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Harmful insects include pests of crops and storage goods, and vectors of human and

animal diseases. Throughout their history, humans have been fighting them using diverse

methods. The fairly recent development of synthetic chemical insecticides promised

efficient crop and health protection at a relatively low cost. However, the negative effects

of those insecticides on human health and the environment, as well as the development

of insect resistance, have been fueling the search for alternative control tools. New

and promising alternative methods to fight harmful insects include the manipulation of

their behavior using synthetic versions of “semiochemicals”, which are natural volatile

and non-volatile substances involved in the intra- and/or inter-specific communication

between organisms. Synthetic semiochemicals can be used as trap baits to monitor the

presence of insects, so that insecticide spraying can be planned rationally (i.e., only when

and where insects are actually present). Other methods that use semiochemicals include

insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption,

and the use of repellents. In the last decades many investigations focused on the neural

bases of insect’s responses to semiochemicals. Those studies help understand how the

olfactory system detects and processes information about odors, which could lead to

the design of efficient control tools, including odor baits, repellents or ways to confound

insects. Here we review our current knowledge about the neural mechanisms controlling

olfactory responses to semiochemicals in harmful insects. We also discuss how this

neuroethology approach can be used to design or improve pest/vector management

strategies.

Keywords: crop pest, disease vector, integrated pest management, odor attractant, disruption of behavior, odor

repelllent, insect neuroethology

INTRODUCTION

Humans benefit from insects, mainly as pollinators of crops, but an important number of other
insects are pests of crops or damage storage goods, are vectors of serious human and animal
diseases, or are simply a nuisance. For centuries, humans have been fighting harmful insects,
and the use of synthetic or genetically modified plant-produced chemical insecticides has made
this fight much more efficient. However, the use and overuse of those chemicals has led to a
number of undesirable consequences, such as contamination of our environment, food and water,
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and insecticide resistance. In addition, the rising of the organic
agriculture movement demands insecticide-free food (van der
Goes van Naters and Carlson, 2006).

Chemicals other than insecticides can be used to fight
insects through the manipulation of specific olfactory behaviors,
profiting from the existence of natural compounds used for
communication between organisms, the semiochemicals (Pickett
et al., 1997). Pheromones are perhaps the most well-known class
of semiochemicals. Pheromones mediate interactions between
organisms of the same species, and include, sex, aggregation, and
alarm substances, while allelochemicals are semiochemicals that
mediate inter-specific interactions (see Dusenbery, 1992; Wyatt,
2003 for further details).

The potential use of semiochemicals to monitor, disrupt,
lure, repel, confuse, or mass-trap insect pests was rapidly
acknowledged and has fueled much research (Wyatt, 2003;
Witzgall et al., 2010) with the promise of clean, safe, and highly
specific pest and vector control tools. For instance, mating
disruption, in which large amounts of a synthetic sex pheromone
are released in a crop, has been used to eradicate insect pests
that became resistant to pesticides (Wyatt, 2003; Witzgall et al.,
2010). Semiochemicals can also be used for trapping insects in
integrated pest and vector control management strategies. Thus,
when trapping devices include insecticides, insects attracted to
a semiochemical also pick up lethal substances or pathogens (a
strategy known as “lure and kill”; Pickett et al., 1997; Wyatt,
2003).

In the last decades, many studies focused on the neural
mechanisms underlying behavioral responses to semiochemicals.
These investigations aid the design of odor-based strategies for
insect control, as they help understanding how the olfactory
system processes information about odors and also allow
generating predictions about the insect’s olfactory behavior
(e.g., Hildebrand, 1996; Guerenstein and Hildebrand, 2008).
Unfortunately, research in the fields of neuroethology and
insect control has been often segregated, which may hamper
the development of novel and efficient control tools and
strategies. In light of this, here we review our current knowledge
about the neural mechanisms controlling olfactory responses
to semiochemicals in harmful insects, and also discuss how
this neuroethology approach can be used to manipulate
insect behavior and therefore improve pest/vector management
strategies. We start by briefly summarizing the structure and
function of the insect olfactory system.

THE INSECT OLFACTORY SYSTEM

Olfactory receptor cells (ORCs) are the first neural elements in
the olfactory pathway and are housed in variable numbers in
hair-like, multi-porous structures known as olfactory sensilla.
Olfactory sensilla are located mainly on the antennae and
in some insects also in the mouthparts. After entering the
sensillum through its wall pores, odors diffuse in the aqueous
sensillum lymph (sometimes transported by odorant binding
proteins, Vogt and Riddiford, 1981; Tsuchihara et al., 2005;
Leal, 2013) and reach the dendrites of the ORCs. There,

odors interact with different classes of chemoreceptor proteins:
odorant receptors (ORs), ionotropic receptors (IRs), or gustatory
receptors (GRs; Vosshall et al., 1999; Larsson et al., 2004; Vosshall
and Stocker, 2007; Vosshall and Hansson, 2011; Suh et al.,
2014). Many ORCs respond to only one or a few related odor
compounds, particularly when tested at behaviorally relevant
and naturally-occurring concentrations, but others are more
broadly tuned (e.g., de Bruyne et al., 1999; Hansson et al., 1999;
Stranden et al., 2003; Yao et al., 2005; Hallem and Carlson,
2006; Martelli et al., 2013). In all cases their response spectra
depends on the odor tuning of the chemoreceptor protein/s
expressed (e.g., Hallem and Carlson, 2006; Andersson et al.,
2015). Each type of ORC usually expresses only one type
of OR, IR, or GR (e.g., Vosshall et al., 1999; Galizia and
Sachse, 2010). However, in some ORCs more than one OR,
IR, or GR types, and even different chemoreceptor protein
types (most commonly ORs and IRs), are co-expressed, and in
those cases odors interact with more than one chemoreceptor
protein type (e.g., Fishilevich and Vosshall, 2005; Abuin
et al., 2011; Rytz et al., 2013; Hussain et al., 2016; see
below).

Odorant receptors are usually expressed in ORCs within
single-walled (basiconic or trichoid) sensilla. They are part
of a heteromeric complex consisting of an OR-subunit which
binds the odor ligand (thus conferring odor specificity) and
the highly conserved OR co-receptor (ORCO). Experimental
evidence suggests alternative mechanisms of odor activation,
one in which OR-ORCO forms a non-selective ligand-activated
cation channel, and the other in which ORCO itself functions
as a cation channel (Sato et al., 2008; Wicher et al., 2008).
Although ORCO orthologs exist in many insect species, to date
there is no agreement on how ORCO functions during olfactory
transduction in vivo (Stengl and Funk, 2013).

ORCs that respond to compounds such as ammonia, short
chain carboxylic acids and amines are housed in double-walled
(grooved peg and coeloconic) sensilla (Pappenberger et al., 1996;
Diehl et al., 2003; Benton et al., 2009; Hussain et al., 2016) and
do not express ORs but instead IRs. The IRs form ionic channels
activated by ligands (Benton et al., 2009) and are expressed
with one or two broadly expressed co-receptors different from
ORCO (Abuin et al., 2011; Ai et al., 2013; Rytz et al., 2013). In
addition, the very volatile molecule CO2, which is of primordial
importance for the olfactory orientation of blood-sucking insects
and some herbivores (Guerenstein and Hildebrand, 2008), is
detected by two to three members of the GR family co-expressed
in a single ORC type (Suh et al., 2004; Jones et al., 2007; Kwon
et al., 2007; Lu et al., 2007; Kent et al., 2008; Wang et al., 2013).

The axons of the ORCs project to the first processing center
of olfactory information in the insect brain, the antennal lobe
(AL; e.g., Anton and Homberg, 1999). The AL, analogous
to the vertebrate olfactory bulb, is composed of distinct
spheroid structures called glomeruli (Anton and Homberg, 1999;
Fishilevich and Vosshall, 2005). Usually, the terminals of ORCs
expressing the same chemoreceptor protein converge onto a
single glomerulus (Vosshall et al., 2000; Guerenstein et al., 2004a;
Rytz et al., 2013; Suh et al., 2014; Hussain et al., 2016). Each
glomerulus also houses neurites of local interneurons (LNs) and
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of projection neurons (PNs). LNs are restricted to the AL and
have dendritic arborizations in several glomeruli; PNs usually
arborize in one glomerulus and have an axon that projects to
higher brain areas in the protocerebrum such as the lateral
horn, the inferior lateral PC, and the calyces of the ipsilateral
mushroom body (Homberg et al., 1988, 1989; Jefferis et al.,
2007; Galizia and Rössler, 2010; Tanaka et al., 2012; Roussel
et al., 2014). Neurons in these higher-order brain centers show
diverse responses and integrate information about different odor
compounds (e.g., Jefferis et al., 2007; Turner et al., 2008; Gupta
and Stopfer, 2012; Lei et al., 2013); neurons receiving input
from the mushroom body calyces are involved in mediating
learning and memory processes (e.g., Davis, 2004; Fahrbach,
2006; Liu et al., 2012). Further downstream, circuits in the lateral
accessory lobe and the ventral protocerebrum have been linked,
particularly in moths, to important aspects of olfactory behaviors
(e.g., Olberg, 1983; Iwano et al., 2010).

In the next sections we review current knowledge about
the neural and behavioral mechanisms underlying responses to
diverse classes of pheromones, host odors, and plant volatiles,
mechanisms of olfactory repellence, disruption of olfactory
behavior, and the effects of experience and learning in olfactory-
driven behaviors.

OLFACTORY ATTRACTION FOR

MONITORING AND TRAPPING

Use of Sex Pheromones
Pheromones are usually mixtures of several compounds. Thus,
the development of synthetic pheromone-blend attractants as
trap lures involves knowledge of the compound identities,
their concentrations, and their relative proportions. In several
sympatric moth species, females release sex pheromones of
overlapping chemical composition but with species-specific
compound ratios, suggesting that males use this information to
find conspecific females. For instance, different strains of the
European corn borer (Ostrinia nubilalis) are attracted to precise
pheromone blend ratios (Klun et al., 1973). Similarly, different
species of Yponomeuta moths, which feed on the same host and
share the same three pheromone constituents, are reproductively
isolated due to differential attraction to species-specific blend
ratios (Löfstedt et al., 1991). Similar findings were also reported
on aphids (Dewhirst et al., 2010) and plant bugs (Byers et al.,
2013). While the importance of ratios is crucial for the design of
trap lures, the neural mechanisms underlying this phenomenon
just began to be understood (e.g., Martin et al., 2013).

Sex pheromones can be used for monitoring and trapping
many insect species. While we review and discuss what is
known across different insect species, much is known about the
neurobiological bases of mate seeking and finding in the moth
Manduca sexta. Knowledge gained through studies in this insect
could be applied to other insect-pest species, particularly other
moths, as it is likely that similar neural mechanisms underlie
mate odor-guided seeking behavior.

In moths and cockroaches, information about the female sex
pheromone is processed by a small number of male-specific

AL glomeruli forming a distinct structure, the macroglomerular
complex (MGC; e.g., Boeckh and Boeckh, 1979; Hildebrand
et al., 1980). Although the MGC sub-system of moths is
distinctive and particularly large, the synaptic organization and
structure of its constituent glomeruli is akin to that of the
rest of the AL glomeruli. In some moth species, each MGC
glomerulus processes a cognate pheromone component (e.g.,
Heliothis virescens; Berg et al., 1998), but in other species multiple
components are encoded in the same MGC subcompartment
(e.g., Spodoptera littoralis; Anton and Hansson, 1995). In other
cases, pheromones and plant odorants are processed by the same
MGC neurons (e.g., Agrotis ipsilon; Rouyar et al., 2015). Given
this complexity, the use of simpler model systems (e.g., see next)
can be experimentally advantageous and help the discovery of
common, basic principles underlying the processing of complex
odor blends.

The MGC of M. sexta has two main glomeruli, the Cumulus
and the Toroid, each processing information about one of the
two major female sex pheromone blend components (Hansson
et al., 1991, 1992; Heinbockel et al., 1999). Because only these
two components (out of eight total) are required to elicit odor-
induced orientation behaviors in males (Tumlinson et al., 1989),
this provides a simple binary system to investigate the neural
mechanisms mediating pheromone processing, including blend
ratio processing.Whenmales are stimulated with the pheromone
blend, two distinct populations of ORCs are specifically activated
by those two essential components, one evoking excitatory
responses in Cumulus projection neurons (cPNs) and the other in
Toroid projection neurons (tPNs; Kaissling et al., 1989; Hansson
et al., 1992; Hildebrand, 1996; Heinbockel et al., 1999; Lei et al.,
2002). Additionally, recent findings suggest that cPNs and tPNs
correlate their synaptic output to signal the presence of the
pheromone blend (Lei et al., 2013; Martin et al., 2013). In
principle, the odor-evoked spiking activity of cPNs and tPNs
could serve to report the chemical identity and concentration of
each blend component. However, since their outputs converge
in the same regions in the protocerebrum (the delta region of
the lateral horn and the mushroom body calyces), the relative
timing of input spikes from cPNs and tPNs in postsynaptic
neurons may have a physiological effect, that is, coincident spikes
would evoke a stronger response in postsynaptic neurons than
sequential spikes, allowing the representation of an odor mixture
as a single odor object (see also Section Effects of Background
Odor).

Indeed, using simultaneous dual-electrode intracellular
recordings, Lei et al. (2002) showed inter- and intra-glomerular
spike synchrony among PNs in response to pheromone blend
stimulation. Odor-induced interglomerular synchrony in the
AL was also reported in cockroaches using voltage-sensitive-dye
imaging methods, suggesting that the synchrony code operates at
a broad spatial scale (Watanabe, 2012). Moreover, experiments
that simultaneously recorded neuronal activity across the
glomerular array inM. sexta showed that neurons with the most
similar odor response profiles produced the highest degree of
coincident spikes (Lei et al., 2004). These results support the
notion that PNs may use a correlative neural code. In addition,
local field potential oscillations in the mushroom bodies, which
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are thought to reflect evolving ensemble synchrony of PNs across
the entire array of AL glomeruli, were reported in many insect
species, including locusts, fruit flies, and moths (MacLeod and
Laurent, 1996; Ito et al., 2009; Tanaka et al., 2009). Further, it
has been shown that spike coincidence in M. sexta AL neurons
is modulated by the pheromone blend ratio. Behaviorally,
the moths respond best to the mixture of the two essential
pheromone components at the naturally occurring 1:2 ratio,
and deviations from this ratio deteriorate blend attractiveness
(Martin et al., 2013). By stimulating AL neurons with varying
blend ratios while simultaneously recording the activity of PN
pairs, it was shown that MGC-PNs produce peak correlations at
the natural 1:2 blend ratio, and those correlations significantly
deteriorate in response to stimulation with behaviorally
sub-optimal blend proportions (Martin et al., 2013). Such
stimulus-quality-affected correlations in the PN spikes were
also reported for glomeruli other than those of the MGC, in
experiments that manipulated the ratios of naturally-occurring
hostplant blends (Riffell et al., 2009a).

The mechanisms determining spike correlations are
unknown, but balanced inhibition may be involved. Upon
pheromonal stimulation, both PNs and LNs are activated, with
cPNs and tPNs excited by their cognate pheromone constituents
and reciprocally inhibited through GABAergic LNs (Lei et al.,
2002). LNs likely respond in a dose-dependent manner, allowing
the inhibitory effect exerted onto PNs to be modulated by the
relative proportion of the blend constituents. Moreover, the
degree of spike coincidence between PNs is positively correlated
with the strength of the inhibitory input onto those PNs (Lei
et al., 2002). Similarly, in the AL of cockroaches, GABAergic
LNs also mediate synchronization of PN outputs (Watanabe,
2012). Thus, balanced lateral inhibition is a plausible mechanism
by which stimulation with a pheromone blend of optimal ratio
can produce the highest degree of correlated spikes in PNs.
These ideas are yet to be experimentally confirmed, but have
already been explored to some extent in a modeling study
(Zavada et al., 2011). Given the diversity of LNs in the AL
(Wilson and Laurent, 2005; Seki and Kanzaki, 2008; Reisenman
et al., 2011), lateral inhibition may involve particular LN types.
Indeed, a recent study on the silkmoth B. mori revealed the
existence of both spiking and non-spiking LNs, and showed that
non-spiking LNs can inhibit PNs (Tabuchi et al., 2015). Some of
these effects may be species-specific, as spiking LNs in the AL of
the cockroach Periplaneta americana can inhibit PNs (Warren
and Kloppenburg, 2014), while non-spiking LNs (at least those
surveyed) do not (Husch et al., 2009).

If the observed spike correlations are meaningful, then the
correlated code should be read by postsynaptic neurons. Indeed,
although rare, some lateral horn protocerebral neurons, which
are known to receive direct input from AL neurons and thought
to mostly mediate innate behaviors (e.g., Homberg et al., 1989;
Anton and Homberg, 1999; Jefferis et al., 2007; Galizia and
Rössler, 2010; Roussel et al., 2014; Kohl et al., 2015), produce
the strongest response to the two-component pheromone blend
presented at the naturally occurring ratio (Lei et al., 2013).
Such correlation hypothesis is also supported by a recent study
in Drosophila melanogaster. The odor-evoked spikes of PNs

innervating a particular glomerulus (DA1) are highly correlated
and provide converging input to their target neurons in the
lateral horn (Jeanne and Wilson, 2015). Although the ligand
of DA1-PNs is a single pheromone compound (cis-vaccenyl
acetate), these experiments demonstrate that synchrony between
PNs (arborizing in the same glomerulus in this case) occur, and
could be related to coincident detection in post-synaptic neurons
(Jeanne and Wilson, 2015). The identity of other Drosophila
volatile pheromone compounds, and their processing circuits,
were recently reported, although it is not yet known which
mixtures are behaviorally significant in this species (Dweck et al.,
2015).

In summary, both behavioral and neurobiological data
indicate that not just the identity of the sex pheromone
constituents, but also the constituents’ ratios, are of paramount
importance in mediating natural behavior. The neural
mechanisms underlying the coding of ratios, particularly at
the higher brain level, are still not fully understood. Because
responses to sex pheromone mixtures are often species-specific,
those mixtures represent an effective way to control specific
species, which is much preferable to the use of insecticides as
these often affect non-target species.

Use of Other Pheromones
In this section we focus on aggregation and alarm pheromones,
since those are the only non-sex pheromone types that have been
used to manipulate olfactory behavior. We will briefly review
what is known for the major groups of harmful insects.

Aggregation pheromones promote conglomerates of
individuals and are ubiquitous among arthropods, including
many harmful species of beetles, moths, thrips, triatomines,
locusts, mosquitoes, sand flies, and ticks (Wertheim et al.,
2005; Sonenshine, 2006; Cook et al., 2007; Lorenzo Figueiras
et al., 2009). Often, the decay, fermentation and pathogenesis
associated with insect aggregations are the cause of important
economic damage to crops and goods (Wertheim et al., 2005;
van der Goes van Naters and Carlson, 2006). For instance, all
throughout North America pine forests have been succumbing
to massive bark beetle infestations that destroyed expanse forests
and increase the risks of mudslides and forest fires (Chapman
et al., 2012; Raffa et al., 2013). Beetle aggregation pheromones
have been used for monitoring and mass-trapping, and also
to recruit large number of insects on trap trees that are then
destroyed (see Cook et al., 2007 for a review). A recent study
used single-sensillum recordings to investigate the odor response
profiles of ORCs in both sexes of the brown spruce longhorn
beetle Tetropium fuscum. Interestingly, it was found that the
responses to aggregation pheromones and plant volatiles are not
completely segregated and can be synergized by the presence of
volatiles indicative of host stress (MacKay et al., 2015).

