased by ∼65% and the
latency increased by ∼7% at the end of the stimulation period
(Figure 1B). Thus, these intermittent contractions resulted in
action potential impairments, which can contribute to the
reduction in superimposed twitch force during fatigue.

Exp2
As action potentials were not preserved in Exp1, we used a
less intense stimulation protocol in Exp2 (1.5 s on, 3 s off)
in an attempt to preserve action potentials; this low-intensity
protocol had to be combined with ischemia to induce a
substantial fatigue-induced force loss. Figure 2 shows typical
original force and EMG recordings from Exp2. At the end of the

FIGURE 3 | The force-frequency relationship in unfatigued human

adductor pollicis muscles reveals that 30 Hz is close to maximum

force, whereas 20 Hz leaves more room for force to increase in a

superimposed twitch. Data (mean ± SD) collected from Exp1-3 (n = 24).

The force at 100 Hz was set to 100% in each subject.
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FIGURE 4 | Superimposed twitch (Tw) force was still markedly decreased in Exp3, which combined the less intense stimulation with ischemia and

decreased stimulation frequency during contractions. Human adductor pollicis muscles were stimulated at 20 Hz, 1.5 s on–3 s off. (A), the upper part shows

representative force records of the first and last fatiguing contractions and the lower part mean data of tetanic and peak twitch forces; expanded superimposed

twitches are shown above the tetanic force records. (B), EMG records (left) and mean M-wave amplitude and latency (right). Black and red lines in original records

correspond to the first and the last tetanus; respectively; arrow indicates the extra stimulation. Data are mean ± SD expressed in percentage of the initial value (n = 7).

*p < 0.05 shows significant difference from the first tetanus (one-way repeated measures ANOVA).

fatiguing stimulation, the decrease in mean tetanic (∼25%) and
potentiated twitch (∼55%) forces in Exp2 were smaller than in
Exp1, whereas the decrease in superimposed twitch force (∼80%)
was similar (Figure 2A). On the other hand, superimposed M-
wave properties were better preserved than during Exp1 with
the mean amplitude being decreased by <25% at the end of the
stimulation period (Figure 2B).

Exp3
In Exp1 and Exp2, fatigue was induced with 30-Hz contractions.
The force-frequency relationship determined before the fatigue
run shows that the 30-Hz force was close to the maximum force
production of the adductor pollicismuscle (Figure 3). This leaves
little room for a force increase in superimposed twitches (ceiling
effect) and hence the mean superimposed twitch force amounted
to only ∼5% of the tetanic force (see Table 1). Thus, the severe

decrease in superimposed twitch force observed during fatiguing
stimulation in Exp1 and Exp2 might be due to a fatigue-induced
decrease in maximum force (Allen et al., 2008; Place et al., 2010).
Accordingly, in Exp2 when theM-wave was better preserved than
in Exp1, 100-Hz force was decreased by 35 ± 20% at ∼1 min
after fatiguing stimulation, which was comparable to the decrease
in 30-Hz force. In Exp3 we therefore induced fatigue with 20-
Hz contractions, while leaving other stimulation parameters the
same as in Exp2. In the unfatigued state, reducing the frequency
from 30 to 20 Hz decreased unfatigued tetanic force by ∼15%
and increased superimposed twitch force by∼45% (see Table 1),
which increased the superimposed twitch to tetanic force ratio
from∼5% to∼9%.

Figure 4A shows that the fatigue-induced force changes in
Exp3 were similar to those observed during Exp2, i.e., a major
decrease in tetanic and potentiated twitch forces, albeit the
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superimposed twitch force being somewhat better maintained
than in Exp2 (decreased by ∼65 vs. ∼80% at the end of
fatiguing stimulation). Moreover, M-wave properties were well-
maintained with themean amplitude and latency being decreased
by <15% (Figure 4B). Finally, the 100-Hz force after fatigue was
reduced by 31± 23%, again similar to the decrease in Exp2.

Animal Experiments
Superimposed and Potentiated Twitch Forces during

Fatiguing Stimulation
Rat soleus fiber bundles were fatigued with repeated contractions
produced at a frequency initially giving 70% of maximum
tetanic force, i.e., similar to the relative force achieved with
20-Hz stimulation in the human adductor pollicis muscle (see
Figure 3). Figure 5 shows typical force traces of the first and last
fatiguing contraction in one bundle; right part of the Figure 5

shows expanded traces of the accompanying superimposed and
potentiated twitches. Tetanic force was decreased by 51 ± 3%
(n = 5) at the end of the fatiguing protocol. In contrast to the
human muscle results, the superimposed twitch force was well-
maintained during fatigue and the mean decrease was actually
less than for the potentiated twitch, being 22± 15 and 37± 28%,
respectively.

