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Angiogenesis, the formation of new blood vessels, is a unique and crucial biological

process occurring during both development and adulthood. A better understanding

of the mechanisms that regulates such process is mandatory to intervene in

pathophysiological conditions. Here we highlight some recent argument on new players

that are critical in endothelial cells, by summarizing novel discoveries that regulate

notorious vascular pathways such as Vascular Endothelial Growth Factor (VEGF),

Notch and Planar Cell Polarity (PCP), and by discussing more recent findings that put

metabolism, redox signaling and hemodynamic forces as novel unforeseen facets in

angiogenesis. These new aspects, that critically regulate angiogenesis and vascular

homeostasis in health and diseased, represent unforeseen new ground to develop

anti-angiogenic therapies.
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NEW ASPECT OF OLD PLAYER IN ANGIOGENESIS: AN UPDATE

Angiogenesis is defined as the process of sprouting new blood vessels from preexisting vasculature.
Neo-vessel formation is required for many physiological processes, such as embryogenesis,
cardiovascular maturation, tissue repair and regeneration (Schmidt and Carmeliet, 2010).
Angiogenic processes need to be finely balanced during development and adulthood, because
excessive or insufficient angiogenesis contributes to pathologies, ranging from cancer, macular
degeneration, and retinopathy to impaired repair of ischemic tissues (Carmeliet, 2005).

The main driver of angiogenesis is the arrangement of endothelial cells (EC) in tip and
stalk cells. Tip cells form filopodia that invade surrounding tissue, leading the path of neo-
vessel formation (Eilken and Adams, 2010). This was described in the mouse retina and in the
zebrafish intersegmental vessels. Vascular Endothelial Growth Factor (VEGF) and Notch signaling
pathways are vital for tip cell differentiation (Adams and Alitalo, 2007). VEGF signaling promotes
angiogenesis through the secreted VEGF factor; while membrane bound Notch protein is cleaved
upon stimulation to modify gene expression during neuronal and cardiovascular development
(Gianni-Barrera et al., 2011).

VEGF Receptor 2 and 3 (VEGFR2/R3) are expressed strongly in tip cells, leading to activation of
VEGF pathway in these cells (Gerhardt et al., 2003). It has been shown recently that upon binding
of the ligand to VEGFR, the receptor complex would be internalized by clathrin-mediated process
of endocytosis. This would require protein of the Planar Cell Polarity (PCP) pathway, Proteinase-
Activated Receptor-3 (Par3), and Atypical Protein Kinase C (aPKC) (Nakayama et al., 2013;
Figure 1A). VEGF pathway promotes lamellipodia and filopodia formation, giving the sprouting
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FIGURE 1 | (A) Interplay between VEGF and Notch signaling is important for tip and stalk cell differentiation in physiological angiogenesis. The tip cell is characterized

by high VEGF and low Notch levels, inducing sprouting. The stalk cell expresses low VEGF and high Notch, leading to activation of B catenin that stabilizes junctions

and enables mural cell recruitment (Gavard and Gutkind, 2008; Reis et al., 2012). High Notch signaling also enables polarization of the stalk cell, a process important

for lumenization (Phng et al., 2009); (B) The balance between VEGF and Notch signaling is lost in tumor endothelium. High VEGF and low Notch makes the tumor

endothelium invasive and unstable. Loss of Notch downregulates Wnt canonical and non-canonical pathway, disrupting junctional integrity and vessel coverage (Fan

et al., 2012; Chatterjee et al., 2013). High VEGF promotes sprouting and formation of podosomes at the basal side of the cell, a structure important for degradation of

the extracellular matrix and cell motility (Seano et al., 2014).

phenotype to the tip cell. VEGF signaling induces expression
of Delta-Like 4 (Dll4). Dll4 activates Notch signaling in the
neighbor stalk cells, which down-regulates VEGFR expression,
giving a non-sprouting quiescent phenotype to the stalk cell
(Tammela et al., 2011; Benedito et al., 2012; Ramasamy et al.,
2014; Figure 1A).