While in general aggregation pheromones attract both sexes
(Wertheim et al., 2005), in some species gravid females are
attracted to a pheromone that induces aggregated oviposition.
For instance, females of the sandfly Lutzomia longipalpis,
which transmit leshmaniasis, use an oviposition aggregation
pheromone which benefits the offspring of unrelated individuals
by preventing fungal contamination of larval food (Wertheim
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et al., 2005). Culex quinquefasciatus gravid females, which
are vectors of filariasis and West Nile Virus (among others),
are attracted to a pheromone released from maturing eggs
in conjunction with an indole compound derived from grass
infusions (Mboera et al., 2000; Logan and Birkett, 2007),
and these components evoke electrophysiological activity from
antennal ORCs (Mordue et al., 1992; Blackwell et al., 1993). In
other non-insect arthropods such as ticks, which transmit Lyme
disease, fecal components promote arrestment and aggregation,
and tarsi contact chemoreceptors respond to some of these
components (e.g., guanine) with extremely high sensitivity
(Grenacher et al., 2001; Sonenshine, 2006). Such information
about the most effective bioactive components can have
practical applications for tick control. For instance, aggregation
pheromones can be used together with an acaricide that when
applied to vegetation or livestock kills ticks upon contact
(Sonenshine, 2006).

Alarm pheromones inform or alert a conspecific about
impending danger; they are highly volatile, disperse quickly,
and do not persist long (see Napper and Pickett, 2008 for
a review). They are released by a variety of glands and
include compounds belonging to different chemical classes (e.g.,
terpenes, hydrocarbons, nitrogen compounds). In blood-sucking
insects, alarm pheromones could be used as repellents. Bed
bugs release alarm pheromones in response to injury and ant
attacks, causing conspecifics to disperse (Levinson et al., 1974a).
This alarm pheromone is species-specific to a certain extent,
and consists of two major components detected by antennal
sensilla (Levinson et al., 1974b; Reinhardt and Siva-Jothy, 2007;
Olson et al., 2009). When disturbed, adult triatomines release
an alarm pheromone mainly composed of isobutyric acid that
repels conspecifics (Guerenstein and Guerin, 2004; Manrique
et al., 2006; May-Concha et al., 2013; Minoli et al., 2013a,b),
which could be used as a triatomine monitoring tool (Minoli
et al., 2013b). Isobutyric acid is detected by ORCs in grooved
peg sensilla on the triatomine antenna (Guerenstein and Guerin,
2001), likely through the action of an IR (Guidobaldi et al., 2014).

Alarm signals are also conspicuously present in other
hemipterans of economic importance such as stink bugs.
Heteropteran alarm semiochemicals often have a six-carbon
skeleton (e.g., trans-2-hexenal) and have little species specificity
(Napper and Pickett, 2008). Insects of economic importance in
other orders that produce an alarm pheromone include thrips
and aphids. The alarm pheromone of thrips reduces oviposition
and causes larvae to fall from plants, and thus could be used
to pull insects away from crops (Pickett et al., 1997). When
aphids are attacked, they release an alarm pheromone (trans-ß-
farnesene; Bowers et al., 1972; Dewhirst et al., 2010; Vandermoten
et al., 2012) that causes dispersion of other nearby aphids,
including inter-specific responses across subfamilies (Napper and
Pickett, 2008). This and other alarm aphid compounds have been
used for controlling aphids in both greenhouse and field settings
(Pickett et al., 1997; Dewhirst et al., 2010; Vandermoten et al.,
2012).

Interestingly, sometimes a semiochemical can function as
an alarm or an aggregation pheromone, depending on its
concentration. This has been shown for trans-2-hexenal in

cockroaches (Napper and Pickett, 2008), and for isobutyric
acid in the blood-sucking triatomine bug Rhodnius prolixus
(Guerenstein and Guerin, 2004; Manrique et al., 2006; Minoli
et al., 2013a). Thus, not only the compound identity needs
to be considered in tools for insect control, but also its
concentration and behavioral context. While aggregation and
alarm pheromones could be used to manipulate the olfactory
behavior of harmful insects, we just started to understand
how these signals are processed, particularly at the peripheral
level. Control strategies can certainly benefit from a deeper
understanding of the neural mechanisms controlling these
olfactory-driven behaviors.

Use of Host Odors
Many insects that feed or oviposit on a host such as a plant
or a vertebrate are pests of crops or transmit human and/or
animal diseases. It is well-established that host odors, including
CO2, are a key cue for host detection and orientation (van der
Goes van Naters and Carlson, 2006; Guerenstein andHildebrand,
2008; McMeniman et al., 2014; van Breugel and Dickinson, 2014;
Reisenman and Riffell, 2015). Much work has been done on the
attraction of harmful insects toward natural and synthetic host
odors and its neurobiological bases (Guidobaldi et al., 2014 and
references therein), information that sometimes has been used to
develop odor baits for traps (e.g., Krockel et al., 2006; Ryelandt
et al., 2011; Mukabana et al., 2012; Guidobaldi and Guerenstein,
2013). Importantly, manipulation of host-seeking behavior offers
many opportunities to disrupt harmful insects. Insects usually
respond to specific mixtures of host odorants, even when
they include ubiquitous (including non-host) odorants (Bruce
and Pickett, 2011). Even when some constituents of those
odor mixtures are essential to evoke a behavioral response
(e.g., Geier et al., 1996; Guidobaldi and Guerenstein, 2013),
in some cases certain components could have redundant roles
and therefore, could be removed without decreasing attraction
(e.g., Cha et al., 2008). Moreover, key components could be
replaced without affecting attractiveness (Tasin et al., 2007). The
neurophysiological bases of this phenomenon are not clear, but
it is possible that in certain cases key odorants are detected
by broadly tuned ORCs (that is, the same ORC could be
involved in the detection of several behaviorally redundant key
odorants). Thus, studies on the physiological responses of ORCs
can have important implications for the design of attractive
odor baits. Indeed, ORCs detecting different constituents of a
natural odor mixture are sometimes co-localized in the same
sensilla (Stensmyr et al., 2003). This, along with the finding that
sometimes ORCs within a single sensillum interact (Nikonov
and Leal, 2002; Ochieng et al., 2002, Su et al., 2012), makes
possible the simultaneous detection and processing of mixture
components already at the peripheral level.

As a general rule, odorant identities in the AL are encoded in
spatial patterns of glomerular activation (Carlsson et al., 2002;
Hansson et al., 2003; Wang et al., 2003; Lei et al., 2004), with
some glomeruli narrowly tuned to certain odorants, including
hostplant volatiles. For instance, PNs in a specific glomerulus
of the M. sexta AL are extremely sensitive and narrowly tuned
to the plant volatile cis-3-hexenyl acetate (Reisenman et al.,
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2005). Moreover, other PNs in a female-specific glomerulus
can discriminate, with high sensitivity, the (+) and (−)
enantiomers of linalool (Reisenman et al., 2004). PNs in sexually
isomorphic glomeruli, in contrast, are equally responsive to both
enantiomers of linalool (Reisenman et al., 2004). Interestingly,
these neurophysiological findings served to predict behavioral
responses that were readily tested. Thus, later studies found that
the two enantiomers of linalool respectively mediate oviposition
attraction and repellence (Reisenman et al., 2010, 2013), and that
these two compounds are equally effective in mediating feeding
(Reisenman et al., 2010).

Different features of host odor blends are encoded in
glomerular activity patterns. For instance, the encoding of
odor mixture identity involves synchronous firing of PNs
throughout the activated glomeruli, which may serve to “bind”
the components of the odor mixture (Riffell et al., 2009a,b).
In addition, stimulation with an odor mixture can evoke a
glomerular activation pattern which is different from that evoked
by the summation of the activity patterns evoked by each
component (see below). The importance of ratios in the detection
of host odor mixtures has been shown in different insects
(e.g., Najar-Rodriguez et al., 2010; Guidobaldi and Guerenstein,
2016). In oriental fruit moths, for instance, particular ratios
within a synthetic plant odor mixture affected oviposition
attraction negatively. Corresponding neurophysiological studies
found that information about component ratios occurs non-
uniformly across AL glomeruli, and that further processing
takes place in higher-order brain centers (Najar-Rodriguez et al.,
2010).

As mentioned above, insects usually respond to specific host
odor mixtures (e.g., Geier et al., 1999a; Barrozo and Lazzari,
2004a; Krockel et al., 2006). For example, triatomines are
sensitive to various human compounds (e.g., CO2, lactic acid,
ammonia, carboxylic acids; Guerenstein and Lazzari, 2009), and
a mixture of ammonia, lactic acid, and pentanoic acid evokes
attraction, whereas there is low or no attraction to the single
constituents (Guidobaldi and Guerenstein, 2013). Furthermore,
in aphids, individual constituents of an otherwise attractive
blend can have repellent effects (Webster et al., 2010). Some
constituents of host odormixtures can act synergistically to evoke
attraction (e.g., Bosch et al., 2000; Barrozo and Lazzari, 2004a;
Smallegange et al., 2005; Piñero et al., 2008; Guidobaldi and
Guerenstein, 2013). In females of the oriental fruit moth Cydia
molesta, minute amounts of benzonitrile added to an unattractive
mixture resulted in a mixture that is as attractive as a natural
blend. At the AL level, this bioactive mixture evoked strong
activation and synergistic effects in an additional glomerulus
not activated by the unattractive mixture (Piñero et al., 2008).
Besides synergistic phenomena, additive effects in response to
odor mixtures are also found at the central level (e.g., Lei and
Vickers, 2008). Therefore, multi-component odor baits will likely
be more attractive than single odorants, as they may form specific
and reliable “odor objects” (e.g., Späthe et al., 2013, see Section
Effects of Background Odor). Interestingly, it has been proposed
that just a few (sometimes just three) key components of an odor
blend are sufficient for reliable host recognition, even when the
insects can detect a higher number of host odorants (Qiu et al.,

2007; Riffell et al., 2009a; Guerenstein and Lazzari, 2010; Bruce
and Pickett, 2011; Guidobaldi and Guerenstein, 2013).

CO2 is a food and/or oviposition host cue used by some
herbivorous and hematophagous insects (Guerenstein and
Hildebrand, 2008). Glomerulus-specific CO2 PNs in the AL of
M. sexta can follow high frequency CO2 pulses, suggesting that
these PNs report information about long-distance CO2 cues
(Guerenstein et al., 2004a). This idea is also supported by the
finding that nectar-rich flowers emit relatively high levels of CO2

(Guerenstein et al., 2004b). In fact, foraging moths use floral
CO2 as a long-distance cue to find those flowers (Thom et al.,
2004; Goyret et al., 2008). This and other examples (e.g., van
Breugel et al., 2015) again show that neurobiological studies can
predict behavior, and ultimately can inspire odor-based control
strategies (van der Goes van Naters and Carlson, 2006). The fact
that blood-sucking insects are proving difficult to control (Logan
and Birkett, 2007), and that they transmit an ever increasing
number of diseases to humans and animals, emphasizes that
further studies are needed to develop effective tools for insect
behavioral manipulation. It should be noted that any odor-based
control strategy should consider that different types of natural
odor stimuli (including background odors) often interact (e.g.,
Chaffiol et al., 2012, 2014, see also Section Effects of Background
Odor). In addition, it should be considered that the physiological
state of the insects (e.g., mating, feeding) as well as learning affects
their responses to odors (e.g., Barrozo et al., 2010; Saveer et al.,
2012; Reisenman, 2014; Matthews et al., 2016; Section Plasticity
in the Responses to Semiochemicals).

Combined Use of Pheromones and Plant

Volatiles
When insects detect a mate, their olfactory system is confronted
with not only sex pheromones, but also background odors such as
plant volatiles. In principle, sex pheromones admixed with green
leaf volatiles should be very attractive to phytophagous insects
because such mixture may indicate the presence of a calling mate
in a proper context. Therefore, at least in certain cases, it would be
important to include hostplant volatiles in sex pheromone traps.
For instance, in the case of the codling moth Cydia pomonella,
addition of plant volatiles [e.g., (E)-β-farnesene] to the sex
pheromone (codlemone) significantly increased the proportion
of males flying to the pheromone in wind tunnel experiments
(Schmera and Guerin, 2012; Trona et al., 2013). In addition, it
has been shown that females of the Egyptian cotton leafworm
S. littoralis exposed to cotton volatiles start calling earlier than
females exposed to non-host volatiles, and that mating pairs
exposed to these volatiles start mating earlier. Also, more males
reach (or arrive nearby) the pheromone source when hostplants,
rather than non-hosts, are present (Binyameen et al., 2013).

Integration of sex pheromone and plant volatile information
may occur at the peripheral level. For example, in the noctuid
moth Agrotis ipsilon pheromone ORCs can be directly excited by
plant volatiles (Rouyar et al., 2015). Moreover, in pheromone-
specific ORCs of Helicoverpa zea, stimulations with binary
mixtures of sex pheromone and single hostplant odorants [either
linalool or (Z)-3-hexenol] produce stronger responses than

Frontiers in Physiology | www.frontiersin.org 6 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

stimulation with the sex pheromone alone due to interactions
between ORCs (Ochieng et al., 2002). Mixtures containing
pheromone and plant odorants can also have a suppressive effect.
For instance, in S. littoralis, herbivore-induced plant odorants
can directly suppress the response of pheromone-specific ORCs
(Hatano et al., 2015). Direct suppression has also been observed
in Heliothis virescences males upon stimulation of pheromone-
specific ORCs with a sex pheromone component and a number of
plant volatiles (Pregitzer et al., 2012). Suppressive effects can also
be due to interactions between ORCs (Andersson et al., 2010).
Interestingly, in woodboring beetles (T. fuscum), some ORCs
respond specifically to their aggregation pheromone, although
other ORCs specifically respond to the aggregation pheromone
combined with at least one plant compound (MacKay et al.,
2015).

The olfactory sub-system dealing with the processing of
sex pheromone signals has traditionally been considered as
a specialized system different from the “main” olfactory
sub-system dealing with the processing of host/food odors.
This notion was strongly supported by the identification of
pheromone-specific ORCs (Bray and Amrein, 2003; Mitsuno
et al., 2008; Krieger et al., 2009; Grosse-Wilde et al., 2010;
Montagné et al., 2012; Zhang et al., 2015) which in some
insect species (particularly within Lepidoptera) project to a
small but distinct number of male-specific glomeruli (the
aforementioned MGC; Kanzaki and Shibuya, 1983; Christensen
and Hildebrand, 1987; Hansson et al., 1992, 1995, 2003; Berg
et al., 1998; Rospars and Hildebrand, 2000; Masante-Roca et al.,
2002; Sadek et al., 2002; Lei et al., 2004). In spite of this
anatomical and often functional separation, it is clear that the
two olfactory sub-systems also interact at the AL level. Both
suppressive and additive interactions between pheromone and
plant odorants have been reported in the MGC of different
Lepidoptera species. In some cases, suppressive effects were
observed (Chaffiol et al., 2012; Deisig et al., 2012), while in
others responses were enhanced (Namiki et al., 2008). The
responses of neurons in sexually isomorphic glomeruli can
also be affected by the presence of female pheromones in
several species, but showed more interspecific variations (Namiki
et al., 2008; Chaffiol et al., 2014). Moreover, in C. pomonella,
both response enhancement and suppression in response to
mixtures of pheromones and plant odors has been observed
in sexually dimorphic and isomorphic glomeruli, respectively
(Trona et al., 2013). Interactions between the two sub-systems
are not necessarily reciprocal or determined by spatial proximity
(Namiki et al., 2008; Reisenman et al., 2008; Trona et al., 2013).
Furthermore, additive effects for single and pulsed stimulations
with mixtures of pheromone and plant odors have been reported
(Chaffiol et al., 2014). Because in most cases ORCs that respond
to plant odorants do not respond to sex pheromones (and are
located in different sensilla), the responses of AL neurons to sex
pheromones in sexually isomorphic glomeruli likely result from
AL network interactions (Reisenman et al., 2008; Deisig et al.,
2012; Chaffiol et al., 2014). The processing of combined signals
(i.e., pheromone and non-pheromonal) in higher brain centers
is less understood, but it is likely that neurons in these centers
further contribute to this interaction.

All these results, both at the peripheral (ORC) and AL level
challenge the traditional idea that pheromone and hostplant
odor reception and processing are segregated. Thus, these results
indicate that olfactory neural circuits are perhaps far more
functionally diverse than previously thought. At the same time,
these findings highlight the idea that in order to develop efficient
tools to manipulate mate-finding behavior it is important to
consider the odor context of that signal (e.g., if appropriate for
the species, pheromonal baits could also include a host odor).

Visual cues play important roles in modulating the olfactory
behavior of insects (e.g., Green, 1986, 1993; Cardé and Gibson,
2010; Willis et al., 2011; Gaudry et al., 2012; McQuate, 2014; van
Breugel et al., 2015), and thus, visual cues are often added to
odor baits in traps (e.g., Green, 1994). As integration of visual
and olfactory stimuli at the CNS has already been documented
(e.g., Balkenius et al., 2009), further studies in higher brain
centers could help improve the development of multimodal baits.
Even when this integration of information is relevant for the
manipulation of olfactory behavior, it exceeds the aim of this
review, and will not be discussed here.

Effects of Background Odor
Odormixtures are thought to be represented in the insect brain as
single “odor objects,” so that the unique mixture identity prevails
over the information about its constituents (Lei and Vickers,
2008; Wilson and Sullivan, 2011; Stierle et al., 2013). When odor
baits (usually odor mixtures) are used in the field for insect
monitoring and control, they are necessarily presented against
an odorous dynamic background (another odor mixture/s).
Background odors can either be irrelevant, “mask” the target
odor (making it unrecognizable), or can enhance the response
to a target odor (Schroeder and Hilker, 2008). In principle, it
is conceivable that the bait (target) plus the background odor
are perceived as a single mixture, creating a new and emergent
“odor object” that can interfere with the identification of the
target odor. If that were the case, how do insects orient toward
natural odor sources such as hosts, mates, and oviposition sites?
In this section we review the importance of background odors in
shaping the responses to a target odor bait.

Detecting and discriminating a target odor mixture requires
binding its different components (e.g., Deisig et al., 2006; Riffell
et al., 2009b), and this “odor object” should be salient even in
the presence of background odors. How do nervous systems
accomplish this task? In rats, prolonged odor stimulation leads
to fast habituation of neurons in the olfactory cortex, so that
new odors evoke clear, distinct, responses. As a result, when
the two odors are present, the constant odor (background)
is filtered while the target odor evokes a neural response,
suggesting that animals can separate the target stimulus from its
background (Kadohisa and Wilson, 2006; Linster et al., 2007).
This idea is also supported by experiments in honeybees, in which
odorants presented simultaneously (simulating components of
a single odor source) were represented as a single object,
while odorants presented with an inter-stimulus delay were
represented separately (Szyszka et al., 2012; Stierle et al., 2013).
Although interglomerular inhibitory interactions contribute to
bind components into a single odor object (e.g., Deisig et al.,
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2006; Riffell et al., 2009b; Stierle et al., 2013), it has been shown
that asynchronous mixtures activate more inhibitory interactions
than synchronous mixtures (Stierle et al., 2013). How could
this target-background object separation happen in natural odor
plumes? Since insect ORCs can have short (<2ms) response
latencies, the thin filaments of target odors that intermingle
with those of background odors could be resolved temporally,
thus allowing target-background odor segregation (Szyszka et al.,
2014).