Superimposed Twitch with Contractile Slowing
A marked difference between the human and rat muscle
experiments was a greater fatigue-induced slowing of tetanic
relaxation in the human adductor pollicis muscle (Figure 6A).
Mean data show a significantly (p < 0.05) larger fatigue-induced
increase in tetanic half-relaxation time (>150%) in the human
Exp1-3 than in the rat soleus experiments (∼5%; Figure 6B).
A slowing of relaxation will increase the fusion in submaximal
tetani, which might decrease the superimposed twitch force.
To determine whether slowing of relaxation might affect the
fatigue-induced decrease in superimposed twitch force observed
in the human adductor pollicis muscle, rat soleus fiber bundles
were cooled by 5◦C (from 23◦C down to 18◦C). This cooling
resulted in marked slowing of relaxation of 69 ± 34% (n = 7;

FIGURE 5 | Typical force records illustrating the relatively small

changes in superimposed and potentiated twitch forces in fatigued rat

soleus fibers despite a marked reduction in tetanic force. Black and red

lines correspond to the first and last fatiguing contraction, respectively. Right

part shows twitches on an expanded scale. Dotted lines point to the time

during the tetanus when the superimposed twitch was elicited.

see Figure 6A). The cooling-induced slowing of relaxation also
caused amarked leftward shift of the force-frequency relationship
(Figure 7A). The typical force recordings in Figure 7B show
that contractile slowing decreased tetanic force and greatly
diminished the superimposed twitch force.

DISCUSSION

In the present study, we used both an in vivo human
model and an in vitro animal model of electrically stimulated
muscle to explore peripheral fatigue-induced changes that might
affect voluntary activation as calculated using the ITT. Our
results showed a marked reduction in superimposed twitch
force following fatigue in the human adductor pollicis muscle,
even when membrane excitability was relatively well-preserved,
whereas a small reduction in superimposed twitch force was
observed in fatigued rat soleus muscle. A pronounced fatigue-
induced slowing of relaxation was evident only in the human
adductor pollicis. When slowing of relaxation was induced by
cooling rat soleus fibers, we were able to show amarked reduction
in superimposed twitch force as observed in the human adductor
pollicis. These findings highlight that intramuscular factors can
confound interpretations of central fatigue when assessed using
the ITT.

In Exp1, despite the use of intermittent contractions, a large
decrease in the amplitude of the superimposed M wave was
observed with fatigue. This implicates action potential failure
as a mechanism for the decrease in superimposed twitch force
and agrees with the results of Gandevia et al. (2013), where
human adductor pollicis muscles were stimulated continuously.
Nevertheless, Gandevia et al. observed decreasing superimposed
twitch forces accompanied by increasing M-wave areas during
the first minute of continuous 15-Hz stimulation, which implies
that failing action potentials may not be the sole cause of the
decreased superimposed twitch force.

Earlier studies have shown action potential failure during
continuous electrical stimulation (e.g., Bigland-Ritchie et al.,
1979; Fuglevand et al., 1993). In contrast, M waves have been
reported to be relatively well-preserved after sustained maximal
voluntary effort, where the motor unit firing frequency declines
as fatigue develops (Bigland-Ritchie et al., 1982, 1983). Thus,
our next aim was to assess changes in the superimposed twitch
force with fatiguing stimulation protocols where action potentials
are preserved. The reduced duty cycle in Exp2 resulted in better
preserved M-wave properties. Yet, the fatigue-induced decrease
in superimposed twitch force was similar to that in Exp1 (∼80%,
see Figures 1A, 2A), which implies that other mechanism(s) than
impaired action potentials contributed to this decrease.