Notch is important for acquisition of the barrier function and
polarity in the stalk cell. Both processes are important for lumen
morphogenesis. Notch pathway interacts with the Wnt pathway
leading to expression of B-catenin. B-catenin has two functions
in the stalk cell. It acts as a transcription factor to induce
transcription of Platelet Derived Growth Factor B (PDGF-B),
leading to recruitment of mural cell (Reis et al., 2012). B-catenin
acts at cell junctions where it stabilizes Claudin 5 and Zona
Occludens 1 (ZO1), components of the tight junctions (Gavard
and Gutkind, 2008; Figure 1A). Other components of the Wnt
pathway such as Frizzled 4 are required for the maintenance of
the barrier function in stalk cells (Wang et al., 2012; Zhou and
Nathans, 2014). Notch signaling would also interact with the
non-canonical Wnt/ PCP pathway (Phng et al., 2009), leading
to apico-basal polarization of the EC (Figure 1A). Apico-basal
polarity is vital for vessel lumenization; as after lumen formation,
one side of the EC is in contact with the blood flow and the
other side is attached to the basement membrane (Descamps
et al., 2012; Sewduth et al., 2014). PCP relocates Podocalyxin
(POXL) to the apical membrane, where it regulates vascular
permeability and integrin-alpha5 to the basal membrane, where
it participates in EC attachment to the basement membrane
(Figure 1A). Interestingly, basal membrane directly promotes
activation of Notch signaling in stalk cells via Laminin-alpha4
(Lama4), inhibiting tip cell formation (Stenzel et al., 2011).

Interestingly, tumor endothelium is also exposed in the
tumor micro-environment to high level of VEGF-A, that down-
regulates Notch. However, while in normal physiology, this
balance is carefully regulated leading to formation of organized
structures; in tumors, VEGF signaling is deregulated and not
counterbalanced, making the tumor endothelium chaotic and
unstable (Carmeliet and Jain, 2011). As loss of Wnt accompanies
loss of Notch signaling, tumor ECs are unable to recruit pericytes
and stabilize their junctions, leading to vascular leakage (Dudley,
2012). Strong VEGF and loss of polarity triggers formation
of endothelial podosome rosettes where Integrin-alpha6beta1
accumulates. Podosomes are structures that degrade extracellular
matrix, a process essential for tumor EC invasiveness (Seano
et al., 2014; Figure 1B). High VEGF and low Notch levels
also reorganize the actin cytoskeleton, promoting lamellipodia
formation (Fan et al., 2012; Chatterjee et al., 2013; Figure 1B).
In conclusion, in normal endothelium, VEGF signaling is active
in the tip cell where it promotes sprouting; while Notch signaling
is active in the stalk cell where it favors lumen morphogenesis
and acquisition of barrier properties. In tumor endothelium, this
balance is disrupted making the tumor EC invasive, fragile and
leaky.

METABOLISM AND REDOX SIGNALING:
NEW MECHANISMS DRIVING
ANGIOGENESIS

An emerging concept is that defined metabolic pathways are
vital for angiogenesis. In particular, lipid and glucose metabolism
would be critical in ECs at different levels. It was shown that
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cholesterol at tip cell membrane is important for dimerization
of VEGFR2. As VEGFR2 can bind VEGF only when it forms a
dimer, Apoliprotein A-I Binding Protein (AIBP) that promotes
efflux of cholesterol from the membrane to High-Density-
Lipoprotein (HDL) inhibits VEGF signaling and sprouting
angiogenesis (Fang et al., 2013; Figure 2A).

On the other hand, Apoliprotein-B (ApoB) that forms Low-
Density-Lipoprotein (LDL) induces downregulation of VEGFR1
a decoy receptor that sequesters VEGF from VEGFR2 binding,
suggesting that ApoB could activate VEGF signaling (Avraham-
Davidi et al., 2012; Figure 2A). Cholesterol esterification would
also impair neo-angiogenesis by reducing the amount of
cholesterol available to stabilize the VEGFR2 dimers (Angius
et al., 2015). The adipogenic protein Fatty-Acid-Binding-Protein
4 (FABP4) is also required for VEGFR2 downstream signaling,
and is itself regulated by Dll4 (Harjes et al., 2014; Figure 2B).
More recently, a new role for fatty-acid metabolism via Carnitine
Palmitoyltransferase 1A (CPT1) was described (Schoors et al.,
2015). Reduction of Fatty Acid Oxidation (FAO) by silencing
CPT1A in ECs impaired de novo nucleotide synthesis for DNA
replication. CPT1 blockade in mice also inhibited pathological
ocular angiogenesis, showing the potential of FAO blockers to
block angiogenesis (Schoors et al., 2015).

