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Metabolomic data sets provide a direct read-out of cellular phenotypes and are

increasingly generated to study biological questions. Previous work, by us and others,

revealed the potential of analyzing extracellular metabolomic data in the context of the

metabolic model using constraint-based modeling. With the MetaboTools, we make

our methods available to the broader scientific community. The MetaboTools consist

of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a

step-wise manner, the workflow of data integration, and computational analysis. The

MetaboTools comprise the Matlab code required to complete the workflow described in

the protocol. Tutorials explain the computational steps for integration of two different

data sets and demonstrate a comprehensive set of methods for the computational

analysis of metabolic models and stratification thereof into different phenotypes. The

presented workflow supports integrative analysis of multiple omics data sets. Importantly,

all analysis tools can be applied to metabolic models without performing the entire

workflow. Taken together, the MetaboTools constitute a comprehensive guide to the

intra-model analysis of extracellular metabolomic data from microbial, plant, or human

cells. This computational modeling resource offers a broad set of computational analysis

tools for a wide biomedical and non-biomedical research community.

Keywords: constraint-based reconstruction and analysis (COBRA), metabolomics, metabolism, metabolic

modeling, metabolic phenotypes, protocol, model analysis

INTRODUCTION

Omics data are used to determine comprehensively qualitatively or quantitatively cellular
components and how they change across different conditions (Mo et al., 2009; Bordbar et al.,
2010, 2012; Cuperlovic-Culf et al., 2010). Of those, metabolomic data are the closest to an
observed phenotype (Allen et al., 2004; Krug et al., 2012; Aurich et al., 2015). Consequently,
metabolomics is becoming an indispensable analytical method for many biological disciplines,
including microbiology, plant sciences, biotechnology, and biomedicine (Kell, 2004; Saito and
Matsuda, 2010; Petersen et al., 2013).

However, the analysis and interpretation of metabolomic data is still in its infancy, limiting the
interpretation to few metabolic pathways rather than providing a comprehensive understanding of
the underlying mechanistic basis (Cuperlovic-Culf et al., 2010). At the same time, computational
modeling methods, such as constraint-based metabolic modeling (Orth et al., 2010), are becoming
increasingly popular for the interpretation of omics data (Joyce and Palsson, 2006) and for the
generation of experimentally testable hypotheses (Frezza et al., 2011; Bordbar and Palsson, 2012;
Ghaffari et al., 2015).
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Metabolomic data can be obtained from quenched cells
(intracellular metabolome) or from the spent medium of
cells in culture (extracellular metabolomic data). Extracellular
metabolomic data sets are generated from cultivations of cell
lines in order to metabolically characterize them under different
experimental conditions (e.g., drug treatment and hypoxia)
(Paglia et al., 2012; Fu et al., 2014; Kucharzewska et al., 2015). The
extracellular metabolome captures metabolite consumption and
byproduct release, e.g., lactate secretion by cancer cells, which can
be interpreted as readout of the intracellular pathway use, such as
aerobic glycolysis in cancer cells (Aurich et al., 2015). Whereas
the connection between lactate and glycolytic flux is quite
straightforward, the integration of entire uptake and secretion
profiles can lead to novel insights of complex interactions
between multiple pathways, which may be difficult to unveil
manually. Previously, the intra-model analysis of extracellular
metabolomic data of two T-cell lines let to the prediction of
phenotypic properties of the cell lines, namely differences in
flux through the TCA cycle and the electron transport chain,
which were subsequently experimentally supported (Aurich
et al., 2015). Computational analysis enables the prediction of
the intracellular pathway activity that explain the measured
metabolite uptake and secretion pattern and differences thereof
between, e.g., cell lines or environmental conditions, and can lead
to experimentally testable hypothesis.

The advantage of using extracellular metabolomic data lies
in the accessibility of the medium, which saves time in sample
preparation and allows for repeatedmeasurements from the same
cells. Moreover, concentration changes in the spent medium
resulting from uptake and secretion by the cells can be converted
into fluxes and used as constraints on the exchange reactions.

Extracellular metabolomic data have been extensively used in
metabolic modeling to define cell and tissue specific exchange
pattern (Mo et al., 2009; Cottret et al., 2010; Ahn et al.,
2011; Jamshidi et al., 2011; Fan et al., 2013; Mardinoglu
et al., 2013); however, the process has never been addressed
by a protocol explicitly. In comparison to the integration of
transcriptomic data with metabolic models (Blazier and Papin,
2012; Machado and Herrgard, 2014), tools for integration of
metabolomic data have not yet been made assessable to a
broader research community. Some methods for the generation
of contextualized metabolic submodels allow consideration of
intracellular metabolomic data and the presence of reactions
producing a set of detected metabolites is ensured (Jerby
et al., 2010; Schmidt et al., 2013; Vlassis et al., 2014).
However, the downstream analysis of contextualized metabolic
submodels and their predicted metabolic phenotypes is not
supported by these methods. The constraint-based modeling
and analysis (COBRA) toolbox (Schellenberger et al., 2011)
provides an extensive set of functions for the computational
analysis of metabolic models and a tutorial is available
assisting in the interpretation of model predictions (Orth
et al., 2010). Despite the presence of these resources, a step-
by-step guide, which captures the entire workflow of data
analysis and phenotype prediction, is currently not available.
With this protocol, the MetaboTools, and the accompanied
tutorials, we close this gap and make a comprehensive set

of methods available to the broader research community
(Figure 1).