It is possible that the 30-Hz stimulation used in Exp2
approached the maximum force that the fatigued muscle could
produce and hence there was little room for a force increase
with the extra stimulation pulse. The stimulation frequency was
therefore reduced to 20 Hz in Exp3. With this lower stimulation
frequency, the superimposed twitch force was slightly better
preserved than in Exp2 but it was still decreased by ∼65%
at the end of fatiguing stimulation. This implies that in the
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FIGURE 6 | Repeated tetanic stimulation induced a marked slowing of relaxation in human adductor pollicis muscles but not in rat soleus fiber

bundles. (A), representative records of force relaxation after the first (black lines) and last (red lines) fatiguing contractions. (B), mean (± SD) data of the

fatigue-induced relative change in half relaxation time (HRT) in Exp1 (n = 10), Exp2 (n = 7), Exp3 (n = 7), and in the rat soleus experiments (n = 7). *(p < 0.05) shows

significant difference from human adductor pollicis (one-way ANOVA). The slowed relaxation of rat soleus bundles at 18◦C is illustrated by the blue line in (A); all three

force records obtained from the same fiber bundle.

fatigued state, 20–30-Hz stimulation induced close to maximum
myofibrillar force production. The reduction in maximum force
in Exp2 can be estimated as: 30-Hz stimulation gave∼85% of the
maximum force in the unfatigued state (see Figure 3) and the
30-Hz force in fatigue was ∼75% of the initial (see Figure 4A),
which gives a fatigue-induced reduction of maximum force
to∼65% (0.85× 0.75) of the initial. Interestingly, this estimation
arrives at the same value as the mean reduction in 100-Hz force
measured after the fatiguing stimulation in Exp2. Thus, these
results indicate that the force of fully Ca2+-activated myofibrils
was decreased by ∼35% in the fatigued state. This reduction in
myofibrillar force production is most likely a consequence of
metabolite accumulation (Westerblad et al., 2002; Cairns, 2006;
Allen et al., 2008; Kent-Braun et al., 2012).

We previously showed a relative increase in the superimposed
twitch force during fatigue induced by repeated tetanic
stimulation of isolated mouse FDB fibers (Place et al., 2008)
which, had it been observed during voluntary contraction in
humans, might have been interpreted as decreased voluntary
activation. These results differ from those obtained with
electrical stimulation of human adductor pollicis muscle by
Gandevia et al. (2013) and in the present Exp1-3. This
difference might be due to mouse FDB fibers being fast-
twitch (Calderón et al., 2009) and human adductor pollicis
muscle containing mainly slow-twitch fibers (Johnson et al.,

1973). Here we performed experiments on isolated fiber
bundles of slow-twitch rat soleus muscles (Mizunoya et al.,
2014; Soukup and Diallo, 2015) and obtained results similar
to those with mouse FDB fibers, i.e., the superimposed
twitch force was relatively spared and hence would also
be indicative of a decreased “voluntary activation” during
fatiguing stimulation. This implies that during fatiguing
stimulation, the rat soleus fibers remained on the steep part
of the force-frequency and force-Ca2+ relationships, where
the additional sarcoplasmic reticulum Ca2+ release induced by
an extra action potential had a large force-enhancing effect
(Place et al., 2008, 2010). Thus, the observed differences in
superimposed twitch force during fatigue relate to human vs.
mouse/rat muscle rather than fast-twitch vs. slow-twitch muscle
fibers.

A marked difference between the present findings in human
and rat muscle is the greater fatigue-induced slowing of
tetanic relaxation in the human muscle, hence leading to
increased fusion that leaves less room for a force increase.
Accordingly, cooling of rat soleus fiber bundles resulted in
marked slowing of relaxation, more fused tetani, leftward shift of
the force-frequency relationship, and hence a greater decrease in
superimposed twitch force than in potentiated twitch force which
could be interpreted as an increased “voluntary activation,” as
observed with human adductor pollicis (see above).
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FIGURE 7 | Slowed relaxation caused a leftward shift in the

force-frequency relationship resulting in more fused contractions and

decreased superimposed twitch force. (A), force-frequency relationships

obtained at 18◦C (blue) and 23◦C (black) from rat soleus fiber bundles. (B),

representative force records at 23◦C (left) and 18◦C (right) of tetanic

stimulations with superimposed twitch at 15, 20, and 40 Hz, and the

subsequent potentiated twitch. Data are mean ± SD.