Angiogenic EC are addicted to glucose, resembling similarity
with tumor cells. An interesting work describe a clear
link between glucose metabolism and angiogenesis. De Bock
et al. demonstrated that even if they are exposed to high
oxygen concentration due to blood flow, endothelial cells
rely on glycolysis and not oxidative phosphorylation for
ATP synthesis. Knock-down (KD) of the key glycolysis
enzyme Phosphofructokinase-2/Fructose-2,6-Bisphosphatase-3
(PFKFB3) impaired tip cell formation by interfering with Notch
blockade. Overexpression of PFKB3 overcame the pro-stalk
activity of Notch, while treatment with PFKB3 inhibitor, 3-
(3-Pyridinyl)-1-(4-Pyridinyl)-2-Propen-1-One (3PO) mimicked
the phenotype of PFKB3 KD (De Bock et al., 2013; Schoors
et al., 2014; Figure 2B). Recently, a role for the transcription
factor Forkhead box O (Foxo1) in endothelial metabolism has
also been described. Here, the authors found that Foxo1 is
critical in quiescent EC where it would decelerate metabolic
activity by reducing glycolysis and mitochondrial respiration via
c-Myc. Knock-down (KD) of Foxo1 in EC in mice induced to
uncoordinated EC proliferation, leading to vessel hyperplasia
(Wilhelm et al., 2016). In a different work, the lactate was also
shown to promote angiogenesis through N-Myc Downstream-
Regulated Gene 3 Protein (NDRG3) that itself activates the
Ras-Erk pathway (Lee et al., 2015). Finally, it was found
that hypoxia-mediated VEGF secretion from glioma cells can
regulate Glucose Transporter Type 1 (GLUT1) expression in
brain endothelium (Yeh et al., 2008). These results show that
glucose transport across ECs might be increases by VEGF
availability in hypoxic area of tumor and, therefore, promote
tumor angiogenesis.

A connection among lipid and glucose metabolism with
VEGF secretion was described by Joyal et al. Free Fatty Acid
Receptor 1 (Ffar1) reduces GLUT1 expression when free lipids
are available. Reduced glucose entry in the VEGF secreting cells

causes a decrease of the level of the Krebs cycle intermediate
alpha-Ketoglutarate (alpha-KG). Low alpha-KG levels would
promote transcription and secretion of VEGF-A (Joyal et al.,
2016; Figure 2C). In conclusion, lipid metabolism appears to
be vital for availability of VEGFR2 for its ligand, while glucose
metabolism is essential for activation of VEGF downstream
targets and secretion of VEGF ligand itself. Although promising,
these data are far from being completely suitable for treating
pathological angiogenesis; until the endothelial autonomous role
of these pathways are totally understood.

An emerging concept in angiogenesis is the fact that reactive
active species (ROS) and redox events are not just passive
events but can actually play a key role during angiogenesis
(Panieri and Santoro, 2015). Redox signaling targets various
molecules (proteins, lipid, nucleic acid) and occurs in a reversible,
specific and dynamic manner (Holmstrom and Finkel, 2014).
This balance is regulated by ROS and antioxidants that are in turn
produced by specific enzymes. Many angiogenic mechanisms
such as VEGFR2 accessibility to its ligand are regulated by
ROS directly. The Receptor tyrosine kinase (RTK) domain of
VEGFR2 presents two oxidation-sensitive cysteine residues that
are kept in a reduced state by antioxidant enzyme Peroxiredoxin-
2 (Prx2). Loss of Prx2 increases intracellular level of ROS and
oxidation of VEGFR2 on these cysteines, leading to formation
of a disulphide bridge. This inactivates VEGFR2 that is no
longer able to respond to VEGF (Kang et al., 2011; Figure 2D).
Another study suggested that oxidative specie H2O2 could
directly increase VEGFR2 mRNA without affecting VEGFR1
expression (Gonzalez-Pacheco et al., 2006). Phosphorylation
of VEGFR3 is regulated by Protein S, that activates Serine
Phosphatase SHP2 which de-phosphorylates VEGFR2 leading to
its inactivation (Fraineau et al., 2012). Protein S itself is converted
into its active form by carboxylation, a process requiring vitamin
K as cofactor (Danziger, 2008). As Vitamin K has antioxidant
effects, this establish a link between redox signaling and post
translational modifications of VEGFR2. Diabetes is a prevalent
metabolic disease and most diabetic conditions result in vascular
complications due to endothelial dysfunction (Rask-Madsen and
King, 2013). ROS generated from hyperglycemia were shown to
promote ligand-independent phosphorylation of VEGFR2 and
to decrease availability of VEGFR2 at the cell surface (Warren
et al., 2014). Interestingly, the reduced cell surface abundance of
VEGFR2 can be reversed by treatment with the antioxidant N-
acetyl-L-cysteine (NAC), suggesting a causative role for oxidative
stress in vascular dysfunction in diabetic conditions (Giacco and
Brownlee, 2010).