Convincing and exciting experiments in moths showed that
constant odor backgrounds that are chemically different from the
target odor do not affect the representation of the target odor,
whereas backgrounds that contain a constituent in common
with the target odor do (Riffell et al., 2014), a phenomenon
akin to the masking effect reported in mosquitoes and other
insects (Logan et al., 2008; Schroeder and Hilker, 2008, see
Section Odor Masking). Background odors with a constituent
in common with the target evoke a change in the balance of
excitation and inhibition in AL neurons with respect to the
response to the target odor alone, thus altering the representation
of the target odor (Riffell et al., 2014). Pre-exposure to this
type of background odors produces an exacerbated change in
the response to the target odor, resulting from neurons being
adapted to the common constituent (Riffell et al., 2014). Stierle
et al. (2013, see above) used a different insect species and
different experimental conditions, although also tested dissimilar
target- background odors presented simultaneously, and arrived
to different conclusions (Stierle et al., 2013). These authors found
that this mixture is represented as a single distinctive odor object,
while Riffell et al. (2014) reported efficient target-background
discrimination.

Still, there is an experimental situation that has not been tested
yet: similar target- background odors (or target and background
with a common blend constituent) presented asynchronously.
Because in nature background odor plumes can have a different
temporal structure than target odor plumes, insects could exploit
these temporal differences to segregate a target odor from its
background, even when these have common constituents (Stierle
et al., 2013; Szyszka, 2014; Rusch et al., 2016). Experience may
also help this segregation, as learning increases the distinction
between different scents (Fernandez et al., 2009; Riffell et al.,
2013). While in the work described synthetic blends were used,
it would be most informative to use complete natural blends
as targets since in principle, it should be easier to alter the
neural representation of a synthetic mixture consisting of just
a few constituents than that of a multi-component natural
odor. Somewhat related to this idea, it has been suggested that
redundant odor blends reduce uncertainty as they convey more
robust information (Wilson et al., 2015).

As mentioned above (Section Combined Use of Pheromones
and Plant Volatiles), plant odors could influence the response
to pheromones both at the peripheral and the AL levels.
Moreover, supression of attraction to the sex pheromone by
hervivore-induced plant volatiles has been reported in S. littoralis
(Hatano et al., 2015). However, H. virescens males can be
effectively attracted to the conspecific female sex pheromone
in a constant background of naturally-occurring hostplant

odors, including hervivore-induced plant volatiles (Badeke et al.,
2016). While these results parallel those reported by Riffell
et al. (2014), the attraction of H. virescens to the female
pheromone is impaired in a background of high and supra-
natural plant odor concentrations (Badeke et al., 2016). These
results not only further underlie the importance of using natural,
realistic stimuli, but also that additional studies are necessary to
fully understand the mechanisms underlying target/background
discrimination, as the chemical identity of the odors used, as
well as the species under study, could certainly influence the
results.

A particular constituent of the volatile background, CO2, also
affects the behavior of at least some insects (Guerenstein and
Hildebrand, 2008). Information about this odor cue is processed
as information about other odors, while the background level
of CO2 is simultaneously encoded (Guerenstein et al., 2004a).
In hematophagous insects this cue is used to detect and find
vertebrate hosts (e.g., Geier et al., 1999b; Barrozo and Lazzari,
2004b), while in moths it is used to detect and find oviposition
sites and nectar resources (Stange, 1997; Thom et al., 2004;
Goyret et al., 2008). While those CO2 sources evoke clear
responses from the CO2 ORCs at natural CO2 background
levels, higher CO2 background levels interfere with those
responses (Guerenstein and Hildebrand, 2008). In mosquitoes,
an elevated CO2 background impedes take-off and source
contact by masking the stimulus signal (Majeed et al., 2014).
Moreover, the oviposition behavior of Cactoblastis cactorum, a
moth particularly sensitive to CO2, is also affected by elevated
CO2 backgrounds (Stange, 1997) because ORCs stop firing at
such high CO2 levels (Stange et al., 1995). However, the behavior
and ORC responses of M. sexta moths are not affected by
moderate increases in CO2 background levels, but instead by
high-amplitude CO2 oscillations (Abrell et al., 2005). In addition,
certain background odorants can modulate the activity of CO2

ORCs (e.g., Guerenstein et al., 2004a) or even evoke a response
per se in those receptors (Turner et al., 2011), thus interfering
with CO2-mediated behaviors.

In conclusion, the odor background can affect responses to
target odors (e.g., Büchel et al., 2014). Thus, for example, efficient
odor baits developed in the laboratory could fail to attract insects
under field conditions, where different background odors are
present. Although more research is needed to understand its role
in insect behavior, the odor background should be taken into
account when planning an odor-based pest/vector management
strategy. In addition, it would be important to investigate the
feasibility of techniques to disrupt natural olfactory behavior
using masking (see Section Odor Masking) and/or background
odorants, as this could improve the methods currently used to
disrupt behavior using natural odorants (see Section Disruption
of Natural Olfactory Behavior).

OLFACTORY REPELLENCE

According to Barton-Browne (1977) a repellent is “a chemical
that acting in the vapor phase prevents an insect from reaching
a target to which it would otherwise be attracted.” A repellent
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has also been defined as a product causing the insect “to leave
the prospective host, with true behavioral repellency involving
avoidance of the source of the repellent material, whether placed
on the prospective host or near it” (Pickett et al., 2008). While
these definitions are based on behavioral effects, the mechanisms
of action of repellents are not considered. Repellents are used to
stop a pest from finding a valued resource; topical repellents are
usually applied onto the skin offering individual protection, while
spatial repellents volatilize into the air, creating a vector-free
space which provides protection for multiple individuals (Achee
et al., 2012). Typically, volatile repellents are used to protect
humans from insect (and other arthropod) bites, particularly
from arthropods which are vectors of diseases (Foster and Harris,
1997). Repellents have also been used to protect crops: for
example, the alarm pheromone of a number of aphids has been
used against these pests (Foster and Harris, 1997; Pickett et al.,
1997).

For centuries humans have used diverse parts of plants to
repel biting insects (Moore and Lenglet, 2004). Among these so-
called “botanical repellents,” various species of basil (Ocimum
spp.) have been historically used to repel mosquitoes. In addition,
oil extract from the leaves of neem (Azadirachta indica) has
also been used as a personal mosquito and sandfly repellent
(Yarnell and Abascal, 2004). Other botanical insect repellents
include the oil from leaves of citronella (Cymbopogon nardus),
palmarosa (C. martinii martinii), lemongrass (C. citratus), and
Eucaliptus (Eucalyptus spp.). The active components of these
botanical repellents are often unknown although citral, a major
ingredient in volatiles from lemongrass oil, and p-menthane-3,8-
diol, from lemon eucalyptus, have repellent effects on a variety
of mosquitoes (Yarnell and Abascal, 2004). Repellents can also be
derived from other natural sources such as insects (as in the case
of alarm pheromones or defense secretions), or may be purely
artificial (Foster and Harris, 1997).

The world’smost widely used synthetic topical insect repellent,
with broad effectiveness against many insects, is N,N-diethyl-
3-methylbenzamide, also known as N,N-diethyl-m-toluamide
(DEET;White, 2007; Syed et al., 2011). Other synthetic repellents
include Picaridin and IR3535 (or EBAAP, Ethyl Butyl-acetyl-
aminopropionate). A full understanding of the mechanism of
action of insect repellents and in particular, the identification
of their molecular targets, can help design safer and more
effective compounds. DEET appears to act both as a contact
chemo-repellent that stimulates insect gustatory receptor cells
that respond to aversive compounds (Lee et al., 2010), and as a
volatile chemo-repellent acting on the olfactory system.

The mode of action of volatile repellents is still under
debate and has been comprehensively reviewed recently (Leal,
2014); therefore, here we briefly summarize the most relevant
investigations. In D. melanogaster and in the mosquitoes Aedes
aegypti and Anopheles gambiae DEET appears to modulate the
responses of ORCs to attractive odors (Davis and Sokolove,
1976; Ditzen et al., 2008). This effect depends both on ORCO
(Ditzen et al., 2008) and on the molecular identity of the OR
in the OR-ORCO complex (Pellegrino et al., 2011). However, for
other repellents, it was proposed that DEET acts by just blocking
ORCO (Tsitoura et al., 2015). On the other hand, Syed and Leal

(2008) suggested that the mosquito C. quinquefasciatus can smell
DEET directly and that that stimulation results in avoidance even
in the absence of other odor cues. Similar results were reported
in triatomines, suggesting a common mode of action for the
repellent action of DEET (Zermoglio et al., 2015). Moreover,
other additional findings further support the hypothesis that
insects can smell DEET: (1) the existence of an ORC in D.
melanogaster which is sensitive to DEET, picaridin and IR3535
(Syed et al., 2011) and, (2) electroantennogram (EAG) and single
sensillum responses to DEET in A. aegypti (Stanczyk et al., 2010,
2013).

In an attempt to clarify some of these apparently contradictory
results, Bohbot and Dickens (2010) characterized the effects of
a number of repellents [DEET, 2-undecanone (2-U), IR3535
and Picaridin] on two OR-ORCO heteromers of A. aegypti
individually expressed in Xenopus oocytes. Their results suggest
that different mechanisms mediate the action of different
repellents. That is, repellents could be smelled directly (acting as
receptor agonists) or could inhibit the responses to odors (acting
as receptor antagonists; Bohbot and Dickens, 2010).

It is now well established that insects can smell DEET (Leal,
2014). Studies in mosquitos suggest that ORCO and the OR
pathway are necessary for the repellent effects of DEET as: (1)
wild-type A. aegypti avoid DEET whereas ORCO mutants do
not (DeGennaro et al., 2013) and, (2) in C. quinquefasciatus,
different repellents activate a particular OR (CquiOR136) in a
dose-dependent manner, whereas knockdown of this OR resulted
in loss of EAG and behavioral responses to DEET (Xu et al.,
2014). These results suggest that an OR is involved in the
direct detection of DEET (Xu et al., 2014). As the natural plant
repellent methyl jasmonate elicits responses in ORCs expressing
CquiOR136, it has been proposed that this OR is tuned to natural
repellents with long insect–plant evolutionary histories (Xu et al.,
2014).

In summary, different hypotheses have been suggested to
explain the mechanisms involved in the olfactory repellency of
DEET in blood-sucking insects. They include: (1) DEET may
silence ORs responsive to attractive odors, a hypothesis that
has now little support; (2) DEET is detected by one or a few
ORs; (3) DEET may act as a “confusant” by modulating the
activity of many ORs. Although it is possible that more than
one of these mechanisms act simultaneously, it is likely that
they are species-specific. Because all these proposed mechanisms
involve ORs, these are relevant candidate molecular targets for
the development of new repellents (Leal, 2014). Thus, based on
knowledge on the molecular receptors, more efficient and safer
volatile mosquito repellents could be developed. The need to
develop new repellents is emphasized by the finding that some
populations of A. aegypti are insensitive to DEET (Stanczyk
et al., 2010). Besides the repellent effects of DEET discussed
above, application of DEET on human skin results in an altered
host odor chemical profile due to a fixative effect of DEET, and
that effect could also contribute to repellency (Syed and Leal,
2008; Section Odor Masking). Finally, certain constituents of
non-host odors can act as arthropod repellents (e.g., interaction
between cattle flies and heifers: Birkett et al., 2004; interaction
between fruit flies and fruit: Linn et al., 2005; interaction between

Frontiers in Physiology | www.frontiersin.org 9 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

ticks and dogs: Borges et al., 2015), providing opportunities
for the development of natural, safer repellents. It should be
noted that the response to an attractive host odor blend can be
manipulated by adding non-host odorants (e.g., Linn et al., 2005),
and also by altering the proportions of one or more host odorants
(Section Odor Masking), causing either repellency (avoidance),
or masking (loss of attraction; Section Odor Masking).

DISRUPTION OF NATURAL OLFACTORY

BEHAVIOR

Mating Disruption
The most common behavior that has been disrupted using
semiochemicals is mating. This strategy has been used to
eradicate insects that became resistant to pesticides, including
pests of apples, peaches, cotton, and grapes (see Wyatt, 2003;
Witzgall et al., 2010). The basic idea of mating disruption
involves the broadcasting of a chemical signal similar to the
sex pheromones of the target species. The first registration of a
mating disruption product in the USA was for the pink bollworm
(Brooks et al., 1979); currently there aremore than 120 disruption
products registered in the US. Mating disruption usually involves
the release of large amounts of species-specific synthetic sex
pheromones (e.g.,Witzgall et al., 2010); these high concentrations
often “overload” the insects’ sensory system, interfering with the
detection of the usually lower amounts of pheromone released by
mating partners (Cardé, 1990, see below). Besides this traditional
approach (see below), new techniques and approaches are being
developed to improve efficacy. A new design, which is literally
an auto-confusion disruptionmethod, involves the application of
electrostatically charged wax powder (dubbed Entostat) onto the
cuticle of male moths. Because the powder can be loaded with
large quantities of female sex pheromone, male moths function
as mobile dispensers. Indeed, Entostat-exposed codling moth
males remained as attractive as a 0.1-mg pheromone lure for
up to 24 h in laboratory experiments (Huang et al., 2010). The
behavior of male moths that are normally attracted to natural
sources of pheromone was completely disrupted after treatment
with Entostat powder. Moreover, the males’ ability to orientate
to the pheromone lure remained significantly impaired 6 days
post-application, arguing that Entostat augments the effect of
sensory (peripheral) adaptation and CNS habituation (Huang
et al., 2010).

According to Miller and Gut (2015), mating disruption
methods can be broadly divided into two categories, i.e., non-
competitive and competitive. Non-competitive methods involve
interference with the sensory capabilities of males or females,
or hampering pheromone emission, and examples include
mating/calling suppression, camouflage, sensory imbalance, and
desensitization. Competitive methods do not involve changes on
the insects’ sensory capabilities or on pheromone emission and,
therefore, insects can respond equally well to other insects and
trap lures. Thus, several mechanisms can mediate pheromonal
mating disruption, including loss of sensitivity in ORCs (sensory
adaptation), loss of sensitivity at the CNS level (habituation),
camouflaging of the female’s odor trail, competition between

dispensers and natural pheromone, and unbalanced components
in the synthetic pheromone (Cardé, 1990). We next discuss
sensory adaptation and habituation.

Stimulation with high concentrations of pheromones
generally reduce the response sensitivity of pheromone ORCs
(i.e., ORCs adapt to the stimulus), a phenomenon which can be
quantified using EAG. For instance, in male oriental fruit moths,
the EAG amplitude decreased as animals approached high
emission-rate sources, and this reduction was correlated with
upwind flight cessation (Baker and Haynes, 1989). In another
moth species, long-lasting EAG adaptation after pheromone
pre-exposure occurred over a range of pheromone dosages and
lasted more than 10min (Stelinski et al., 2005). There appear
to be significant species-specific variations in the capability
of the olfactory system to adapt to pheromones. For instance,
Grapholita molesta moths have a three-fold greater level of
sensory adaptation after pre-exposure than Choristoneura
rosaceana (Trimble and Marshall, 2010), a finding which may
explain why G. molesta is readily more controllable using mating
disruption than C. rosaceana. The mechanisms underlying
sensory adaptation were investigated in the moth M. sexta.
After presentation of an adapting pheromone stimuli, and in
response to the pheromone test stimulus, type I trichoid sensilla
produced sensillar potentials of lower amplitude than those
from non-adapted sensilla, while the pheromone ORC spike
frequency of adapted sensilla was concomitantly lower (Dolzer
et al., 2003). Furthermore, pheromone stimuli lasting several
seconds strongly activated protein kinase C in pheromone ORCs,
while minute-long stimuli elevated cGMP concentrations. These
results indicate the existence of distinct intracellular signaling
mechanisms mediating short-term and long-term adaptation
(Dolzer et al., 2008).

In order to produce habituation in AL neurons and, therefore,
disrupt behavior, unnaturally high stimulus concentrations
and/or frequencies can be used. In AL PNs, pheromone
stimulation typically produces a burst of action potentials
followed by an after-hyperpolarization (AHP) inhibitory phase
(Christensen and Hildebrand, 1988; Lei et al., 2009). The AHP
is critical to enable PNs to resolve intermittent stimuli, which
is a universal feature of natural odor plumes (Murlis et al.,
1992; Lei et al., 2009). Within a certain range of stimulus
frequencies, PNs respond with a burst of action potentials
(followed by a short AHP) to each odor pulse, faithfully reporting
the temporal structure of the stimulus train. However, when
the pulsing rate exceeds the response range of PNs (>10Hz),
neurons can only respond with a single burst of action potentials
followed by a prolonged AHP (Christensen and Hildebrand,
1988; Lei and Hansson, 1999; Heinbockel et al., 2004). In
addition, the excitatory and inhibitory phases can be both
habituated by high stimulus concentrations. Increasing stimulus
concentrations decreases the delay to the onset of the excitatory
phase and increases firing rate eventually reaching saturation
(Heinbockel et al., 2004; Fujiwara et al., 2009), while also
decreases the delay to the onset of the inhibitory phase and
increases its duration. In the upper range of concentrations,
PNs only produce a brief (high-rate) burst that is followed by a
lengthy AHP, which is similar to the habituating pattern evoked
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by high frequency stimuli. Thus, under sustained stimulation
and high concentrations, PNs show responses which are not
likely linked to natural behaviors. Because PNs also receive input
from LNs, these may also contribute to PN habituation, as
observed in D. melanogaster (Seki et al., 2010). Because many
LNs are GABAergic and can therefore inhibit PNs (Hoskins et al.,
1986; Christensen et al., 1993; Wilson and Laurent, 2005; Seki
and Kanzaki, 2008), LN habituation would produce sustained
PN disinhibition, potentially interfering with triggering natural
behavior. Although the roles of LNs are still being investigated,
it is thought that they may render the response of some PNs
concentration-independent (e.g., Asahina et al., 2009; Olsen et al.,
2010). In summary, investigations on sensory adaptation and
habituation can be helpful to find the most effective chemicals
that can be used to disrupt mating.

Odor Masking
As mentioned above (Sections Use of Sex Pheromones and Use
of Host Odors), not just the identity of the constituents of an
odor mixture but also their proportions (ratios) are important
for attraction. For instance, humans are differentially attractive
to mosquitoes and this could be due to individual host odor
mixture variability (Logan et al., 2008 and references therein).
In some cases low attractiveness has been linked to low levels of
some odors. For example, in A. aegypti, addition of lactic acid
to the skin of formerly unattractive humans can increase their
attractiveness (Steib et al., 2001). Low or no-attractiveness to
a natural host odor blend could also result from higher-than-
normal concentrations of a natural constituent of the attractive
blend (e.g., Birkett et al., 2004; Logan et al., 2008, 2009), a
phenomenon attributed to blend repellency or masking (see also
Section Effects of Background Odor).

Comparisons of the odor profiles of individuals with different
attractiveness revealed that a few compounds are present in
higher relative amounts in less-attractive individuals, including
6-methyl-5-hepten-2-one (Logan et al., 2008, 2009). When low
and naturally occurring doses of this odor were added to naturally
attractive human odor, upwind flight and probing were reduced.
Although a repellent-blend effect can occur (Logan et al., 2009),
a small increase in the amount (ratio) of a particular compound
within the natural host odor mixture could also produce masking
of the target odor so that the host is no longer recognized as such
(Logan et al., 2008; see also Bruce and Pickett, 2011 for examples
in phytophagous insects).