Fatigue-induced slowing of relaxation can in principle be due
to slowed removal of Ca2+ from the myoplasm and/or slowing
of the subsequent myofibrillar inactivation, which involves
Ca2+ dissociation from troponin C followed by cross-bridge
detachment (Gordon et al., 2000). Experiments to distinguish
between the Ca2+ and myofibrillar components showed that the
slowing of relaxation in mouse FDB fibers fatigued by repeated
tetani was due to the myofibrillar component, whereas the more
marked slowing in similarly fatigued Xenopus frog fibers was
due to both the Ca2+ and myofibrillar components (Westerblad
et al., 1997). These kinds of experiments remain to be performed
during fatiguing stimulation of human muscle. Nevertheless,
support for a Ca2+ component comes from the fact that the
rate of SR Ca2+ uptake is slower in human than in rodent
muscle fibers (Everts et al., 1989; Lamboley et al., 2013; Reggiani,
2014).

Limitations
The usage of ITT to assess voluntary activation during maximal
voluntary contraction involves complex interactions between
peripheral fatigue factors and changes in the pattern of
motor unit activation during fatigue. For instance, all motor
units are readily activated by supramaximal electrical nerve
stimulation, whereas voluntarily later-recruited motor units

have been shown to fire at submaximal frequencies even
during maximal efforts (Contessa and De Luca, 2013), and
consequently their muscle fibers are likely to display only
limited peripheral fatigue. Furthermore, fatigue results in
decreased motor unit discharge rates. Thus, the stimulation
patterns used in the current study cannot completely
mimic complex changes in motor unit activation pattern
during repeated voluntary contractions. Nonetheless, our
findings do support a contribution from intramuscular
factors being involved in manipulating evoked forces that
are integral to the assessment of central fatigue when using
the ITT.

CONCLUSIONS

Measurement of the superimposed twitch force is an essential
component when ITT is used to assess the level of voluntary
activation. Our results show that peripheral fatigue factors
particularly affect the superimposed twitch force, including
impaired membrane excitability, decreased myofibrillar force,
and fatigue-induced contractile slowing.

AUTHOR CONTRIBUTIONS

DN, AC, BK, HW, and NP contributed to the conception and
design of the study. DN, AC, and NP were responsible for data
collection. DN, AC, NB, BK, HW, and NP participated in the
analysis and interpretation of the data. All authors were involved
in writing the manuscript and approved the final version. All
authors agreed to be accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity of
any part of the work are appropriately investigated and resolved.
All persons designated as authors qualify for authorship, and all
those who qualify for authorship are listed. Human experiments
were performed in the Institute of Movement Sciences and
Sports Medicine of Geneva University, Switzerland and in
the Institute of Sport Sciences of the University of Lausanne,
Switzerland. All animal experiments were performed at the
Cellular Muscle Function Laboratory in the Department of
Physiology and Pharmacology, Karolinska Institutet, Stockholm,
Sweden.

FUNDING

AC and HW acknowledge funding from the Swedish National
Centre for Sports Research, and the Swedish Research Council.

ACKNOWLEDGMENTS

We thank all the participants who took part in the human
experiments as well as Joseph Bruton and Barbara Uva for their
help with data collection and analysis.

Frontiers in Physiology | www.frontiersin.org 9 June 2016 | Volume 7 | Article 252

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Neyroud et al. Twitch Interpolation Probing

REFERENCES

Allen, D. G., Lamb, G. D., and Westerblad, H. (2008). Skeletal

muscle fatigue: cellular mechanisms. Physiol. Rev. 88, 287–332.

doi: 10.1152/physrev.00015.2007

Bigland-Ritchie, B., Johansson, R., Lippold, O. C., and Woods, J. J. (1983).

Contractile speed and EMG changes during fatigue of sustained maximal

voluntary contractions. J. Neurophysiol. 50, 313–324.

Bigland-Ritchie, B., Jones, D. A., andWoods, J. J. (1979). Excitation frequency and

muscle fatigue: electrical responses during human voluntary and stimulated

contractions. Exp. Neurol. 64, 414–427. doi: 10.1016/0014-4886(79)90280-2

Bigland-Ritchie, B., Kukulka, C. G., Lippold, O. C., and Woods, J. J. (1982). The

absence of neuromuscular transmission failure in sustained maximal voluntary

contractions. J. Physiol. 330, 265–278. doi: 10.1113/jphysiol.1982.sp014340

Cairns, S. P. (2006). Lactic acid and exercise performance: culprit or friend? Sports