Reactive oxygen species can also be produced during
angiogenesis and have regulatory functions. One of the
downstream effectors of VEGFR2 is Ras-Related C3 Botulinum
Toxin Substrate 1 (Rac1). Rac1 promotes production of ROS
via the NADPH oxidase Nox2 (Diebold et al., 2009; Figure 2D).
Interestingly, overexpression of NADPH oxidase Nox4 itself
promotes endothelial migration by increasing expression of
endothelial Nitric Oxide Synthase (eNOS) (Craige et al., 2011).
eNOS is located to the Golgi and has a double function.
It can produce Nitric Oxide (NO) when in coupled/ dimer
conformation. In absence of cofactors, eNOS shifts to a
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FIGURE 2 | (A) Cholesterol maintains VEGFR2 active as dimers. Transfer of Cholesterol to HDL through the AIBP lipid transporter makes VEGFR2 inactive by

inducing its monomerization (Avraham-Davidi et al., 2012); (B) VEGF and Notch interplay regulates Phosphofructokinase-2/Fructose-2,6-Bisphosphatase 3 (PFKFB3)

activity. PFKB3 is active in tip cell, where glycolysis is promoted to favor sprouting of the tip cell. While in the stalk cell, High Notch levels shuts down PFKB3 activity,

leading to quiescence (De Bock et al., 2013; Schoors et al., 2014); (C) Free Fatty Acid Receptor 1 (FFAR1) activates VEGF-A expression. FFAR1 is a lipid transporter

that down-regulates Glut1 glucose transporter expression when free lipids are available. This reduces the levels of alpha-ketoglutarate in the cell leading to activation

of VEGF-A transcription (Joyal et al., 2016); (D) VEGFR2 promotes ROS production via Rac1 and Nox2 (Diebold et al., 2009). High level of ROS induce oxidation of

VEGF2 on two cysteine residues, making it inactive. Antioxidant enzyme Peroxiredoxin2 (Prx2) can buffer the ROS levels to keep VEGFR2 cysteines in a reduced state

to protect its activity (Kang et al., 2011); (E) Redox balance regulates the activity of endothelial Nitric Oxide Synthase (eNOS)that can produce Nitric Oxide (NO) when

in coupled conformation and generates ROS (•2−) when in an uncoupled conformation. Notch and ROS levels are regulators of this balance. Two antioxidant

enzymes, the prenyltransferase Ubiad1 and Glutaredoxin1 (Grx1) were shown to promote shift of eNOS from uncoupled, to coupled conformation; showing that

antioxidants are essential for maintenance of the NO balance and normal cell physiology (Chen et al., 2013; Mugoni et al., 2013); (F) ROS were shown to increase

VEGF-A transcription via the transcription factor SP1 (Gonzalez-Pacheco et al., 2006); while antioxidant enzyme Manganese-dependent Superoxide Dismutase

(MnSOD) was shown to block this process (Wang et al., 2005), demonstrating that redox balance regulates VEGF secretion directly.