Many semiochemicals can be used in conjunction with other
chemical tools in “push-pull” strategies. These strategies divert
insects away from a valuable resource (the “push” away from, for
example, a host) into an attractant (the “pull” component; Pickett
et al., 1997; Cook et al., 2007). Masking odors could be used in
push-pull control strategies to prevent host location (“pushing”
insects away from the hosts) while at the same time, attractive
odors could be used as baits in traps to “pull” the insects away
from hosts (Cook et al., 2007; Logan et al., 2008). Neuroethology
approaches could readily speed up the discovery of effective
masking odors for use in control strategies. For instance, one
strategy could be to test the degree of odor-object transformation
in the AL (i.e., the change in the spatio-temporal response pattern

of an ensemble of AL neurons) that is evoked by altered ratios of
different compounds within the natural host odor mixture.

Carbon dioxide is an important odor that mediates the
behavior of many harmful insects (Guerenstein and Hildebrand,
2008). Therefore, manipulation of the odors that modulate the
response of the CO2 receptors (Section Effects of Background
Odor; Turner et al., 2011), including inhibitory odorants that can
mask human scent (Tauxe et al., 2013), can profoundly impact
CO2-mediated behaviors. Moreover, large CO2 fluctuations can
“confuse” the insect’s detection of natural CO2 sources (Abrell
et al., 2005 and references therein), which may be used for
interfering with the behavior of CO2-sensing insects.

Odor Antagonism
As in many lepidopterans, Heliothine females release a sex
pheromone that attracts conspecific males. However, certain
compounds of the somewhat similar sex pheromone of a
sympatricHeliothine species make the former blend unattractive.
Indeed, the addition of such interspecific compounds to a species’
sex pheromone blend can eliminate attraction in conspecific
males, thus acting as antagonists (Vickers and Baker, 1997).
In the AL of both H. virescens and H. zea the two essential
components of their species-specific pheromone blends are
represented in two separate MGC glomeruli. Odorants that
antagonize attraction, when added to the respective pheromonal
blends, evoked excitatory activity in PNs restricted to a third
MGC glomerulus in both species (Vickers et al., 1998). Therefore,
attractive and antagonist odor blends are represented in distinct
combinations of MGC glomeruli, thus providing a combinatorial
code for sex pheromone discrimination in sympatric species.

While approaching a female, male moths also emit volatile
chemicals through specialized male structures such as the
hairpencils (Birch et al., 1990). It has been shown thatH. virescens
hairpencil volatiles have both aphrodisiac and repellent effects
on conspecific females and males, respectively. Interestingly, the
male ORCs that respond to a conspecific hairpencil compound
also respond to an interspecific sex pheromone antagonist
(Hillier et al., 2006). Antagonist compounds (including both
interspecific sex pheromone and conspecific hairpencil volatiles)
are certainly amongst the important chemicals that can be used
to manipulate harmful-insect behavior.

PLASTICITY IN THE RESPONSES TO

SEMIOCHEMICALS

Behavioral plasticity (including associative and non-associative
learning) affects chemosensory-guided behaviors in all insects.
For simplicity, we define learning as a permanent change in
behavior resulting from experience (Papaj, 2009). Associative
learning involves pairing of two stimuli in a way that the
response to one of the stimulus is altered as a consequence of
the pairing, which is typically evaluated in classical/Pavlovian
or operant/instrumental paradigms. For instance, a well-studied
case of classical learning involves the pairing of an appetitive
stimulus (e.g., sugar) that elicits a reflexive response (e.g.,
extension of the proboscis) with an odor; when an association
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between the two stimuli is formed, the sole presentation of
the odor stimulus elicits proboscis extension (Bitterman et al.,
1983). Behavioral habituation, a form of non-associative learning,
reduces responsiveness to stable and repetitive stimuli, which
can be important for detecting predators, food, and/or mate
odors in an irrelevant and/or even complex olfactory background
(Kadohisa and Wilson, 2006; Linster et al., 2007; Riffell et al.,
2014; see also Section Effects of Background Odor). Behavioral
sensitization is also a form of non-associative learning in which
repeated presentation of a stimulus can result in amplification of
responses to that and/or a related stimulus (Papaj, 2009).

Learning has profound effects on the chemosensory behavior
of insects, including harmful ones. This is true even in the
case of innate signals of prime biological relevance, such as sex
pheromones. In moths, the action of sex pheromones depends
on factors such as the presence of host-odors, sexual maturity,
and mating status (Barrozo et al., 2011; Chaffiol et al., 2012,
2014; Guerrieri et al., 2012). Furthermore, moths can be trained
to associate food with a sex pheromone (Hartlieb et al., 1999;
Hartlieb and Hansson, 1999). In other cases, recognition of
pheromones necessarily involves learning. In social insects, kin
and nest-mate pheromones are learned by young larvae inside
the nest, and maggot flies need to experience their own host-
marking pheromone before they can discriminate between an
occupied and an unoccupied fruit in which to lay eggs (Roitberg
and Prokopy, 1981). Furthermore, in phytophagous insects, this
kind of olfactory learning can promote the transition to new hosts
of agricultural importance (Prokopy and Papaj, 1988; Papaj and
Prokopy, 1989).

The way in which plasticity affects many different behaviors
in herbivorous insects has been recently reviewed (see Anderson
and Anton, 2014). In herbivorous insects, both larval feeding
and adult experience can affect olfactory-guided oviposition,
mate choice, and feeding (Riffell et al., 2008; Thöming et al.,
2013; Anderson and Anton, 2014; Carrasco et al., 2015). In
moths, plant volatiles can enhance male orientation toward
the conspecific female sex pheromone (Chaffiol et al., 2012,
2014; Guerrieri et al., 2012). The learning abilities of pest
insects should be particularly considered in control strategies.
For instance, a “trap crop” (which always represents a small
proportion of the cropping area) might be completely inefficient
if insects first find the profitable crop and prefer this over
the trap crop (Cook et al., 2007). Thus, the selection of
the most effective crop border plants is crucial, and this
can be achieved by screening plant cultivars coupled with
identification of behaviorally and electrophysiological bioactive
volatiles (Schröder et al., 2015). Other cognitive processes, such
as habituation, have important implications in the management
of pest insects (Section Mating Disruption). In diamondback
moths, exposure to non-hosts can increase oviposition preference
toward these plants, perhaps leading to host range expansion
(Zhang and Liu, 2006).

In the case of insects vectors of human and animal
diseases, learning and previous experience can have important
epidemiological implications for disease transmission (McCall
and Kelly, 2002). For instance, mosquito host choice is influenced
by prior foraging experience, which causes them to return to

less-defensive hosts and to hosts where feeding was more
successful (McCall and Kelly, 2002; Lyimo and Ferguson,
2009). Not only that, but variation in the physical and chemical
properties of blood can influence fitness and cause host feeding
preferences (see Lyimo and Ferguson, 2009 for details). Thus, it
has been suggested that pathogen transmission can be reduced
by altering host choice (Lyimo and Ferguson, 2009). Also,
mosquitoes tend to return to the same villages, houses, host
species, and oviposition sites (McCall and Kelly, 2002). Then,
it is not surprising that research in this area has expanded in
the last couple of years, and it is now clear that blood-sucking
insects can indeed learn and form new memories (Kaur et al.,
2003; Jhumur et al., 2006; Tomberlin et al., 2006; Bouyer et al.,
2007; Sanford and Tomberlin, 2011; Vinauger et al., 2011a,b,
2013, 2014; Chilaka et al., 2012; Sanford et al., 2013). Classical
and operant paradigms showed that blood-sucking insects can
associate stimuli of different modality (thermal, odor, gustatory,
visual) while searching for a host and selecting oviposition
sites. In A. aegypti, the association between odorants and a
thermal appetitive stimulus is odor-dependent (e.g., certain
odors can be readily learned, others are untrainable, etc).
Furthermore, associative learning can modify the aversive
deterrent effect of DEET in both kissing bugs and mosquitoes
(Stanczyk et al., 2013; Vinauger et al., 2014). Learning processes
also affect the responses to odors which are crucial for survival
(e.g., pheromones). In triatomine bugs, a brief exposure to
the alarm pheromone produces sensitization and increases
the tendency to respond, while long-term pre-exposure elicits
behavioral habituation (Minoli et al., 2013a). In blood sucking
insects, however, our knowledge on the neural mechanisms
underlying the effects of experience on chemosensory
responses is mostly restricted to the periphery, as we discuss
below.

In both blood-sucking and herbivorous insects the activity
of ORCs can be affected by experience (e.g., long-term odor
exposure and sensory adaptation to deterrents; see Section
Mating Disruption). Experience can also cause downregulation
of olfactory responses according to the feeding/mating status, and
the time of the day (e.g., Almaas et al., 1991; Fox et al., 2001;
Takken et al., 2001; Glendinning et al., 2009; Saveer et al., 2012;
Stanczyk et al., 2013; Anderson and Anton, 2014; Claudianos
et al., 2014; Reisenman, 2014). In general, associative learning
is not usually represented at this level, although recent work in
honeybees revealed that olfactory memories downregulate the
expression of specific ORs. Furthermore, these changes occurred
after conditioning and concomitantly, the population activity
of antennal ORCs (measured as changes in EAG responses)
decreased after learning (Claudianos et al., 2014). In mosquitoes,
a reduction in the EAG responses to DEET correlates well with a
post-exposure reduction in behavioral sensitivity to this repellent
(Stanczyk et al., 2013).

The mushroom bodies mediate behaviors affected by learning
and experience (e.g., Fahrbach et al., 1998; Zars et al., 2000;
Huetteroth et al., 2015). However, in fruit flies and honeybees,
learning already produces changes in glomerular volume and
in synaptic distribution and density (e.g., Winnington et al.,
1996; Devaud et al., 2001; Brown et al., 2002; Sachse et al.,
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2007; Arenas et al., 2012), and can modify neural representations
at the AL level (e.g., Faber et al., 1999; Chen et al., 2015),
including glomerulus-specific neural plasticity (Rath et al.,
2011). In moths, pre-exposure to the conspecific female sex
pheromone increases the response of male PNs (Anderson
et al., 2007), and associative learning with an appetitive cue
causes recruitment of additional responsive neurons (Daly et al.,
2001, 2004). Furthermore, learning of the scent of flowers
which are profitable but are not innately preferred increases
activity in AL neurons (Riffell, 2012; Riffell et al., 2013), and
serotonin and octopamine are both involved in this process
(Dacks et al., 2008, 2012). Experience might also have important
effects facilitating segregation between a target odor and its
odor background (see Section Effects of Background Odor),
by modifying the balance of excitation and inhibition in AL
neurons (Riffell et al., 2014; Szyszka, 2014; Chen et al., 2015).
Noctuid moths switch their olfactory preference from food odors
to egg-laying (e.g., cotton) odors following mating, and calcium
imaging experiments demonstrated that this switch is due to
changes in the representation of these odors across the AL
glomerular array (Saveer et al., 2012). The mechanisms involving
AL plasticity include modulation of the activity of ORCs by
inhibitory interneurons (Ignell et al., 2009; Chou et al., 2010;
Root et al., 2011), and neuromodulation by biogenic amines,
neuropeptides and hormones (Nässel and Homberg, 2006; Dacks
et al., 2008; Saveer et al., 2012).

In summary, experience and learning readily affect the
odor oriented behavior of harmful insects through many
neurophysiological mechanisms, which need to be considered in
control strategies that include baits, repellents, use of trap crops,
etc. Neurophysiological studies could help discover the most
effective control methods; e.g., through high through-output
screening of potential repellents that do not cause adaptation in
ORCs.

CONCLUSIONS

Odor sources are widely used to manipulate the behavior of
harmful insects. In recent decades, the neurobiological bases
underlying insect olfactory behavior started to be unraveled. The
insect olfactory system is able to encode the quality, quantity,
and temporal features of the odor stimuli. Information about
odor mixtures is also encoded, including the ratio between
their components and discrimination in complex backgrounds.
Moreover, responses to odors are modulated by the animal’s
internal and external state, and by experience and learning.
Natural odors are usually odor mixtures (against a “noisy”
background), and are represented as particular odor objects in
the AL. Those odor objects signify relevant odor sources such
as a host or a conspecific that, at least in some cases, could be

“mimicked” in a simplified way using synthetic compounds, e.g.,
a male moth can be lured into a trap using synthetic versions
containing few sex pheromone constituents. This facilitates the
development of relatively simple and long-lasting odor baits to
manipulate insect behavior. The simplified and optimal imitation
of a natural odor mixture is challenging because it requires
using only key mixture constituents, and this sometimes includes
minor components within the natural mixture. Insect behavior
can also be manipulated using repellents or “confusants.” The
studies mentioned in this work and others are helping us to
understand how the olfactory system processes information
about odors, making possible to design very efficient odor baits,
repellents, or ways to confound the insects. Moreover, those
studies also generate predictions about natural olfactory behavior
that are useful to devise odor-based strategies for insect control.
Clearly, the fields of neuroethology and insect control could
certainly benefit from reciprocal interactions, which need to be
fostered by all partners involved, including funding agencies.
Encouraging new steps are being taken in this direction such as a
recent initiative between different agencies on the beneficial and
antagonistic interactions between plants (including agricultural
plants) and their pathogens (including insects). We hope that
the information provided in this review will help find gaps
in the knowledge about the neural bases of olfactory behavior
that are worth filling, encourage related studies, and promote
the application of existing information in the development
of better methods to manipulate insect behavior for control
purposes.

AUTHOR CONTRIBUTIONS

PG contributed the general idea, wrote several sections, corrected
the whole manuscript, and prepared the final version. CR wrote
several sections, made several general suggestions, corrected the
whole manuscript, and prepared the final version. HL wrote
several sections, made general suggestions, and corrected the
whole manuscript.

ACKNOWLEDGMENTS

HL was supported by an award from NSF (DMS 2100004).
PG thanks Agencia Nacional de Promoción Científica y
Tecnológica (ANPCyT), Argentina, for funding during part
of this project through grant PICT-PRH-2009-43. We thank
Dr. John Hildebrand (University of Arizona) for continuous
inspiration, support, advice and encouragement throughout the
years. CR also thanks Dr. Kristin Scott (UC Berkeley) for support
and encouragement. We sincerely thank the reviewers for their
many insightful comments and suggestions that substantially
improved this manuscript.

REFERENCES

Abrell, L., Guerenstein, P. G., Mechaber, W. L., Stange, G., Christensen, T. A.,
and Nakanishi, K. (2005). Effect of elevated atmospheric CO2 on oviposition

behavior in Manduca sexta moths. Global Change Biol. 11, 1272–1282. doi:
10.1111/j.1365-2486.2005.00989.x

Abuin, L., Bargeton, B., Ulbrich, M. H., Isacoff, E. Y., Kellenberger, S.,
and Benton, R. (2011). Functional architecture of olfactory ionotropic

Frontiers in Physiology | www.frontiersin.org 13 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

glutamate receptors. Neuron 69, 44–60. doi: 10.1016/j.neuron.2010.
11.042

Achee, N. L., Bangs, M. J., Farlow, R., Killeen, G. F., Lindsay, S., Logan, J. G., et al.
(2012). Spatial repellents: from discovery and development to evidence-based
validation.Malaria J. 11:164. doi: 10.1186/1475-2875-11-164

Ai, M., Blais, S., Park, J.-Y., Min, S., Neubert, T. A., and Suh, G. S. B. (2013).
Ionotropic glutamate receptors IR64a and IR8a form a functional odorant
receptor complex in vivo in Drosophila. J. Neurosci. 33, 10741–10749. doi:
10.1523/JNEUROSCI.5419-12.2013

Almaas, T. J., Christensen, T. A., and Mustaparta, H. (1991). Chemical
communication in heliothine moths. I. Antennal receptor neurons encode
several features of intra-and interspecific odorants in the male corn earworm
moth Helicoverpa zea. J. Comp. Physiol. A 169, 249–258.

Anderson, P., and Anton, S. (2014). Experience-based modulation of behavioural
responses to plant volatiles and other sensory cues in insect herbivores. Plant
Cell Environ. 37, 1826–1835. doi: 10.1111/pce.12342

Anderson, P., Hansson, B. S., Nilsson, U., Han, Q., Sjöholm, M., Skals, N.,
et al. (2007). Increased behavioral and neuronal sensitivity to sex pheromone
after brief odor experience in a moth. Chem. Senses 32, 483–491. doi:
10.1093/chemse/bjm017

Andersson, M. N., Larsson, M. C., Blazenec, M., Jakus, R., Zhang, Q.-H., and
Schlyter, F. (2010). Peripheral modulation of pheromone response by inhibitory
host compound in a beetle. J. Exp. Biol. 213, 3332–3339. doi: 10.1242/jeb.044396

Andersson, M. N., Löfstedt, C., and Newcomb, R. D. (2015). Insect olfaction
and the evolution of receptor tuning. Front. Ecol. Evol. 3:53. doi:
10.3389/fevo.2015.00053

Anton, S., and Hansson, B. S. (1995). Sex-pheromone and plant-associated
odor processing in antennal lobe interneurons of male Spodoptera

littoralis (Lepidoptera, Noctuidae). J. Comp. Physiol. A 176, 773–789. doi:
10.1007/BF00192625

Anton, S., and Homberg, U. (1999). “Antennal lobe strucure,” in Insect Olfaction,

ed B. S. Hansson (Berlin: Springer), 97–124.
Arenas, A., Giurfa, M., Sandoz, J. C., Hourcade, B., Devaud, J. M., and Farina,

W. M. (2012). Early olfactory experience induces structural changes in the
primary olfactory center of an insect brain. Eur. J. Neurosci. 35, 682–690. doi:
10.1111/j.1460-9568.2012.07999.x

Asahina, K., Louis, M., Piccinotti, S., and Vosshall, L. (2009). A circuit supporting
concentration-invariant odor perception in Drosophila. J. Biol. 8, 19. doi:
10.1186/jbiol108

Badeke, E., Haverkamp, A., Hansson, B. S., and Sachse, S. (2016). A
challenge for a male noctuid moth? Discerning the female sex pheromone
against the background of plant volatiles. Front. Physiol. 7:143. doi:
10.3389/fphys.2016.00143

Baker, T. C., and Haynes, K. F. (1989). Field and laboratory electroantennographic
measurements of pheromone plume structure correlated with oriental
fruit moth behaviour. Physiol. Entomol. 14, 1–12. doi: 10.1111/j.1365-
3032.1989.tb00931.x

Balkenius, A., Bisch-Knaden, S., and Hansson, B. (2009). Interaction of visual and
odour cues in the mushroom body of the hawkmoth Manduca sexta. J. Exp.
Biol. 212, 535–541. doi: 10.1242/jeb.021220

Barrozo, R. B., Gadenne, C., and Anton, S. (2010). Switching attraction to
inhibition: mating-induced reversed role of sex pheromone in an insect. J. Exp.
Biol. 213, 2933–2939. doi: 10.1242/jeb.043430

Barrozo, R. B., Jarriault, D., Deisig, N., Gemeno, C., Monsempes, C., Lucas,
P., et al. (2011). Mating-induced differential coding of plant odour and
sex pheromone in a male moth. Eur. J. Neurosci. 33, 1841–1850. doi:
10.1111/j.1460-9568.2011.07678.x

Barrozo, R. B., and Lazzari, C. R. (2004a). Orientation behaviour of the
blood-sucking bug Triatoma infestans to short-chain fatty acids: synergistic
effect of L-lactic acid and carbon dioxide. Chem. Senses 29, 833–841. doi:
10.1093/chemse/bjh249

Barrozo, R. B., and Lazzari, C. R. (2004b). The response of the blood-sucking bug
Triatoma infestans to carbon dioxide and other host odours. Chem. Senses 29,
319–329. doi: 10.1093/chemse/bjh035

Barton-Browne, L. (1977). “Host-related responses and their suppression: some
behavioral considerations,” in Chemical Control of Insect Behavior: Theory and

Application, eds H. H. Shorey and J. J. McKelvey (New York, NY: Wiley),
117–127.