Med. 36, 279–291. doi: 10.2165/00007256-200636040-00001

Calderón, J. C., Bolaños, P., Torres, S. H., Rodríguez-Arroyo, G., and Caputo,

C. (2009). Different fibre populations distinguished by their calcium transient

characteristics in enzymatically dissociated murine flexor digitorum brevis and

soleus muscles. J. Muscle Res. Cell Motil. 30, 125–137. doi: 10.1007/s10974-009-

9181-1

Clausen, T., and Nielsen, O. B. (2007). Potassium, Na+,K+-pumps and fatigue in

rat muscle. J. Physiol. 584, 295–304. doi: 10.1113/jphysiol.2007.136044

Contessa, P., and De Luca, C. J. (2013). Neural control of muscle force:

indications from a simulation model. J. Neurophysiol. 109, 1548–1570. doi:

10.1152/jn.00237.2012

Contessa, P., Puleo, A., and De Luca, C. J. (2016). Is the notion of central

fatigue based on a solid foundation? J. Neurophysiol. 115, 967–977. doi:

10.1152/jn.00889.2015

de Haan, A., Gerrits, K. H. L., and De Ruiter, C. J. (2009). Counterpoint: the

interpolated twitch does not provide a valid measure of the voluntary activation

of muscle. J. Appl. Physiol. 107, 355–357. doi: 10.1152/japplphysiol.91220.2008a

Duchateau, J., and Hainaut, K. (1985). Electrical and mechanical failures during

sustained and intermittent contractions in humans. J. Appl. Physiol. (1985) 58,

942–947.

Everts, M. E., Andersen, J. P., Clausen, T., and Hansen, O. (1989). Quantitative

determination of Ca2+-dependent Mg2+-ATPase from sarcoplasmic reticulum

in muscle biopsies. Biochem. J. 260, 443–448. doi: 10.1042/bj2600443

Fuglevand, A. J., Zackowski, K. M., Huey, K. A., and Enoka, R. M. (1993).

Impairment of neuromuscular propagation during human fatiguing

contractions at submaximal forces. J. Physiol. 460, 549–572. doi:

10.1113/jphysiol.1993.sp019486

Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue.

Physiol. Rev. 81, 1725–1789. Available online at: http://physrev.physiology.org/

content/81/4/1725

Gandevia, S. C., Mcneil, C. J., Carroll, T. J., and Taylor, J. L. (2013). Twitch

interpolation: superimposed twitches decline progressively during a tetanic

contraction of human adductor pollicis. J. Physiol. 591, 1373–1383. doi:

10.1113/jphysiol.2012.248989

Gordon, A. M., Homsher, E., and Regnier, M. (2000). Regulation of contraction in

striated muscle. Physiol. Rev. 80, 853–924. Available online at: http://physrev.

physiology.org/content/80/2/853.long

Johnson, M. A., Polgar, J., Weightman, D., and Appleton, D. (1973). Data on the

distribution of fibre types in thirty-six human muscles. An autopsy study. J.

Neurol. Sci. 18, 111–129. doi: 10.1016/0022-510X(73)90023-3

Kent-Braun, J. A., Fitts, R. H., and Christie, A. (2012). Skeletal muscle fatigue.

Compr. Physiol. 2, 997–1044. doi: 10.1002/cphy.c110029

Lamboley, C. R., Murphy, R. M., Mckenna, M. J., and Lamb, G. D. (2013).

Endogenous and maximal sarcoplasmic reticulum calcium content and

calsequestrin expression in type I and type II human skeletal muscle fibres. J.

Physiol. 591, 6053–6068. doi: 10.1113/jphysiol.2013.265900

Lännergren, J., and Westerblad, H. (1987). Action potential fatigue in single

skeletal muscle fibres of Xenopus. Acta Physiol. Scand. 129, 311–318. doi:

10.1111/j.1748-1716.1987.tb08074.x

Merton, P. A. (1954). Voluntary strength and fatigue. J. Physiol. 123, 553–564. doi:

10.1113/jphysiol.1954.sp005070

Millet, G. Y., Bachasson, D., Temesi, J., Wuyam, B., Féasson, L., Vergès, S., et al.

(2012). Potential interests and limits of magnetic and electrical stimulation

techniques to assess neuromuscular fatigue. Neuromuscul. Disord. 22, S181–

S186. doi: 10.1016/j.nmd.2012.10.007

Mizunoya, W., Iwamoto, Y., Sato, Y., Tatsumi, R., and Ikeuchi, Y. (2014). Cold

exposure increases slow-type myosin heavy chain 1 (MyHC1) composition

of soleus muscle in rats. Anim. Sci. J. 85, 293–304. doi: 10.1111/asj.