monomeric form, thus becoming uncoupled and generating ROS
such as superoxide anion (•O2−) as well as other compounds
(Rafikov et al., 2011). Notch is required to maintain NO
synthesis by eNOS, as reduction of NO is one the early
alteration induced by Notch inhibition (Patenaude et al., 2014;
Figure 2E). eNOS coupling and uncoupling is regulated by
redox-regulated modifications. In cells with high levels of
glutathione disulfide (GSSG), uncoupling of eNOS is promoted
by S-Glutathionylation, which modifies two cysteines in the
reductase domain of eNOS, leading to ROS accumulation. The
antioxidant enzyme Glutaredoxin 1 (Grx1) reverses GSSG-
mediated eNOS glutathionylation (Chen et al., 2013; Figure 2E).
Recently, a new antioxidant enzyme, Ubiad1, was shown to be
critical in ECs. The prenyltransferase Ubiad1 is located in the
Golgi and synthesizes CoQ10. Loss of Ubiad1 leads to vascular
damage due to ROS accumulation, caused by reduced Coq10

levels and eNOS uncoupling (Mugoni et al., 2013). This work
supports a critical role for antioxidants in regulating vascular
homeostasis during development and possibly in pathological
conditions (Figure 2E).

In addition, links between redox signaling and VEGF
secretion were described. VEGF-A promoter presents an
oxidative stress response element; and oxidative stress (via H2O2)
induced transcription of VEGF-A, by increasing transactivating
activity of Specific protein 1 (Sp1) (Gonzalez-Pacheco et al.,
2006). These effects were abolished by addition of the
antioxidant NAC (Schafer et al., 2003; Figure 2F). Interestingly,
the antioxidant enzyme Manganese-Dependent Superoxide
Dismutase (MnSOD) suppresses VEGF-A transcription (Wang
et al., 2005; Figure 2F). In conclusion, redox signaling controls
angiogenesis by regulating VEGFR2 activity (phosphorylation
and oxidation), eNOS coupling and uncoupling; and VEGF-A
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transcription. Overall, redox events are critical mechanisms in
angiogenesis. New reagents and tools are becoming available that
will be able to decrypt such critical events at subcellular and tissue
levels (Panieri and Santoro, 2015).

MECHANOSENSITIVE CATION CHANNELS
AND CILIA: NEW MOLECULAR PLAYERS
IN FLOW AND MECHANICAL
FORCES-DEPENDENT ANGIOGENESIS

Besides delivering oxygen and nutrients to the tissues, blood
flow plays crucial roles in angiogenesis by generating frictional
force that develops between flowing blood and the vascular
endothelium. ECs covering the inner surface of blood vessels
are constantly exposed to different types of shear stress. Shear
stress is pulsatile in normal physiology, but can be oscillatory
in pathologies such as atherosclerosis, profoundly affecting
endothelial function and morphology (Ando and Yamamoto,
2013; Yamamoto and Ando, 2013). It is well-known that shear
stress influences the production of NO and Prostacyclin, and
may also regulate actin remodeling and signaling pathways
such Notch and PCP (Jahnsen et al., 2015). eNOS is a
key regulator of NO production that is directly regulated
by shear stress through Akt signaling (Peng et al., 2003;
Figure 3A).

The mechanism regarding how hemodynamic forces regulate
vascular homeostasis is started to be decoded by the identification
of the role of Piezo1 in vascular architecture (Figure 3A).
Piezo proteins are ion channels mediating mechanosensory
transduction acting as sensors of shear stress in EC. Li et al. (2014)
showed that endothelial-specific disruption of mouse Piezo1
profoundly disturbed vascular development. Haploinsufficiency
was not lethal but displayed abnormalities in mature vessels
demonstrating that Piezo1 is determinant for vascular structure
in development and adult physiology (Li et al., 2014; Figure 3A).

Calcium signaling is also important for signal transduction in
ECs submitted to shear stress. For example pulsatile shear stress
was shown to induce activation of calcium-sensitive potassium
(KCa) channels; the following KCa-dependent hyperpolarization
would then trigger eNOS and NO production (Qiu et al., 2001,
2003). This data show that mechanosensitive cation channels
might also play pivotal roles in angiogenesis.