Benton, R., Vannice, K. S., Gomez-Diaz, C., and Vosshall, L. B. (2009). Variant
ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell
136, 149–162. doi: 10.1016/j.cell.2008.12.001

Berg, B., Almaas, T., Bjaalie, J. G., and Mustaparta, H. (1998). The
macroglomerular complex of the antennal lobe in the tobacco budworm
mothHeliothis virescens: specified subdivision in four compartments according
to information about biologically significant compounds. J. Comp. Physiol. A

183, 669–682. doi: 10.1007/s003590050290
Binyameen, M., Hussain, A., Yousefi, F., Birgersson, G., and Schlyter, F. (2013).

Modulation of reproductive behaviors by non-host volatiles in the polyphagous
Egyptian cotton leafworm, Spodoptera littoralis. J. Chem. Ecol. 39, 1273–1283.
doi: 10.1007/s10886-013-0354-4

Birch, M. C., Poppy, G. M., and Baker, T. C. (1990). Scents and eversible
scent structures of male moths. Annu. Rev. Entomol. 35, 25–58. doi:
10.1146/annurev.en.35.010190.000325

Birkett, M. A., Agelopoulus, N., Jensen, V., Jesperen, M. B., Pickett, J. A., Prijs, J.,
et al. (2004). The role of volatile semiochemicals in mediating host location and
selection by nuisance and disease-transmitting cattle flies. Med. Vet. Entomol.

18, 313–322. doi: 10.1111/j.0269-283X.2004.00528.x
Bitterman, M. E., Menzel, R., Fietz, A., and Schäfer, S. (1983). Classical

conditioning of proboscis extension in honeybees (Apis mellifera). J. Comp.

Psychol. 97, 107–119. doi: 10.1037/0735-7036.97.2.107
Blackwell, A., Mordue, A. J., Hansson, B. S., Wadhams, L. J., and Pickett, J. A.

(1993). A behavioral and electrophysiological study of oviposition cues for
Culex quinquefasciatus. Physiol. Entomol. 18, 343–348. doi: 10.1111/j.1365-
3032.1993.tb00607.x

Boeckh, J., and Boeckh, V. (1979). Threshold and odor specificity of pheromone-
sensitive neurons in the deutocerebrum ofAntheraea pernyi andA. polyphemus

(Saturniidae). J. Comp. Physiol. A 132, 235–242. doi: 10.1007/BF006
14495

Bohbot, J. D., and Dickens, J. C. (2010). Insect repellents: modulators
of mosquito odorant receptor activity. PLoS ONE 5:e12138. doi:
10.1371/journal.pone.0012138

Borges, L. M. F., Gomes de Oliveira Filho, J., Ferreira, L. L., Braz Louly,
C. C., Pickett, J. A., and Birkett, M. A. (2015). Identification of non-host
semiochemicals for the brown dog tick, Rhipicephalus sanguineus sensu lato

(Acari: Ixodidae), from tick-resistant beagles, Canis lupus familiaris. Ticks
Tick-Borne Dis. 6, 676–682. doi: 10.1016/j.ttbdis.2015.05.014

Bosch, O. J., Geier, M., and Boeckh, J. (2000). Contribution of fatty acids to
olfactory host finding of female Aedes aegypti. Chem. Senses 25, 323–330. doi:
10.1093/oxfordjournals.chemse.a014042

Bouyer, J., Pruvot, M., Bengaly, Z., Guerin, P. M., and Lancelot, R. (2007).
Learning influences host choice in tsetse. Biol. Lett. 3, 113–117. doi:
10.1098/rsbl.2006.0578

Bowers, W. S., Nault, L. R., Webb, R. E., and Dutky, S. R. (1972). Aphid alarm
pheromone: isolation, identification, synthesis. Science 177, 1121–1122. doi:
10.1126/science.177.4054.1121

Bray, S., and Amrein, H. (2003). A putative Drosophila pheromone receptor
expressed in male-specific taste neurons is required for efficient courtship.
Neuron 39, 1019–1029. doi: 10.1016/S0896-6273(03)00542-7

Brooks, T. W., Doane, C. C., and Staten, R. T. (1979). “Experience with the
first commercial pheromone communication disruptive for suppression of an
agricultural pest,” in Chemical Ecology: Odour Communication in Animals, ed
F. J. Ritter (Amsterdam: Elsevier), 375–388.

Brown, S. M., Napper, R. M. T. C. M., and Mercer, A. (2002). Stereological analysis
reveals striking differences in the structural plasticity of two readily identifiable
glomeruli in the antennal lobes of the adult worker honeybee. J. Neurosci. 22,
8514–8522.

Bruce, T. J. A., and Pickett, J. A. (2011). Perception of plant volatile blends by
herbivorous insects – finding the right mix. Phytochemistry 72, 1605–1611. doi:
10.1016/j.phytochem.2011.04.011

Büchel, K., Austel, N., Mayer, M., Gershenzon, J., Fenning, T. M., and Meiners,
T. (2014). Smelling the tree and the forest: elm background odours affect egg
parasitoid orientation to herbivore induced terpenoids. Biocontrol 59, 29–43.
doi: 10.1007/s10526-013-9544-9

Byers, J. A., Fefer, D., and Levi-Zada, A. (2013). Sex pheromone component ratios
and mating isolation among three Lygus plant bug species of North America.
Naturwiss 100, 1115–1123. doi: 10.1007/s00114-013-1113-7

Frontiers in Physiology | www.frontiersin.org 14 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

Cardé, R. T. (1990). “Principles of mating disruption,” in Behavior-Modifying

Chemicals for Insect Management, Applications of Pheromones and Other

Attractants, eds R. L. Ridgway, R. M. Silverstein, and M. N. Inscoe (New York,
NY: Dekker), 47–72.

Cardé, R. T., and Gibson, G. (2010). “Host finding by female mosquitoes:
mechanisms of orientation to host odours and other cues” in Olfaction

in Vector-Host Interactions, eds W. Takken and B. Knols (Wageningen:
Wageningen Academic Publishers), 115–141.

Carlsson, M. A., Galizia, C. G., and Hansson, B. S. (2002). Spatial representation
of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera:
Noctuidae). Chem. Senses 27, 231–244. doi: 10.1093/chemse/27.3.231

Carrasco, D., Larsson, M. C., and Anderson, P. (2015). Insect host plant
selection in complex environments. Curr. Opin. Insect Sci. 8, 1–7. doi:
10.1016/j.cois.2015.01.014

Cha, D. H., Nojima, S., Hesler, S. P., Zhang, A., Linn, C. E., Roelofs, W. L., et al.
(2008). Identification and field evaluation of grape shoot volatiles attractive to
female grape berry moth (Paralobesia viteana). J. Chem. Ecol. 34, 1180–1189.
doi: 10.1007/s10886-008-9517-0

Chaffiol, A., Dupuy, F., Barrozo, R. B., Kropf, J., Renou, M., Rospars, J.-P., et al.
(2014). Pheromone modulates plant odor responses in the antennal lobe of a
moth. Chem. Senses 39, 451–463. doi: 10.1093/chemse/bju017

Chaffiol, A., Kropf, J., Barrozo, R. B., Gadenne, C., Rospars, J. P., and Anton, S.
(2012). Plant odour stimuli reshape pheromonal representation in neurons of
the antennal lobe macroglomerular complex of a male moth. J. Exp. Biol. 215,
1670–1680. doi: 10.1242/jeb.066662

Chapman, T. B., Veblen, T. T., and Schoennagel, T. (2012). Spatiotemporal
patterns of mountain pine beetle activity in the southern Rocky Mountains.
Ecology 93, 2175–2185. doi: 10.1890/11-1055.1

Chen, J.-Y., Marachlian, E., Assisi, C., Huerta, R., Smith, B. H., Locatelli, F., et al.
(2015). Learning modifies odor mixture processing to improve detection of
relevant components. J. Neurosci. 35, 179–197. doi: 10.1523/JNEUROSCI.2345-
14.2015

Chilaka, N., Perkins, E., and Tripet, F. (2012). Visual and olfactory associative
learning in the malaria vector Anopheles gambiae sensu stricto. Malaria J.

11:27. doi: 10.1186/1475-2875-11-27
Chou, Y.-H., Spletter, M. L., Yaksi, E., Leong, J. C. S., Wilson, R. I., and Luo,

L. (2010). Diversity and wiring variability of olfactory local interneurons
in the Drosophila antennal lobe. Nat. Neurosci. 13, 439–449. doi: 10.1038/n
n.2489

Christensen, T. A., and Hildebrand, J. G. (1987). Male-specific, sex pheromone-
selective projection neurons in the antennal lobes of the moth Manduca sexta.
J. Comp. Physiol. A 160, 553–569. doi: 10.1007/BF00611929

Christensen, T. A., and Hildebrand, J. G. (1988). Frequency coding by central
olfactory neurons in the sphinx moth Manduca sexta. Chem. Senses 13,
123–130. doi: 10.1093/chemse/13.1.123

Christensen, T. A., Waldrop, B. R., Harrow, I. D., and Hildebrand, J. G.
(1993). Local interneurons and information processing in the olfactory
glomeruli of the moth Manduca sexta. J. Comp. Physiol. A 173, 385–399. doi:
10.1007/bf00193512

Claudianos, C., Lim, J., Young, M., Yan, S., Cristino, A. S., Newcomb, R. D., et al.
(2014). Odor memories regulate olfactory receptor expression in the sensory
periphery. Eur. J. Neurosci. 39, 1642–1654. doi: 10.1111/ejn.12539

Cook, S. M., Khan, Z. R., and Pickett, J. A. (2007). The use of push-pull
strategies in integrated pest management. Annu. Rev. Entomol. 52, 375–400.
doi: 10.1146/annurev.ento.52.110405.091407

Dacks, A. M., Christensen, T. A., and Hildebrand, J. G. (2008). Modulation of
olfactory information processing in the antennal lobe of Manduca sexta. J.
Neurophysiol. 99, 2077–2085. doi: 10.1152/jn.01372.2007

Dacks, A. M., Riffell, J. A., Martin, J. P., Gage, S. L., and Nighorn, A. J.
(2012). Olfactory modulation by dopamine in the context of aversive learning.
J. Neurophysiol. 108, 539–550. doi: 10.1152/jn.00159.2012

Daly, K. C., Christensen, T. A., Lei, H., Smith, B. H., and Hildebrand, J. G.
(2004). Learning modulates the ensemble representations for odors in primary
olfactory networks. Proc. Natl. Acad. Sci. U.S.A. 101, 10476–10481. doi:
10.1073/pnas.0401902101

Daly, K. C., Durtschi, M. L., and Smith, B. H. (2001). Olfactory-based
discrimination learning in the moth, Manduca sexta. J. Insect Physiol. 47,
375–384. doi: 10.1016/S0022-1910(00)00117-7

Davis, E. E., and Sokolove, P. G. (1976). Lactic acid-sensitive receptors on the
antennae of the mosquito, Aedes aegypti. J. Comp. Physiol. A 105, 43–54. doi:
10.1007/BF01380052

Davis, R. L. (2004). Olfactory learning. Neuron 44, 31–48. doi:
10.1016/j.neuron.2004.09.008

de Bruyne, M., Clyne, P. J., and Carlson, J. R. (1999). Odor coding in
a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19,
4520–4532.

DeGennaro, M., McBride, C. S., Seeholzer, L., Nakagawa, T., Dennis, E. J., and
Goldman, C. (2013). Orco mutant mosquitoes lose strong preference for
humans and are not repelled by volatile DEET. Nature 498, 487–491. doi:
10.1038/nature12206

Deisig, N., Giurfa, M., Lachnit, H., and Sandoz, J. C. (2006). Neural representation
of olfactory mixtures in the honeybee antennal lobe. Eur. J. Neurosci. 24,
1161–1174. doi: 10.1111/j.1460-9568.2006.04959.x

Deisig, N., Kropf, J., Vitecek, S., Pevergne, D., Rouyar, A., Sandoz, J.-C.,
et al. (2012). Differential interactions of sex pheromone and plant odour
in the olfactory pathway of a male moth. PLoS ONE 7:e33159. doi:
10.1371/journal.pone.0033159

Devaud, J. M., Acebes, A., and Ferrus, A. (2001). Odor exposure causes central
adaptation and morphological changes in selected olfactory glomeruli in
Drosophila. J. Neurosci. 21, 6274–6282.

Dewhirst, S. Y., Pickett, J. A., and Hardie, J. (2010). Aphid pheromones. Vitam.

Horm. 83, 551–574. doi: 10.1016/S0083-6729(10)83022-5
Diehl, P. A., Vlimant, M., Guerenstein, P. G., and Guerin, P. M. (2003).

Ultrastructure and receptor cell responses of the antennal grooved peg sensilla
of Triatoma infestans (Hemiptera: Reduviidae). Arthropod. Struct. Dev. 31,
271–285. doi: 10.1016/S1467-8039(03)00004-5

Ditzen, M., Pellegrino, M., and Vosshall, L. B. (2008). Insect odorant receptors are
molecular targets of the insect repellent DEET. Science 319, 1838–1842. doi:
10.1126/science.1153121

Dolzer, J., Fischer, K., and Stengl, M. (2003). Adaptation in pheromone-sensitive
trichoid sensilla of the hawkmothManduca sexta. J. Exp. Biol. 206, 1575–1588.
doi: 10.1242/jeb.00302

Dolzer, J., Krannich, S., and Stengl, M. (2008). Pharmacological investigation of
protein Kinase C- and cGMP-dependent ion channels in cultured olfactory
receptor neurons of the hawkmoth Manduca sexta. Chem. Senses 33, 803–813.
doi: 10.1093/chemse/bjn043

Dusenbery, D. B. (1992). Sensory Ecology: How Organisms Acquire and Respond to

Information. New York, NY: Freeman.
Dweck, H. K. M., Ebrahim, S. A. M., Thoma, M., Mohamed, A. A. M.,

Keesey, I. W., Trona, F., et al. (2015). Pheromones mediating copulation and
attraction in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 112, 2829–2835. doi:
10.1073/pnas.1504527112

Faber, T., Joerges, J., and Menzel, R. (1999). Associative learning modifies neural
representations of odors in the insect brain. Nat. Neurosci. 2, 74–78. doi:
10.1038/4576

Fahrbach, S. E. (2006). Structure of the mushroom bodies of the insect
brain. Annu. Rev. Entomol. 51, 209–232. doi: 10.1146/annurev.ento.51.110104.
150954

Fahrbach, S. E., Moore, D., Capaldi, E. A., Farris, S. M., and Robinson, G. E. (1998).
Experience-expectant plasticity in the mushroom bodies of the honeybee.
Learn. Mem. 5, 115–123.

Fernandez, P. C., Locatelli, F. F., Person-Rennell, N., Deleo, G., and Smith, B. H.
(2009). Associative conditioning tunes transient dynamics of early olfactory
processing. J. Neurosci. 29, 10191–10202. doi: 10.1523/JNEUROSCI.1874-
09.2009

Fishilevich, E., and Vosshall, L. B. (2005). Genetic and functional subdivision
of the drosophila antennal lobe. Curr. Biol. 15, 1548–1553 doi:
10.1016/j.cub.2005.07.066

Foster, S. P., and Harris, M. O. (1997). Behavioural manipulation methods
for insect pest management. Annu. Rev. Entomol. 42, 123–146. doi:
10.1146/annurev.ento.42.1.123

Fox, A. N., Pitts, R. J., Robertson, H. M., Carlson, J. R., and Zwiebel, L.
J. (2001). Candidate odorant receptors from the malaria vector mosquito
Anopheles gambiae and evidence of down-regulation in response to blood
feeding. Proc. Natl. Acad. Sci. U.S.A. 98, 14693–14697. doi: 10.1073/pnas.2614
32998

Frontiers in Physiology | www.frontiersin.org 15 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

Fujiwara, T., Kazawa, T., Haupt, S. S., and Kanzaki, R. (2009). Ca2+ imaging of
identifiable neurons labeled by electroporation in insect brains.Neuroreport 20,
1061–1065. doi: 10.1097/WNR.0b013e32832e7d93

Galizia, C. G., and Rössler,W. (2010). Parallel olfactory systems in insects: anatomy
and function. Annu. Rev. Entomol. 55, 399–420. doi: 10.1146/annurev-ento-
112408-085442

Galizia, C. G., and Sachse, S. (2010). “Odor coding in insects,” in The Neurobiology

of Olfaction, ed A. Menini. (Boca Raton. FL, CRC Press), 35–70.
Gaudry, Q., Nagel, K. I., and Wilson, R. I. (2012). Smelling on the fly: sensory cues

and strategies for olfactory navigation in Drosophila. Curr. Opinion Neurobiol.

22, 216–222. doi: 10.1016/j.conb.2011.12.010
Geier, M., Bosch, O. J., and Boeckh, J. (1999a). Ammonia as an attractive

component of host odour for the yellow fever mosquito, Aedes aegypti. Chem.

Senses 24, 647–653. doi: 10.1093/chemse/24.6.647
Geier, M., Bosch, O. J., and Boeckh, J. (1999b). Influence of odour plume structure

on upwind flight of mosquitoes towards hosts. J. Exp. Biol. 202, 1639–1648.
Geier, M., Sass, H., and Boeckh, J. (1996). “A search for components in human

body odour that attract females of Aedes aegypti,” in Mosquito Olfaction and

Olfactory-Mediated Mosquito–Host Interactions, Ciba Foundation Symposium

200, ed G. Cardew and J. Goode (New York, NY: John Wiley & Sons Ltd),
132–144.

Glendinning, J., Foley, C., Loncar, I., and Rai, M. (2009). Induced preference for
host plant chemicals in the tobacco hornworm: contribution of olfaction and
taste. J. Comp. Physiol. A 195, 591–601. doi: 10.1007/s00359-009-0434-7

Goyret, J., Markwell, P. M., and Raguso, R. A. (2008). Context- and scale-
dependent effects of floral CO2 on nectar foraging byManduca sexta. Proc. Natl.
Acad. Sci. U.S.A. 105, 4565–4570. doi: 10.1073/pnas.0708629105

Green, C. H. (1986). Effects of colours and synthetic odours on the attraction of
Glossina pallidipes and G. morsitans to traps and screens. Physiol. Entomol. 11,
411–421. doi: 10.1111/j.1365-3032.1986.tb00432.x

Green, C. H. (1993). The effect of odours and target colour on landing responses
of Glossina morsitans morsitans and G. pallidipes (Diptera: Glossinidae). Bull.
Entomol. Res. 83, 553–562. doi: 10.1017/S0007485300039985

Green, C. H. (1994). Bait methods for tsetse fly control.Adv. Parasitol. 34, 229–291.
doi: 10.1016/S0065-308X(08)60140-2

Grenacher, S., Kröber, T., Guerin, P. M., and Vlimant, M. (2001). Behavioural
and chemoreceptor cell responses of the tick, Ixodes ricinus, to its
own faeces and faecal constituents. Exp. Appl. Acarol. 25, 641–660. doi:
10.1023/A:1016145805759

Grosse-Wilde, E., Stieber, R., Forstner, M., Krieger, J. G., Wicher, D., and Hansson,
B. S. (2010). Sex-specific odorant receptors of the tobacco hornwormManduca

sexta. Front. Cell. Neurosci. 4:22. doi: 10.3389/fncel.2010.00022
Guerenstein, P. G., Christensen, T. A., and Hildebrand, J. G. (2004a). Sensory

processing of ambient CO2 information in the brain of the moth Manduca

sexta. J. Comp. Physiol. A 190, 707–725. doi: 10.1007/s00359-004-0529-0
Guerenstein, P. G., and Guerin, P. M. (2001). Olfactory and behavioural responses

of the blood-sucking bug Triatoma infestans to odours of vertebrate hosts.
J. Exp. Biol. 204, 585–597.