12143

Neyroud, D., Rüttimann, J., Mannion, A. F., Millet, G. Y., Maffiuletti, N. A.,

Kayser, B., et al. (2013). Comparison of neuromuscular adjustments associated

with sustained isometric contractions of four different muscle groups. J. Appl.

Physiol. 114, 1426–1434. doi: 10.1152/japplphysiol.01539.2012

Place, N. (2008). Is interstitial K+ accumulation a key factor in the fatigue

process under physiological conditions? J. Physiol. 586, 1207–1208. doi:

10.1113/jphysiol.2007.150292

Place, N., Yamada, T., Bruton, J. D., and Westerblad, H. (2008). Interpolated

twitches in fatiguing single mouse muscle fibres: implications for

the assessment of central fatigue. J. Physiol. 586, 2799–2805. doi:

10.1113/jphysiol.2008.151910

Place, N., Yamada, T., Bruton, J. D., and Westerblad, H. (2010). Muscle fatigue:

from observations in humans to underlying mechanisms studied in intact

single muscle fibres. Eur. J. Appl. Physiol. 110, 1–15. doi: 10.1007/s00421-010-1

480-0

Reggiani, C. (2014). Calcium handling in muscle fibres of mice and men:

evolutionary adaptation in different species to optimize performance and save

energy. J. Physiol. 592, 1173–1174. doi: 10.1113/jphysiol.2014.272344

Rodriguez-Falces, J., and Place, N. (2013). Recruitment order of quadriceps motor

units: femoral nerve vs. direct quadriceps stimulation. Eur. J. Appl. Physiol. 113,

3069–3077. doi: 10.1007/s00421-013-2736-2

Rodriguez-Falces, J., and Place, N. (2016). Differences in the recruitment

curves obtained with monopolar and bipolar electrode configurations in

the quadriceps femoris. Muscle Nerve. 54, 118–131. doi: 10.1002/mus.

25006

Soukup, T., and Diallo, M. (2015). Proportions of myosin heavy chain mRNAs,

protein isoforms and fiber types in the slow and fast skeletal muscles are

maintained after alterations of thyroid status in rats. Physiol. Res. 64, 111–118.

Available online at: http://www.biomed.cas.cz/physiolres/pdf/64/64_111.pdf

Taylor, J. L. (2009). Point: the interpolated twitch does/does not provide a valid

measure of the voluntary activation of muscle. J. Appl. Physiol. 107, 354–355.

doi: 10.1152/japplphysiol.91220.2008

Taylor, J. L., Petersen, N., Butler, J. E., and Gandevia, S. C. (2000). Ischaemia

after exercise does not reduce responses of human motoneurones to cortical

or corticospinal tract stimulation. J. Physiol. 525, 793–801. doi: 10.1111/j.1469-

7793.2000.00793.x

Westerblad, H., Allen, D. G., and Lännergren, J. (2002). Muscle fatigue: lactic acid

or inorganic phosphate the major cause? News Physiol. Sci. 17, 17–21. Available

online at: http://physiologyonline.physiology.org/content/17/1/17.long

Westerblad, H., Lännergren, J., and Allen, D. G. (1997). Slowed relaxation in

fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i
and cross-bridges. J. Gen. Physiol. 109, 385–399. doi: 10.1085/jgp.109.3.385

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Neyroud, Cheng, Bourdillon, Kayser, Place and Westerblad. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Physiology | www.frontiersin.org 10 June 2016 | Volume 7 | Article 252

http://physrev.physiology.org/content/81/4/1725
http://physrev.physiology.org/content/81/4/1725
http://physrev.physiology.org/content/80/2/853.long
http://physrev.physiology.org/content/80/2/853.long
http://www.biomed.cas.cz/physiolres/pdf/64/64_111.pdf
http://physiologyonline.physiology.org/content/17/1/17.long
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles
	Introduction
	Materials and Methods
	Ethical Approval
	Human Experiments
	Experimental Setup
	Experimental Protocols
	Data Analysis
	Force
	EMG


	Animal Experiments
	Experimental Protocol

	Statistical Analysis

	Results
	Human Experiments
	Exp1
	Exp2
	Exp3

	Animal Experiments
	Superimposed and Potentiated Twitch Forces during Fatiguing Stimulation
	Superimposed Twitch with Contractile Slowing


	Discussion
	Limitations

	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