Primary cilia are microtubule-based structures present on
most mammalian cells that are important for intercellular
signaling. Cilia are present on ECs where they project
into the flow compartment of a blood vessel. Cilia would
act as mechanical sensors of blood flow and modify the
response of ECs to biomechanical forces and shear stress
(Figure 3B). Two recent papers support a role for cilia in
developmental angiogenesis as well as in atherosclerosis.
Goetz et al. demonstrate that alterations in ciliogenesis, or
expression of the calcium channel PKD2 impair the endothelial
calcium level and both perturb vascular morphogenesis
(Goetz et al., 2014; Figure 3B). Work in mice, showed that
endothelial primary cilia are dispensable for mammalian
vascular development but protect against atherosclerosis where
shear stress is oscillatory. In atherosclerotic mice models, loss
of endothelial cilia increased inflammatory gene expression
and decreased eNOS activity, indicating that endothelial cilia
inhibit pro-atherosclerotic signaling in the aorta (Dinsmore
and Reiter, 2016; Figure 3B). However, more work is crucial
to understand the role of cilia during normal and pathological
angiogenesis.

CONCLUSIONS AND PERSPECTIVE

Due to space limitation we were not able to provide a full
coverage of the novel and promising mechanisms important
for angiogenesis. However, we have to mention that non-
coding RNA-mediated mechanisms are essential in angiogenesis.

FIGURE 3 | (A) Physiological flow induces eNOS signaling and induces reorganization and polarization of the EC. A mechanosensor and calcium transporter called

Piezo1 was shown to be activated by flow. High intracellular Ca+ levels induce coupling of eNOS but also activate Calpain, an enzyme important for actin

cytoskeleton reorganization (Li et al., 2014). High Calcium levels also activate non canonical Wnt pathway (PCP) promoting polarization of the cell; (B) Primary Cilia is

important for flow sensing in ECs. The cilium is essential for accumulation of intracellular Calcium that promote NO production by eNOS and reduces inflammation

(Goetz et al., 2014). Both processes reduce atherosclerosis in aortic endothelium (Dinsmore and Reiter, 2016).
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Recent work from different groups have proposed the role
of exosome in regulating angiogenesis via microRNA delivery
(Das and Halushka, 2015; Alcayaga-Miranda et al., 2016).
MicroRNA-containing exosomes might represent new mediators
of intercellular communication among ECs and surrounding
tissues (e.g., immune cells, stromal cells) in angiogenesis (Umezu
et al., 2014). At the same time, novel reports suggest an expected
role for the Metastasis Associated Lung Adenocarcinoma
Transcript 1 (MALAT-1) long-non-coding RNAs in regulation of
angiogenesis. MALAT-1 is highly expressed in EC. Its silencing
regulates the balance from a proliferative to a migratory EC
phenotype in vitro; while its genetic deletion or pharmacological
inhibition reduces vascular growth in vivo (Michalik et al.,
2014). It was also shown that MALAT1 promotes hypoxia-driven
angiogenesis by upregulating pro-angiogenic gene expression in
neuroblastoma cells (Tee et al., 2016). Another novel finding is
the existence of endothelial progenitors that are promising for
regenerative medicine. These cells would be able to regenerate
the endothelial network of an existing diseased vascular network.
These cells would be highly sensitive to VEGF and have high
level of intracellular Ca2+, when compared to senescent/ adult
endothelial cells (Moccia et al., 2013; Moccia and Poletto, 2015).
The functional discovery of novel lncRNAs in cardiovascular
disease as well as the function of exosome and endothelial
progenitors in endothelial signaling opens the path for novel drug
discovery to treat and cure pathological conditions associated to
angiogenesis, a notorious but still enigmatic biological process
in life.

All these novel findings indicate that we are shifting from
a very simple model for angiogenesis, and starting to realize
that metabolism, redox signaling, mechanical forces are all
crucial for vascular morphogenesis. The next challenges for
researchers will be to uncover the functional link among all
these conditions in health and diseased conditions. This is even
more exciting and intriguing considering that all these different
elements are connecting with the pathways classically known to
regulate angiogenesis such as VEGF or Notch signaling. Novel
technologies, such as redox and metabolic sensors or in vivo
metabolite tracers are needed to understand these mechanisms
spatially and temporally. Integrative and system biology will also
be of big help to understand how angiogenic signal networks are
regulated in physiology and pathology, dynamically and spatially.
We believe that these innovative technologies combined to the
novel approaches that have displayed in the papers described in
this review, will lead to important advances in the field in the
coming years.
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