Guerenstein, P. G., and Guerin, P. M. (2004). A comparison of volatiles emitted
by adults of three triatomine species. Entomol. Exp. Appl. 111, 151–155. doi:
10.1111/j.0013-8703.2004.00160.x

Guerenstein, P. G., andHildebrand, J. G. (2008). Roles and effects of environmental
carbon dioxide in insect life. Annu. Rev. Entomol. 53, 161–178. doi:
10.1146/annurev.ento.53.103106.093402

Guerenstein, P. G., and Lazzari, C. R. (2009). Host-seeking: how triatomines
acquire and make use of information to find blood. Acta Trop. 110, 148–158.
doi: 10.1016/j.actatropica.2008.09.019

Guerenstein, P. G., and Lazzari, C. R. (2010). “The role of olfaction in host seeking
of Triatominae bugs,” in Ecology and Control of Vector-Borne Diseases, Olfaction
in Vector-Host Interactions, Vol 2, ed W. Takken and B. Knols (Wageningen:
Wageningen University Press), 309–325.

Guerenstein, P. G., Yepez, E. A., van Haren, J., Williams, D. G., and Hildebrand,
J. G. (2004b). Floral CO2 emission may indicate food abundance to nectar-
feeding moths. Naturwiss 91, 329–333. doi: 10.1007/s00114-004-0532-x

Guerrieri, F., Gemeno, C., Monsempes, C., Anton, S., Jacquin-Joly, E., Lucas, P.,
et al. (2012). Experience-dependent modulation of antennal sensitivity and
input to antennal lobes in male moths (Spodoptera littoralis) pre-exposed to
sex pheromone. J. Exp. Biol. 215, 2334–2341. doi: 10.1242/jeb.060988

Guidobaldi, F., and Guerenstein, P. G. (2013). Evaluation of a CO2-free
commercial mosquito attractant to capture triatomines in the laboratory.
J. Vector Ecol. 38, 245–250. doi: 10.1111/j.1948-7134.2013.12037.x

Guidobaldi, F., and Guerenstein, P. G. (2016). A CO2-free synthetic host-odor
mixture that attracts and captures triatomines: effect of emitted odorant ratios.
J. Med. Entomol. doi: 10.1093/jme/tjw057. [Epub ahead of print].

Guidobaldi, F., May Concha, I. J., and Guerenstein, P. G. (2014). Morphology and
physiology of the olfactory system of blood-feeding insects. J. Physiol. Paris 108,
96–111. doi: 10.1016/j.jphysparis.2014.04.006

Gupta, N., and Stopfer, M. (2012). Functional analysis of a higher olfactory center,
the lateral horn. J. Neurosci. 32, 8138–8148. doi: 10.1523/JNEUROSCI.1066-
12.2012

Hallem, E. A., and Carlson, J. R. (2006). Coding of odors by a receptor repertoire.
Cell 125, 143–160. doi: 10.1016/j.cell.2006.01.050

Hansson, B. S., Almaas, T. J., and Anton, S. (1995). Chemical communication in
heliothine moths. 5. Antennal lobe projection patterns of pheromone-detecting
olfactory receptor neurons in the male Heliothis virescens (Lepidoptera,
Noctuidae). J. Comp. Physiol. A 177, 535–543.

Hansson, B. S., Carlsson, M. A., and Kalinova, B. (2003). Olfactory activation
patterns in the antennal lobe of the sphinx moth, Manduca sexta. J. Comp.

Physiol. A 189, 301–308. doi: 10.1007/s00359-003-0403-5
Hansson, B. S., Christensen, T. A., and Hildebrand, J. G. (1991). Functionally

distinct subdivisions of the macroglomerular complex in the antennal lobe
of the male sphinx moth Manduca sexta. J. Comp. Neurol. 312, 264–278. doi:
10.1002/cne.903120209

Hansson, B. S., Larsson, M. C., and Leal, W. S. (1999). Green leaf volatile-
detecting olfactory receptor neurons display very high sensitivity and specificity
in a scarab beetle. Physiol. Entomol. 24, 121–126. doi: 10.1046/j.1365-
3032.1999.00121.x

Hansson, B. S., Ljungberg, H., Hallberg, E., and Löfstedt, C. (1992). Functional
specialization of olfactory glomeruli in a moth. Science 256, 1313–1315. doi:
10.1126/science.1598574

Hartlieb, E., Anderson, P., and Hansson, B. S. (1999). Appetitive learning of odours
with different behavioral meaning in moths. Physiol. Behav. 67, 671–677. doi:
10.1016/S0031-9384(99)00124-9

Hartlieb, E., and Hansson, B. S. (1999). Sex or food? Appetetive learning of sex
odors in a male moth. Naturwiss 86, 396–399. doi: 10.1007/s001140050640

Hatano, E., Saveer, A. M., Borrero-Echeverry, F., Strauch, M., Zakir, A., Bengtsson,
M., et al. (2015). A herbivore-induced plant volatile interferes with host
plant and mate location in moths through suppression of olfactory signalling
pathways. BMC Biol. 13:75. doi: 10.1186/s12915-015-0188-3

Heinbockel, T., Christensen, T. A., and Hildebrand, J. G. (1999). Temporal tuning
of odor responses in pheromone-responsive projection neurons in the brain of
the sphinx mothManduca sexta. J. Comp. Neurol. 409, 1–12.

Heinbockel, T., Christensen, T. A., and Hildebrand, J. G. (2004). Representation of
binary pheromone blends by glomerulus-specific olfactory projection neurons.
J. Comp. Physiol. A 190, 1023–1037. doi: 10.1007/s00359-004-0559-7

Hildebrand, J. G. (1996). King solomon lecture: olfactory control of behavior in
moths: central processing of odor information and the functional significance
of olfactory glomeruli. J. Comp. Physiol. A 178, 5–19. doi: 10.1007/BF001
89586

Hildebrand, J., G., Matsumoto, S. G., Camazine, S. M., Tolbert, L. P., Blank, S.,
Ferguson, H., et al. (1980). “Organisation and physiology of antennal centres
in the brain of the moth Manduca sexta,” in Insect Neurobiology and Pesticide

Action (Neurotox 79) (London: Society of Chemical Industry), 375–382.
Hillier, N. K., Kelly, D., and Vickers, N. J. (2006). A specific male olfactory

sensillum detects behaviorally antagonistic hairpencil odorants. J. Insect Sci. 7:4.
doi: 10.1673/031.007.0401

Homberg, U., Christensen, T. A., and Hildebrand, J. G. (1989). Structure and
function of the deutocerebrum in insects. Annu. Rev. Entomol. 34, 477–501.
doi: 10.1146/annurev.en.34.010189.002401

Homberg, U., Montague, R. A., andHildebrand, J. G. (1988). Anatomy of antenno-
cerebral pathways in the brain of the sphinx moth Manduca sexta. Cell Tissue

Res. 254, 255–281. doi: 10.1007/BF00225800
Hoskins, S. G., Homberg, U., Kingan, T. G., Christensen, T. A., and Hildebrand,

J. G. (1986). Immunocytochemistry of GABA in the antennal lobes of the
sphinx mothManduca sexta. Cell Tissue Res. 244, 243–252. doi: 10.1007/BF002
19199

Frontiers in Physiology | www.frontiersin.org 16 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

Huang, J., Stelinski, L. L., and Gut, L. J. (2010). Mating behaviors of Cydia

pomonella (Lepidoptera: Tortricidae) as influenced by sex pheromone in
electrostatic powder. J. Econ. Entomol. 103, 2100–2106. doi: 10.1603/EC10063

Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., and Waddell,
S. (2015). Sweet taste and nutrient value subdivide rewarding dopaminergic
neurons in Drosophila. Curr. Biol. 25, 751–758. doi: 10.1016/j.cub.2015.01.036

Husch, A., Paehler, M., Fusca, D., Paeger, L., and Kloppenburg, P. (2009).
Calcium current diversity in physiologically different local interneuron types
of the antennal lobe. J. Neurosci. 29, 716–726. doi: 10.1523/JNEUROSCI.3677-
08.2009

Hussain, A., Zhang, M., Üçpunar, H. K., Svensson, T., Quillery, E., Gompel, N.
et al. (2016). Ionotropic chemosensory receptors mediate the taste and smell of
polyamines. PLoS Biol 14:e1002454. doi: 10.1371/journal.pbio.1002454

Ignell, R., Root, C. M., Birse, R. T., Wang, J. W., Nässel, D. R., and Winther,
S. M. E. (2009). Presynaptic peptidergic modulation of olfactory receptor
neurons in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 106, 13070–13075. doi:
10.1073/pnas.0813004106

Ito, I., Bazhenov, M., Ong, R. C., Raman, B., and Stopfer, M. (2009). Frequency
transitions in odor-evoked neural oscillations. Neuron 64, 692–706. doi:
10.1016/j.neuron.2009.10.004

Iwano, M., Hill, E. S., Mori, A., Mishima, T., Ito, K., and Kanzaki, R. (2010).
Neurons associated with the flip-flop activity in the lateral accessory lobe and
ventral protocerebrum of the silkworm moth brain. J. Comp. Neurol. 518,
366–388. doi: 10.1002/cne.22224

Jeanne, J. M., and Wilson, R. I. (2015). Convergence, divergence, and
reconvergence in a feedforward network improves neural speed and accuracy.
Neuron 88, 1014–1026. doi: 10.1016/j.neuron.2015.10.018

Jefferis, G. S., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R.
Jr., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers:
spatially segregated fruit and pheromone representation. Cell 128, 1187–1203.
doi: 10.1016/j.cell.2007.01.040

Jhumur, U. S., Dötterl, S., and Jürgens, A. (2006). Naive and conditioned
responses of Culex pipiens pipiens biotype molestus (Diptera: Culicidae)
to flower odors. J. Med. Entomol. 43, 1164–1170. doi: 10.1603/0022-
2585(2006)43[1164:nacroc]2.0.co;2

Jones, W. D., Cayirlioglu, P., Kadow, I. G., and Vosshall, L. B. (2007).
Two chemosensory receptors together mediate carbon dioxide detection in
Drosophila. Nature 445, 86–90. doi: 10.1038/nature05466

Kadohisa, M., and Wilson, D. A. (2006). Olfactory cortical adaptation facilitates
detection of odors against background. J. Neurophysiol. 95, 1888–1896. doi:
10.1152/jn.00812.2005

Kaissling, K.-E., Hildebrand, J. G., and Tumlinson, J. H. (1989). Pheromone
receptor cells in the male moth Manduca sexta. Arch. Insect Biochem. Physiol.

10, 273–279. doi: 10.1002/arch.940100403
Kanzaki, R., and Shibuya, T. (1983). Olfactory neural pathway and sexual

pheromone responses in the deutocerebrum of the male silkworm moth,
Bombyx mori (Lepidoptera: Bombycidae). Appl. Ent. Zool. 18, 131–133.

Kaur, J., Lai, Y., and Giger, A. (2003). Learning and memory in the mosquito
Aedes aegypti shown by conditioning against oviposition deterrence.Med. Vet.

Entomol. 17, 457–460. doi: 10.1111/j.1365-2915.2003.00455.x
Kent, L. B., Walden, K. O., and Robertson, H. M. (2008). The Gr family of

candidate gustatory and olfactory receptors in the yellow fever mosquito Aedes
aegypti. Chem. Senses 33, 79–93. doi: 10.1093/chemse/bjm067

Klun, J. A., Chapman, O. L., Mattes, K. C., Wojtkowski, P. W., Beroza,
M., and Sonnet, P. E. (1973). Insect sex pheromones: minor amount of
opposite geometrical isomer critical to attraction. Science 181, 661–663. doi:
10.1126/science.181.4100.661

Kohl, J., Huoviala, P., and Jefferis, G. S. (2015). Pheromone
processing in Drosophila. Curr. Opin. Neurobiol. 34, 149–157. doi:
10.1016/j.conb.2015.06.009

Krieger, J., Gondesen, I., Forstner, M., Gohl, T., Dewer, Y., and Breer, H.
(2009). HR11 and HR13 Receptor-expressing neurons are housed together in
pheromone-responsive sensilla Trichodea of male Heliothis virescens. Chem.

Senses 34, 469–477. doi: 10.1093/chemse/bjp012
Krockel, U., Rose, A., Eiras, A. E., and Geier, M. (2006). New tools for surveillance

of adult yellow fever mosquitoes: comparison of trap catches with human
landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22,
229–238. doi: 10.2987/8756-971X(2006)22[229:NTFSOA]2.0.CO;2

Kwon, J.-Y., Dahanukar, A., Weiss, L. A., and Carlson, J. R. (2007). The molecular
basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 104,
3574–3578. doi: 10.1073/pnas.0700079104

Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein,
H., and Vosshall, L. B. (2004). Or83b encodes a broadly expressed
odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714. doi:
10.1016/j.neuron.2004.08.019

Leal, W. S. (2013). Odorant reception in insects: roles of receptors, binding
‘proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391. doi:
10.1146/annurev-ento-120811-153635

Leal, W. S. (2014). The enigmatic reception of DEET—the gold standard of insect
repellents. Curr. Opin. Insect Sci. 6, 93–98. doi: 10.1016/j.cois.2014.10.007

Lee, Y., Kim, S. H., and Montell, C. (2010). Avoiding DEET through insect
gustatory receptors. Neuron 67, 555–561. doi: 10.1016/j.neuron.2010.07.006

Lei, H., Chiu, H. Y., and Hildebrand, J. G. (2013). Responses of protocerebral
neurons inManduca sexta to sex-pheromone mixtures. J. Comp. Physiol. A 199,
997–1014. doi: 10.1007/s00359-013-0844-4

Lei, H., Christensen, T. A., and Hildebrand, J. G. (2002). Local inhibition
modulates odor-evoked synchronization of glomerulus-specific output
neurons. Nat. Neurosci. 5, 557–565. doi: 10.1038/nn0602-859

Lei, H., Christensen, T. A., and Hildebrand, J. G. (2004). Spatial and temporal
organization of ensemble representations for different odor classes in the moth
antennal lobe. J. Neurosci. 24, 11108–11119. doi: 10.1523/JNEUROSCI.3677-
04.2004

Lei, H., and Hansson, B. S. (1999). Central processing of pulsed pheromone signals
by antennal lobe neurons in the male moth Agrotis segetum. J. Neurophysiol. 81,
1113–1122.

Lei, H., Riffell, J. A., Gage, S. L., and Hildebrand, J. G. (2009). Contrast
enhancement of stimulus intermittency in a primary olfactory network and its
behavioral significance. J. Biol. 8, 21. doi: 10.1186/jbiol120

Lei, H., and Vickers, N. (2008). Central processing of natural odor mixtures in
insects. J. Chem. Ecol. 34, 915–927 doi: 10.1007/s10886-008-9487-2

Levinson, H. Z., Levinson, A. R., and Maschwitz, U. (1974a). Action and
composition of the alarm pheromone of the bedbug Cimex lectularius L.
Naturwissenschaften 61, 684–685. doi: 10.1007/BF00606522

Levinson, H. Z., Levinson, A. R., Müller, B., and Steinbrecht, R. A. (1974b).
Structure of sensilla, olfactory perception, and behaviour of the bedbug, Cimex

lectularius, in response to its alarm pheromone. J. Insect Physiol. 20, 1231–1248.
doi: 10.1016/0022-1910(74)90229-7

Linn, C. Jr., Nojima, S., and Roelofs, W. (2005). Antagonist effects of non-
host fruit volatiles on discrimination of host fruit by Rhagoletis flies infesting
apple (Malus pumila), hawthorn (Crataegus spp.), and flowering dogwood
(Cornus florida). Entomol. Exp. Appl. 114, 97–105. doi: 10.1111/j.1570-
7458.2005.00222.x

Linster, C., Henry, L., Kadohisa, M., andWilson, D. A. (2007). Synaptic adaptation
and odor-background segmentation. Neurobiol. Learn. Mem. 87, 352–360. doi:
10.1016/j.nlm.2006.09.011

Liu, C., Placais, P.-Y., Yamagata, N., Pfeiffer, B. D., Aso, Y., Friedrich, A. B., et al.
(2012). A subset of dopamine neurons signals reward for odour memory in
Drosophila. Nature 488, 512–516. doi: 10.1038/nature11304

Löfstedt, C., Herrebout, W. M., and Menken, S. B. (1991). Sex pheromones
and their potential role in the evolution of reproductive isolation in small
ermine moths (Yponomeutidae). Chemoecology 2, 20–28. doi: 10.1007/BF012
40662

Logan, J. G., and Birkett, M. A. (2007). Semiochemicals for biting fly control:
their identification and exploitation. Pest Manag. Sci. 63, 647–657. doi:
10.1002/ps.1408

Logan, J. G., Birkett, M. A., Clark, S. J., Powers, S., Seal, N. J., Wadhams, L. J.,
et al. (2008). Identification of human-derived volatile chemicals that interfere
with attraction of Aedes aegypti mosquitoes. J. Chem. Ecol. 34, 308–322. doi:
10.1007/s10886-008-9436-0

Logan, J. G., Seal, N. J., Cook, J. I., Stanczyk, N. M., Birkett, M. A., Clark, S. J., et al.
(2009). Identification of human-derived volatile chemicals that interfere with
attraction of the Scottish biting midge and their potential use. J. Med. Entomol.

46, 208–219. doi: 10.1603/033.046.0205
Lorenzo Figueiras, A. N., Girotti, J. R., Mijailovsky, S. J., and Juárez, M. P. (2009).

Epicuticular lipids induce aggregation in Chagas disease vectors. Parasites
Vectors 2:8. doi: 10.1186/1756-3305-2-8

Frontiers in Physiology | www.frontiersin.org 17 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

Lu, T., Qiu, Y.-T., Wang, G., Kwon, J. Y., Rützler, M., Kwon, H., et al. (2007). Odor
coding in the maxillary palp of the malaria vector mosquitoAnopheles gambiae.
Curr. Biol. 17, 1533–1544. doi: 10.1016/j.cub.2007.07.062

Lyimo, I. N., and Ferguson, H. M. (2009). Ecological and evolutionary
determinants of host species choice in mosquito vectors. Trends Parasitol. 25,
189–196. doi: 10.1016/j.pt.2009.01.005

MacKay, C. A., Sweeney, J. D., and Hillier, N. K. (2015). Olfactory receptor neuron
responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera:
Cerambycidae), to pheromone, host, and non-host volatiles. J. Insect Physiol.
83, 65–73. doi: 10.1016/j.jinsphys.2015.10.003

MacLeod, K., and Laurent, G. (1996). Distinct mechanisms for synchronization
and temporal patterning of odor-encoding neural assemblies. Science 274,
976–979. doi: 10.1126/science.274.5289.976

Majeed, S., Hill, S. R., and Ignell, R. (2014). Impact of elevated CO2 background
levels on the host-seeking behaviour ofAedes aegypti. J. Exp. Biol. 217, 598–604,
doi: 10.1242/jeb.092718

Manrique, G., Vitta, A. C., Ferreira, R. A., Zani, C. L., Unelius, C. R., Lazzari, C.
R., et al. (2006). Chemical communication in Chagas disease vectors. Source,
identity, and potential function of volatiles released by the metasternal and
Brindley’s glands of Triatoma infestans adults. J. Chem. Ecol. 32, 2035–2052.
doi: 10.1007/s10886-006-9127-7

Martelli, C., Carlson, J. R., and Emonet, T. (2013). Intensity invariant dynamics
and odor-specific latencies in olfactory receptor neuron response. J. Neurosci.
33, 6285–6297. doi: 10.1523/JNEUROSCI.0426-12.2013

Martin, J. P., Lei, H., Riffell, J. A., and Hildebrand, J. G. (2013). Synchronous firing
of antennal-lobe projection neurons encodes the behaviorally effective ratio of
sex-pheromone components in male Manduca sexta. J. Comp. Physiol. A 199,
963–979. doi: 10.1007/s00359-013-0849-z

Masante-Roca, I., Gadenne, C., and Anton, S. (2002). Plant odour processing
in the antennal lobe of male and female grapevine moths, Lobesia botrana

(Lepidoptera:Tortricidae). J. Insect Physiol. 48, 1111–1121. doi: 10.1016/S0022-
1910(02)00204-4

Matthews, B. J., McBride, C. S., DeGennaro, M., Despo, O., and Vosshall, L. B.
(2016). The neurotranscriptome of the Aedes aegyptimosquito. BMC Genomics

17:32. doi: 10.1186/s12864-015-2239-0
May-Concha, I., Rojas, J. C., Cruz-López, L., Millar, J. G., and Ramsey, J. M. (2013).

Volatile compounds emitted by Triatoma dimidiata, a vector of Chagas disease:
chemical analysis and behavioural evaluation.Med. Vet. Entomol. 27, 165–174.
doi: 10.1111/j.1365-2915.2012.01056.x

Mboera, L. E. G., Takken, W., Mdira, K. Y., Chuwa, G. J., and Pickett, J. A. (2000).
Oviposition and behavioral responses of Culex quinquefasciatus to Skatole and
synthetic oviposition pheromone in Tanzania. J. Chem. Ecol. 26, 1193–1203.
doi: 10.1023/A:1005432010721

McCall, P. J., and Kelly, D. W. (2002). Learning and memory in disease vectors.
Trends Parasitol. 18, 429–433. doi: 10.1016/S1471-4922(02)02370-X

McMeniman, C. J., Corfas, R. A., Matthews, B., Ritchie, S. A., and Vosshal,
L. B. (2014). Multimodal integration of carbon dioxide and other sensory
cues drives mosquito attraction to humans. Cell 156, 1060–1071. doi:
10.1016/j.cell.2013.12.044

McQuate, G. T. (2014). Green light synergistally enhances male sweetpotato weevil
response to sex pheromone. Sci. Rep. 4:4499. doi: 10.1038/srep04499

Miller, J. R., and Gut, L. J. (2015). Mating disruption for the 21st Century:
matching technology with mechanism. Environm. Entomol. 44, 427–453. doi:
10.1093/ee/nvv052

Minoli, S., Palottini, F., Crespo, J. G., and Manrique, G. (2013b). Dislodgement
effect of natural semiochemicals released by disturbed triatomines: a possible
alternative monitoring tool. J. Vector Ecol. 38, 353–360. doi: 10.1111/j.1948-
7134.2013.12051.x

Minoli, S., Palottini, F., and Manrique, G. (2013a). The main component of
an alarm pheromone of kissing bugs plays multiple roles in the cognitive
modulation of the escape response. Front. Behav. Neurosc. 7:77. doi:
10.3389/fnbeh.2013.00077

Mitsuno, H., Sakurai, T., Murai, M., Yasuda, T., Kugimiya, S., Ozawa, R., et al.
(2008). Identification of receptors of main sex-pheromone components of
three Lepidopteran species. Eur. J. Neurosci. 28, 893–902. doi: 10.1111/j.1460-
9568.2008.06429.x

Montagné, N., Chertemps, T., Brigaud, I., François, A., François, M. C., and
de Fouchier, A. (2012). Functional characterization of a sex pheromone

receptor in the pest moth Spodoptera littoralis by heterologous expression in
Drosophila. Eur. J. Neurosci. 36, 2588–2596. doi: 10.1111/j.1460-9568.2012.0
8183.x

Moore, S. J., and Lenglet, A. (2004). “Repellence and vector control,” in Traditional

Medicinal Plants and Malaria, eds M. Wilcox, G. Bodeker, and P. Rasoanaivo
(London: CRC Press; Taylor and Francis), 343–363.

Mordue, A. J., Blackwell, A., Hansson, B. S., Wadhams, L. J., and Pickett,
J. A. (1992). Behavioural and electrophysiological evaluation of oviposition
attractants forCulex quinquefasciatus say (Diptera: Culicidae). Experientia 48,
1109–1111. doi: 10.1007/BF01947999

Mukabana, W. R. L., Mweresa, C. K., Otieno, B., Omusula, P., Smallegange, R. C.,
van Loon, J. J., et al. (2012). A novel synthetic odorant blend for trapping of
malaria and other African mosquito species. J. Chem. Ecol. 38, 235–244. doi:
10.1007/s10886-012-0088-8

Murlis, J., Elkinton, J. S., and Cardé, R. T. (1992). Odor plumes
and how insects use them. Annu. Rev. Entomol. 37, 505–532. doi:
10.1146/annurev.en.37.010192.002445

Najar-Rodriguez, A. J., Galizia, C. G., Stierle, J., and Dorn, S. (2010). Behavioral
and neurophysiological responses of an insect to changing ratios of constituents
in host plant-derived volatile mixtures. J. Exp. Biol. 213, 3388–3397. doi:
10.1242/jeb.046284

Namiki, S., Iwabuchi, S., and Kanzaki, R. (2008). Representation of a mixture of
pheromone and host plant odor by antennal lobe projection neurons of the
silkmoth Bombyx mori. J. Comp. Physiol. A 194, 501–515. doi: 10.1007/s00359-
008-0325-3

Napper, E., and Pickett, J. A. (2008). “Alarm Pheromones of Insects” in
Encyclopedia of Entomology, ed J. Capinera (Netherlands: Springer), 85–95.

Nässel, D., and Homberg, U. (2006). Neuropeptides in interneurons of the insect
brain. Cell Tissue Res. 326, 1–24. doi: 10.1007/s00441-006-0210-8

Nikonov, A. A., and Leal, W. S. (2002). Peripheral coding of sex pheromone and
behavioral antagonist in the Japanese beetle, Popillia japonica. J. Chem. Ecol. 28,
1075–1089. doi: 10.1023/A:1015274104626

Ochieng, S. A., Park, K. C., and Baker, T. C. (2002). Host plant volatiles synergize
responses of sex pheromone-specific olfactory receptors neurons in male
Helicoverpa zea. J. Comp. Physiol. A 188, 325–333. doi: 10.1007/s00359-002-
0308-8

Olberg, R. M. (1983). Pheromone triggered flip-flopping interneurons in the
ventral nerve cord of the silkworm moth, Bombyx mori. J. Comp. Physiol. A

152, 297–307. doi: 10.1007/BF00606236
Olsen, S. R., Bhandawat, V., and Wilson, R. I. (2010). Divisive

normalization in olfactory population codes. Neuron 66, 287–299. doi:
10.1016/j.neuron.2010.04.009

Olson, J. F., Moon, R. D., and Kells, S. A. (2009). Off-host aggregation behavior
and sensory basis of arrestment by Cimex lectularius (Heteroptera: Cimicidae).
J. Insect Physiol. 55, 580–587. doi: 10.1016/j.jinsphys.2009.03.001

Papaj, D. R. (2009). “Learning,” in Encyclopedia of Insects, 2nd Edn, ed V. H. R. T.
Cardé (San Diego, CA: Academic Press), 552–555.

Papaj, D. R., and Prokopy, R. J. (1989). Ecological and evolutionary aspects
of learning in Phytophagous insects. Annu. Rev. Entomol. 34, 315–350. doi:
10.1146/annurev.en.34.010189.001531

Pappenberger, B., Geier, M., and Boeckh, J. (1996). “Responses of antennal
olfactory receptors in the yellow fever mosquito Aedes aegypti to human body
odours,” in Olfaction in Mosquito-Host Interactions, eds G. R. Bock and G.
Cardew (Wiley; Chichester: Ciba Foundation Symposium 2000), 254–266.

Pellegrino, M., Steinbach, N., Stensmyr, M. C., Hansson, B. S., Leslie, B., and
Vosshall, L. (2011). A natural polymorphism alters odour and DEET sensitivity
in an insect odorant receptor. Nature 478, 511–514. doi: 10.1038/nature10438

Pickett, J. A., Birkett, M. A., and Logan, J. G. (2008). DEET repels
ornery mosquitoes. Proc. Natl. Acad. Sci. U.S.A. 105, 13195–13196. doi:
10.1073/pnas.0807167105

Pickett, J. A.,Wadhams, L. J., andWoodcock, C.M. (1997). Developing sustainable
pest control from chemical ecology. Agric. Ecosyst. Environ. 64, 149–156. doi:
10.1016/S0167-8809(97)00033-9

Piñero, J., Galizia, C. G., and Dorn, S. (2008). Synergistic behavioral
responses of female oriental fruit moths (Lepidoptera: Tortricidae) to
synthetic host plant-derived mixtures are mirrored by odor-evoked calcium
activity in their antennal lobes. J. Insect Physiol. 54, 333–343. doi:
10.1016/j.jinsphys.2007.10.002

Frontiers in Physiology | www.frontiersin.org 18 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

Pregitzer, P., Schubert, M., Breer, H., Hansson, B. S., Sachse, S., and Krieger,
J. (2012). Plant odorants interfere with detection of sex pheromone
signals by male Heliothis virescens. Front. Cell Neurosci. 6:42. doi:
10.3389/fncel.2012.00042

Prokopy, R., and Papaj, D. R. (1988). Learning of apple fruit biotypes by apple
maggot flies. J. Insect Behav. 1, 67–74. doi: 10.1007/BF01052504

Qiu, Y.-T., Smallegange, R. C., Cajo, J. F., Braak, T., Spitzen, J., Van Loon, J. J.
A., et al. (2007). Attractiveness of MM-X traps baited with human or synthetic
odor to mosquitoes (Diptera: Culicidae) in the Gambia. J. Med. Entomol. 44,
970–983. doi: 10.1093/jmedent/44.6.970

Raffa, K. F., Powell, E. N., and Townsend, P. A. (2013). Temperature-driven range
expansion of an irruptive insect heightened by weakly coevolved plant defenses.
Proc. Natl. Acad. Sci. U.S.A. 110, 2193–2198. doi: 10.1073/pnas.1216666110

Rath, L., Galizia, C. G., and Szyszka, P. (2011). Multiple memory traces after
associative learning in the honey bee antennal lobe. Eur. J. Neurosci. 34,
352–360. doi: 10.1111/j.1460-9568.2011.07753.x

Reinhardt, K., and Siva-Jothy., M. T. (2007). Biology of the bed bugs (Cimicidae).
Annu. Rev. Entomol. 52, 351–374. doi: 10.1146/annurev.ento.52.040306.133913

Reisenman, C., Riffell, J., Duffy, K., Pesque, A., Mikles, D., and Goodwin, B. (2013).
Species-specific effects of herbivory on the oviposition behavior of the moth
Manduca sexta. J. Chem. Ecol. 39, 76–89. doi: 10.1007/s10886-012-0228-1

Reisenman, C. E. (2014). Hunger is the best spice: effects of starvation in the
antennal responses of the blood-sucking bug Rhodnius prolixus. J. Insect

Physiol. 71, 8–13. doi: 10.1016/j.jinsphys.2014.09.009
Reisenman, C. E., Christensen, T. A., Francke, W., and Hildebrand, J. G. (2004).

Enantioselectivity of projection neurons innervating identified olfactory
glomeruli. J. Neurosci. 24, 2602–2611. doi: 10.1523/JNEUROSCI.5192-03.2004

Reisenman, C. E., Christensen, T. A., and Hildebrand, J. G. (2005).
Chemosensory selectivity of output neurons innervating an identified,
sexually isomorphic olfactory glomerulus. J. Neurosci. 25, 8017–8026. doi:
10.1523/JNEUROSCI.1314-05.2005

Reisenman, C. E., Dacks, A., and Hildebrand, J. (2011). Local interneuron diversity
in the primary olfactory center of the mothManduca sexta. J. Comp. Physiol. A

197, 653–665. doi: 10.1007/s00359-011-0625-x
Reisenman, C. E., Heinbockel, T., and Hildebrand, J. G. (2008). Inhibitory

interactions among olfactory glomeruli do not necessarily reflect spatial
proximity. J. Neurophysiol. 100, 554–564. doi: 10.1152/jn.90231.2008

Reisenman, C. E., and Riffell, J. A. (2015).The neural bases of host plant
selection in a Neuroecology framework. Front. Physiol. 12:229. doi:
10.3389/fphys.2015.00229

Reisenman, C. E., Riffell, J. A., Bernays, E. A., and Hildebrand, J. G. (2010).
Antagonistic effects of floral scent in an insect-plant interaction. Proc. R. Soc.
B 277, 2371–2379. doi: 10.1098/rspb.2010.0163

Riffell, J. A. (2012). Olfactory ecology and the processing of complex mixtures.
Curr. Opin. Neurobiol. 22, 236–242. doi: 10.1016/j.conb.2012.02.013

Riffell, J. A., Alarcon, L., Abrell, J. L., Bronstein, J., Davidowitz, G., and Hildebrand,
J. G. (2008). Behavioral consequences of innate preferences and olfactory
learning in hawkmoth-flower interactions. Proc. Natl. Acad. Sci. U.S.A. 105,
3404–3409. doi: 10.1073/pnas.0709811105

Riffell, J. A., Lei, H., Abrell, J. L., and Hildebrand, J. G. (2013). Neural basis of
a pollinator’s buffet: olfactory specialization and learning in Manduca sexta.
Science 339, 200–204. doi: 10.1126/science.1225483

Riffell, J. A., Lei, H., Christensen, T. A., and Hildebrand, J. G. (2009b).
Characterization and coding of behaviorally significant odor mixtures. Curr.
Biol. 19, 335–340. doi: 10.1016/j.cub.2009.01.041

Riffell, J. A., Lei, H., and Hildebrand, J. G. (2009a). Neural correlates of behavior
in the mothManduca sexta in response to complex odors. Proc. Natl. Acad. Sci.
U.S.A. 106, 19219–19226. doi: 10.1073/pnas.0910592106

Riffell, J. A., Shlizerman, E., Sanders, E., Abrell, J. L., Medina, B., Hinterwirth, A.
J., et al. (2014). Flower discrimination by pollinators in a dynamic chemical
environment. Science 344, 1515–1518. doi: 10.1126/science.1251041

Roitberg, B. D., and Prokopy, R. J. (1981). Experience required for
pheromone recognition by the apple maggot fly. Nature 292, 540–541.
doi: 10.1038/292540a0

Root, C. M., Ko, K. I., Jafari, A., andWang, J. W. (2011). Presynaptic facilitation by
neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144.
doi: 10.1016/j.cell.2011.02.008

Rospars, J. P., and Hildebrand, J. G. (2000). Sexually dimorphic and isomorphic
glomeruli in the antennal lobes of the sphinx moth Manduca sexta. Chem.

Senses 25, 119–129. doi: 10.1093/chemse/25.2.119
Roussel, E., Carcaud, J., Combe, M., Giurfa, M., and Sandoz, J.-C. (2014).

Olfactory coding in the honeybee lateral horn. Curr. Biol. 24, 561–567. doi:
10.1016/j.cub.2014.01.063

Rouyar, A., Deisig, N., Dupuy, F., Limousin, D., Wycke, M. A., Renou, M., et al.
(2015). Unexpected plant odor responses in a moth pheromone system. Front.
Physiol. 6:148. doi: 10.3389/fphys.2015.00148

Rusch, C., Broadhead, G. T., Raguso, R. A., and Riffell, J. A. (2016). Olfaction in
context—sources of nuance in plant–pollinator communication. Curr. Opin.
Insect Sci. 15, 53–60. doi: 10.1016/j.cois.2016.03.007

Ryelandt, J., Noireau, F., and Lazzari, C. R. (2011). A multimodal bait
for trapping blood-sucking arthropods. Acta Trop. 117, 131–136. doi:
10.1016/j.actatropica.2010.11.005

Rytz, R., Croset, V., and Benton, R. (2013). Ionotropic receptors (IRs):
chemosensory ionotropic glutamate receptors inDrosophila and beyond. Insect
Biochem. Mol. Biol. 43, 888–897. doi: 10.1016/j.ibmb.2013.02.007

Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N. K., Ito, K., et al. (2007).
Activity-dependent plasticity in an olfactory circuit. Neuron 56, 838–850. doi:
10.1016/j.neuron.2007.10.035

Sadek, M. M., Hansson, B. S., Rospars, J. P., and Anton, S. (2002). Glomerular
representation of plant volatiles and sex pheromones components in the
antennal lobe of the female Spodoptera littoralis. J. Exp. Biol. 205, 1363–1376.

Sanford, M. R., Olson, J. K., Lewis, W. J., and Tomberlin, J. K. (2013). The
effect of sucrose concentration on olfactory-based associative learning in Culex

quinquefasciatus Say (Diptera: Culicidae). J. Insect Behav. 26, 494–513. doi:
10.1007/s10905-012-9368-y

Sanford, M. R., and Tomberlin, J. K. (2011). Conditioning individual
mosquitoes to an odor: sex, source, and time. PLoS ONE 6:e24218. doi:
10.1371/journal.pone.0024218

Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B., and Touhara,
K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels.
Nature 452, 1002–1006. doi: 10.1038/nature06850

Saveer, A. M., Kromann, S. H., Birgersson, G., Bengtsson, M., Lindblom, T.,
Balkenius, A., et al. (2012). Floral to green: mating switches moth olfactory
coding and preference. Proc. R. Soc. B Biol. Sci. 279, 2314–2322. doi:
10.1098/rspb.2011.2710

Schmera, D., and Guerin, P. M. (2012). Plant volatile compounds shorten reaction
time and enhance attraction of the codling moth (Cydia pomonella) to
codlemone. Pest Manag. Sci. 68, 454–461. doi: 10.1002/ps.2292

Schröder, M. L., Glinwood, R., Webster, B., Ignell, R., and Krüger, K. (2015).
Olfactory responses of Rhopalosiphum padi to three maize, potato, and wheat
cultivars and the selection of prospective crop border plants. Entomol. Exp.

Appl. 157, 241–253. doi: 10.1111/eea.12359
Schroeder, R., and Hilker, M. (2008). The relevance of background odor in

resource location by insects: a behavioral approach. Bioscience 58, 308–316. doi:
10.1641/B580406

Seki, Y., and Kanzaki, R. (2008). Comprehensive morphological identification and
GABA immunocytochemistry of antennal lobe local interneurons in Bombyx

mori. J. Comp. Neurol. 506, 93–107. doi: 10.1002/cne.21528
Seki, Y., Rybak, J., Wicher, D., Sachse, S., and Hansson, B. S. (2010).

Physiological and morphological characterization of local interneurons in the
Drosophila antennal lobe. J. Neurophysiol. 104, 1007–1019. doi: 10.1152/jn.0024
9.2010

Smallegange, R. C., Qiu, Y. T., Van Loon, J. J. A., and Takken,W. (2005). Synergism
between ammonia, lactic acid and carboxylic acids as kairomones in the host-
seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto

(Diptera: Culicidae). Chem. Senses 30, 145–152. doi: 10.1093/chemse/bji010
Sonenshine, D. E. (2006). Tick pheromones and their use in tick control. Annu.

Rev. Entomol. 51, 557–580. doi: 10.1146/annurev.ento.51.110104.151150
Späthe, A., Reinecke, A., Haverkamp, A., Hansson, B. S., and Knaden, M.

(2013). Host plant odors represent immiscible information entities-blend
composition and concentrationmatter in hawkmoths. PLoS ONE 8:e77135. doi:
10.1371/journal.pone.0077135

Stanczyk, N. M., Brookfield, J. F., Ignell, R., Logan, J. G., and Field, L. M. (2010).
Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined

Frontiers in Physiology | www.frontiersin.org 19 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

trait residing in changes in sensillum function. Proc. Natl. Acad. Sci. U.S.A. 107,
8575–8580. doi: 10.1073/pnas.1001313107

Stanczyk, N. M., Brookfield, J. F. Y., Field, L. M., and Logan, J. G. (2013). Aedes
aegypti mosquitoes exhibit decreased repellency by DEET following previous
exposure. PLoS ONE 8:e54438. doi: 10.1371/journal.pone.0054438

Stange, G. (1997). Effects of changes in atmospheric carbon dioxide on the location
of hosts by the moth, Cactoblastis cactorum. Oecologia 110, 539–545. doi:
10.1007/s004420050192

Stange, G., Monro, J., Stowe, S., and Osmond, C. B. (1995). The CO2 sense of the
moth Cactoblastis cactorum and its probable role in the biological control of the
CAM plant Opuntia stricta. Oecologia 102, 341–352. doi: 10.1007/BF00329801

Steib, B. M., Geier, M., and Boeckh, J. (2001). The effect of lactic acid on odour-
related host preference of yellow fever mosquitoes. Chem. Senses 26, 523–528.
doi: 10.1093/chemse/26.5.523

Stelinski, L. L., Gut, L. J., and Miller, J. R. (2005). Occurrence and duration
of long-lasting peripheral adaptation among males of three species of
economically important tortricid moths. Ann. Entomol. Soc. Am. 98, 580–586.
doi: 10.1603/0013-8746(2005)098[0580:OADOLP]2.0.CO;2

Stengl, M., and Funk, N. W. (2013). The role of the coreceptor Orco in insect
olfactory transduction. J. Comp. Physiol. A 199, 897–909. doi: 10.1007/s00359-
013-0837-3

Stensmyr, M. C., Giordano, E., Balloi, A., Angioy, A. M., and Hansson, B. S. (2003).
Novel natural ligands for Drosophila olfactory receptor neurones. J. Exp. Biol.
206, 715–724. doi: 10.1242/jeb.00143

Stierle, J. S., Galizia, C. G., and Szyszka, P. (2013). Millisecond stimulus onset-
asynchrony enhances information about components in an odor mixture.
J. Neurosci. 33, 6060–6069. doi: 10.1523/JNEUROSCI.5838-12.2013

Stranden, M., Rostelien, T., Liblikas, I., Almaas, T. J., Borg-Karlson, A. K.,
and Mustaparta, H. (2003). Receptor neurons in three heliothine moths
responding to floral and inducible plant volatiles. Chemoecology 13, 143–154.
doi: 10.1007/s00049-003-0242-4

Su, C.-Y., Menuz, K., Reisert, J., and Carlson, J. R. (2012). Non-synaptic inhibition
between grouped neurons in an olfactory circuit. Nature 492, 66–72. doi:
10.1038/nature11712

Suh, E., Bohbot, J. D., and Zwiebel, L. J. (2014). Peripheral olfactory signaling in
insects. Curr. Opin. Insect Sci. 6, 86–92. doi: 10.1016/j.cois.2014.10.006

Suh, G. S., Wong, A. M., Hergarden, A. C., Wang, J. W., Simon, A. F., Benzer,
S., et al. (2004). A single population of olfactory sensory neurons mediates
an innate avoidance behaviour in Drosophila. Nature 431, 854–859. doi:
10.1038/nature02980

Syed, Z., and Leal, W. S. (2008). Mosquitoes smell and avoid the insect
repellent DEET. Proc. Natl. Acad. Sci. U.S.A. 105, 13598–13603. doi:
10.1073/pnas.0805312105

Syed, Z., Pelletier, J., Flounders, E., Chitolina, R. F., and Leal, W. S. (2011). Generic
insect repellent detector from the fruit fly Drosophila melanogaster. PLoS ONE
6:e17705. doi: 10.1371/journal.pone.0017705

Szyszka, P. (2014). Follow the odor. Science 344, 1454. doi:
10.1126/science.1255748

Szyszka, P., Gerkin, R. C., Galizia, C. G., and Smith, B. H. (2014). High-speed
odor transduction and pulse tracking by insect olfactory receptor neurons. Proc.
Natl. Acad. Sci. U.S.A. 111, 16925–16930. doi: 10.1073/pnas.1412051111

Szyszka, P., Stierle, J. S., Biergans, S., and Galizia, C. G. (2012). The speed of
smell: odor-object segregation within milliseconds. PLoS ONE 7:e36096. doi:
10.1371/journal.pone.0036096

Tabuchi, M., Dong, L., Inoue, S., Namiki, S., Sakurai, T., and Nakatani, K., et
el. (2015). Two types of local interneurons are distinguished by morphology,
intrinsic membrane properties, and functional connectivity in the moth
antennal lobe. J. Neurophysiol. 114, 3002–3013. doi: 10.1152/jn.00050.2015

Takken, W., Van Loon, J. J. A., and Adam, W. (2001). Inhibition of host-seeking
response and olfactory responsiveness in Anopheles gambiae following blood
feeding. J. Insect Physiol. 47, 303–310. doi: 10.1016/S0022-1910(00)00107-4

Tanaka, N. K., Ito, K., and Stopfer, M. (2009). Odor-evoked neural oscillations
in Drosophila are mediated by widely branching interneurons. J. Neurosci. 29,
8595–8603. doi: 10.1523/JNEUROSCI.1455-09.2009

Tanaka, N. K., Suzuki, E., Dye, L., Ejima, A., and Stopfer, M. (2012). Dye fills
reveal additional olfactory tracts in the protocerebrum of wild-typeDrosophila.
J. Comp. Neurol. 520, 4131–4140. doi: 10.1002/cne.23149

Tasin, M., Bäckman, A. C., Coracini, M., Casado, D., Ioriatti, C., and
Witzgall, P. (2007). Synergism and redundancy in a plant volatile blend
attracting grapevine moth females. Phytochemistry 68, 203–209. doi:
10.1016/j.phytochem.2006.10.015

Tauxe, G., MacWilliam, D., Boyle, S. M., Guda, T., and Ray, A. (2013). Targeting
a dual detector of skin and CO2 to modify mosquito host seeking. Cell 155,
1365–1379. doi: 10.1016/j.cell.2013.11.013

Thom, C., Guerenstein, P. G., Mechaber, W., and Hildebrand, J. G. (2004). Floral
CO2 reveals flower profitability to moths. J. Chem. Ecol. 30, 1285–1288. doi:
10.1023/B:JOEC.0000030298.77377.7d

Thöming, G., Larsson, M. C., Hansson, B., and Anderson, P. (2013). Comparison
of plant preference hierarchies of male and female moths and the impact of
larval rearing hosts. Ecology 94, 1744–1752. doi: 10.1890/12-0907.1

Tomberlin, J. K., Rains, G. C., Allan, S. A., Sanford, M. R., and Lewis, W.
J. (2006). Associative learning of odor with food-or blood-meal by Culex

quinquefasciatus Say (Diptera: Culicidae). Naturwissenschaften 93, 551–556.
doi: 10.1007/s00114-006-0143-9

Trimble, R. M., and Marshall, D. B. (2010). Differences in the relationship between
sensory adaptation of antennae and concentration of aerial pheromone
in the oriental fruit moth and obliquebanded leafroller (Lepidoptera:
Tortricidae): implications for the role of adaptation in sex pheromone-
mediated mating disruption of these species. Environ. Entomol. 39, 625–632.
doi: 10.1603/EN09178

Trona, F., Anfora, G., Balkenius, A., Bengtsson, M., Tasin, M., Knight, A., et al.
(2013). Neural coding merges sex and habitat chemosensory signals in an insect
herbivore. Proc. R. Soc. B Biol. Sci. 280:20130267. doi: 10.1098/rspb.2013.0267

Tsitoura, P., Koussis, K., and Iatrou, K. (2015). Inhibition of Anopheles gambiae

odorant receptor function by mosquito repellents. J. Biol. Chem. 290,
7961–7972. doi: 10.1074/jbc.M114.632299

Tsuchihara, K., Fujikawa, K., Ishiguro, M., Yamada, T., Tada, C., Ozaki, K.,
et al. (2005). An odorant-binding protein facilitates odorant transfer from air
to hydrophilic surroundings in the blowfly. Chem. Senses 30, 559–564. doi:
10.1093/chemse/bji049

Tumlinson, J. H., Brennan, M. M., Doolittle, R. E., Mitchell, E. R., Brabham, A.,
andMazomenos, B. E. (1989). Identification of a pheromone blend attractive to
Manduca sexta (L.) males in a wind tunnel. Arch. Insect Biochem. Physiol. 10,
255–271. doi: 10.1002/arch.940100402

Turner, G. C., Bazhenov, M., and Laurent, G. (2008). Olfactory representations
by Drosophila mushroom body neurons. J. Neurophysiol. 99, 734–746. doi:
10.1152/jn.01283.2007

Turner, S. L., Li, N., Guda, T., Githure, J., Cardé, R. T., and Ray, A. (2011). Ultra-
prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature
474, 87–91. doi: 10.1038/nature10081

van Breugel, F., and Dickinson, M. H. (2014). Plume-tracking behavior of flying
Drosophila emerges from a set of distinct sensory-motor reflexes. Curr. Biol. 24,
274–286. doi: 10.1016/j.cub.2013.12.023

van Breugel, F., Riffell, J., Fairhall, A., and Dickinson,M. H. (2015). Mosquitoes use
vision to associate odor plumes with thermal targets. Curr. Biol. 25, 2123–2129.
doi: 10.1016/j.cub.2015.06.046

van der Goes van Naters, W., and Carlson, J. R. (2006). Insects as chemosensors of
humans and crops. Nature 444, 302–307. doi: 10.1038/nature05403

Vandermoten, S., Mescher, M. C., Francis, F., Haubruge, E., and Verheggen,
F. J. (2012). Aphid alarm pheromone: an overview of current knowledge
on biosynthesis and functions. Insect Biochem. Mol. Biol. 42, 155–163. doi:
10.1016/j.ibmb.2011.11.008

Vickers, N. J., and Baker, T. C. (1997). Chemical communication in Heliothine
moths VII Correlation between diminished responses to point source plumes
and single filaments similarly tainted with a behavioural antagonist. J. Comp.

Physiol. A 180, 523–536. doi: 10.1007/s003590050069
Vickers, N. J., Christensen, T. A., and Hildebrand, J. G. (1998). Combinatorial

odor discrimination in the brain: attractive and antagonist odor blends
are represented in distinct combinations of uniquely identifiable glomeruli.
J. Comp. Neurol. 400, 35–56.

Vinauger, C., Buratti, L., and Lazzari, C. R. (2011a). Learning the way to
blood: first evidence of dual olfactory conditioning in a blood-sucking insect,
Rhodnius prolixus. I. Appetitive learning. J. Exp. Biol. 214, 3032–3038. doi:
10.1242/jeb.056697

Frontiers in Physiology | www.frontiersin.org 20 June 2016 | Volume 7 | Article 271

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Reisenman et al. Olfactory Neuroethology and Insect Control

Vinauger, C., Buratti, L., and Lazzari, C. R. (2011b). Learning the way to
blood: first evidence of dual olfactory conditioning in a blood-sucking insect,
Rhodnius prolixus. II. Aversive learning. J. Exp. Biol. 214, 3039-3045. doi:
10.1242/jeb.057075

Vinauger, C., Lallement, H., and Lazzari, C. R. (2013). Learning and
memory in Rhodnius prolixus: habituation and aversive operant conditioning
of the proboscis extension response. J. Exp. Biol. 216, 892–900. doi:
10.1242/jeb.079491

Vinauger, C., Lutz, E. K., and Riffell, J. A. (2014). Olfactory learning and memory
in the disease vector mosquito Aedes aegypti. J. Exp. Biol. 217, 2321–2330. doi:
10.1242/jeb.101279

Vogt, R. G., and Riddiford, L. M. (1981). Pheromone binding and inactivation by
moth antennae. Nature 293, 161–163. doi: 10.1038/293161a0

Vosshall, L., Amrein, H., Morozov, P., Rzhetsky, A., and Axel, R. (1999). A
spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96,
725–736. doi: 10.1016/S0092-8674(00)80582-6

Vosshall, L. B., and Hansson, B. S. (2011). A unified nomenclature system
for the insect olfactory coreceptor. Chem. Senses 36, 497–498. doi:
10.1093/chemse/bjr022

Vosshall, L. B., and Stocker, R. F. (2007). Molecular architecture of
smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533. doi:
10.1146/annurev.neuro.30.051606.094306

Vosshall, L. B., Wong, A. M., and Axel, R. (2000). An olfactory sensory map in the
fly brain. Cell 102, 147–159. doi: 10.1016/S0092-8674(00)00021-0

Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B., and Axel, R. (2003). Two-
photon calcium imaging reveals an odor-evoked map of activity in the fly brain.
Cell 112, 271–282. doi: 10.1016/S0092-8674(03)00004-7

Wang, X., Zhong, M., and Liu, Q. (2013). Molecular characterization of the carbon
dioxide receptor in the oriental latrine fly, Chrysomya megacephala (Diptera:
Calliphoridae). Parasitol. Res. 112, 2763–2771. doi: 10.1007/s00436-013-3410-7

Warren, B., and Kloppenburg, P. (2014). Rapid and slow chemical synaptic
interactions of cholinergic projection neurons and GABAergic local
interneurons in the insect antennal lobe. J. Neurosci. 34, 13039–13046.
doi: 10.1523/JNEUROSCI.0765-14.2014

Watanabe, H. (2012). Spatio-temporal activity patterns of odor-induced
synchronized potentials revealed by voltage-sensitive dye imaging and
intracellular recording in the antennal lobe of the cockroach. Front. Syst.
Neurosci. 6:55. doi: 10.3389/fnsys.2012.00055

Webster, B., Bruce, T., Pickett, J., and Hardie, J. (2010). Volatiles functioning as
host cues in a blend become nonhost cues when presented alone to the black
bean aphid. Anim. Behav. 79, 451–457. doi: 10.1016/j.anbehav.2009.11.028

Wertheim, B., Baalen, E.-J., Dicke, M., and Vet, L. E. (2005). Pheremone-mediated
aggregation in nonsocial arthropods: an evolutionary ecological perspective.
Annu. Rev. Entomol. 50, 321–346. doi: 10.1146/annurev.ento.49.061802.123329

White, G. B. (2007). “Chapter 2: Terminology of insect repellents,” in Insect

Repellents: Principles, Methods, and Uses, eds M. Debboun, S. P. Frances, and
D. Strickman (Boca Raton, FL: CRC Press) 31–46.

Wicher, D., Schafer, R., Bauernfeind, R., Stensmyr, M. C., Heller, R., and
Heinemann, S. H. (2008). Drosophila odorant receptors are both ligand-gated
and cyclic-nucleotide-activated cation channels. Nature 452, 1007–1011. doi:
10.1038/nature06861

Willis, M. A., Avondet, J. L., and Zheng, E. (2011). The role of vision in odor-
plume tracking by walking and flying insects. J. Exp. Biol. 214, 4121–4132. doi:
10.1242/jeb.036954

Wilson, D. A., and Sullivan, R. M. (2011). Cortical processing of odor objects.
Neuron 72, 506–519. doi: 10.1016/j.neuron.2011.10.027

Wilson, J. K., Kessler, A., and Woods, H. A. (2015). Noisy communication
via airborne infochemicals. Bioscience 65, 667–677. doi: 10.1093/biosci/
biv062

Wilson, R. I., and Laurent, G. (2005). Role of GABAergic inhibition in
shaping odor-evoked spatiotemporal patterns in the drosophila antennal
lobe. J. Neurosci. 25, 9069–9079. doi: 10.1523/JNEUROSCI.2070-
05.2005

Winnington, A. P., Napper, R. M., and Mercer, A. (1996). Structural plasticity of
identified glomeruli in the antennal lobes of the adult worker honey bee. J.
Comp. Neurol. 365, 479–490.

Witzgall, P., Kirsch, P., and Cork, A. (2010). Sex pheromones and their impact on
pest management. J. Chem. Ecol. 36, 80–100. doi: 10.1007/s10886-009-9737-y

Wyatt, T. D. (2003). Pheromones and Animal Behavior: Communication by Smell

and Taste. Cambridge: Cambridge University Press.
Xu, P., Choo, Y.-M., De La Rosa, A., and Leal, W. S. (2014). Mosquito odorant

receptor for DEET and methyl jasmonate. Proc. Natl. Acad. Sci. U.S.A. 111,
16592–16597. doi: 10.1073/pnas.1417244111

Yao, C. A., Ignell, R., and Carlson, J. R. (2005). Chemosensory coding by neurons
in the coeloconic sensilla of theDrosophila antenna. J. Neurosci. 25, 8359–8367.
doi: 10.1523/JNEUROSCI.2432-05.2005

Yarnell, E., and Abascal, K. (2004). Botanical prevention and treatment of malaria,
Part 1—herbal mosquito repellants. Altern. Complement. Ther. 10, 206–210.
doi: 10.1089/1076280041580332

Zars, T., Fischer, M., Schulz, R., and Heisenberg, M. (2000). Localization
of a short-term memory in Drosophila. Science 288, 672–675. doi:
10.1126/science.288.5466.672

Zavada, A., Buckley, C. L., Martinez, D., Rospars, J. P., and Nowotny, T. (2011).
Competition-based model of pheromone component ratio detection in the
moth. PLosONE 6:e16308. doi: 10.1371/journal.pone.0016308

Zermoglio, P. F., Martin-Herrou, H., Bignon, Y., and Lazzari, C. R. (2015).
Rhodnius prolixus smells repellents: behavioural evidence and test
of present and potential compounds inducing repellency in Chagas
disease vectors. J. Insect Physiol. 8, 137–144. doi: 10.1016/j.jinsphys.2015.
07.012

Zhang, J., Yan, S., Liu, Y., Jacquin-Joly, E., Dong, S., and Wang, G. (2015).
Identification and functional characterization of sex pheromone receptors
in the common cutworm (Spodoptera litura). Chem. Senses 40, 7–16. doi:
10.1093/chemse/bju052

Zhang, P.-J., and Liu, S.-S. (2006). Experience induces a Phytophagous insect to lay
eggs on a nonhost plant. J. Chem. Ecol. 32, 745–753. doi: 10.1007/s10886-006-
9032-0

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Reisenman, Lei and Guerenstein. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 21 June 2016 | Volume 7 | Article 271

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects
	Introduction
	The Insect Olfactory System
	Olfactory Attraction For Monitoring and Trapping
	Use of Sex Pheromones
	Use of Other Pheromones
	Use of Host Odors
	Combined Use of Pheromones and Plant Volatiles
	Effects of Background Odor

	Olfactory Repellence
	Disruption of Natural Olfactory Behavior
	Mating Disruption
	Odor Masking
	Odor Antagonism

	Plasticity in the Responses to Semiochemicals
	Conclusions
	Author Contributions
	Acknowledgments
	References