This work was developed and tested with our recent
work (Aurich et al., 2015), where we integrated extracellular
metabolomic data of two T-cell lines with a human metabolic
model to characterize the emergent phenotypic properties in
silico. Furthermore, we recently mapped published metabolomic
data from the NCI-60 cell lines (Jain et al., 2012) onto a human
metabolic model and developed a suite of computational analysis
tools that can be used to predict distinct metabolic features,
e.g., the use of distinct pathways for energy production by
the cancer cell lines (Aurich et al., unpublished). The protocol
discusses important considerations at individual steps to ensure
successfully completion of the workflow (Figure 1). The tips and
stipulations are derived from the aforementioned publications
but also from our experience with curation and expansion of the
human metabolic model using metabolomic data (Aurich and
Thiele, 2012; Thiele et al., 2013; Sahoo et al., 2014).

This Protocol Covers
This protocol provides support for the integration of
metabolomic data into the network context and the generation
of contextualized models. These contextualized models comprise
a subset of the metabolic model and are primed to the prediction
of the intracellular pathways, which may give rise to differences
in the uptake and secretion profile of different cells or under
different environmental conditions, using the minExCard
method (Aurich et al., unpublished). Additionally, this work
provides tools for the analysis of any metabolic model.

The tutorials exemplify the workflows for intra-model analysis
for (1) quantitative and (2) semi-quantitative extracellular
metabolomic data (Figure 1, see also Supplementary Tutorial I,
II), and make it facilitate the reproduction of our previous work
(Aurich et al., 2015, unpublished). Importantly, the tutorials
demonstrate the downstream analysis of the generated models.
Additionally, we provide the data that are needed for the different
integration steps (Table 1) and we discuss traits of metabolomic
data sets to provide for a basis for their successful integration into
the metabolic model (Supplementary Table 1).

This Protocol Does Not Cover
The protocol provides limited discussion on the integration
of other omics data. The compatibility of MetaboTools with
the COBRA toolbox (Schellenberger et al., 2011) allows the
user to apply additionally the transcriptomic data analysis tools
provided in the COBRA toolbox (Schellenberger et al., 2011).
The protocol does not describe the intra-model analysis of
intracellular metabolomic, untargeted metabolomic, or isotope
labeling data. Furthermore, this protocol does not cover any steps
concerning cell culture, mass spectrometry, data processing, and
metabolite annotations. We ask the reader to refer to literature
and dedicated tools from the respective fields (Fitzpatrick et al.,
2014; Beisken et al., 2015; Misra and van der Hooft, 2016).

Genome-scale metabolic models comprise the superset of
metabolic pathways appearing in all cells throughout the human
body collapsed into one model. Hence, the approach as presented
in this protocol cannot be used to predict the contribution of
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FIGURE 1 | This protocol and the MetaboTools provide comprehensive support for the integration of extracellular metabolomic data and for the

analysis and phenotypic stratification of metabolic models. The workflow captures the integration of processed and annotated metabolomic data sets, the

generation of contextualized submodels, and the computational model analysis to distinguish metabolic phenotypes. Each part of the workflow is discussed in detail

in the protocol and supported by the MetaboTools Matlab functions. The tutorials (Supplementary Tutorial I, II) demonstrate two use-cases of the workflow and

MetaboTools.

TABLE 1 | Additional data used for the intra-model analysis of metabolomic data.

Data type Unit Use case I: semi-quantitative data Use case II: quantitative data

Cell medium composition (e.g., RPMI medium) mM Yes No

Concentration of Ions and other compounds

(e.g., O2, CO2)

mM O2 defined based on literature O2 defined based on literature for one

of the cell lines

Cell-weight Preferable gdryweight Experimental measurement Defined based on literature for one of

the cell lines

Cell count Cells per ml Experimental measurement Not required

Experimental duration (in hours) Experimental duration Not required

Detection limits for all detected metabolites

(mass spectrometer)

Instrumental limit of detection in

ng/mL or LODs in mM

Experimental measurement Not required

Doubling time Hours or growth rate Experimental measurement Defined in the experiment if possible

Transcriptomic or proteomic data List of absent genes Experimental measurement from the

same experiment

Not required

individual cell or tissue types to the changes in human serum or
plasma.

EXPERIMENTAL DESIGN

The Protocol Is Divided into Three Stages
The first stage provides the basis for the integration of
extracellular metabolomic data, i.e., it ensures that a maximal
number of metabolites can be integrated with a model. The
second stage discusses the application of constraints and
the generation of contextualized models. The third stage
discusses the quality control of the contextualized models, the
computational analysis tools provided by MetaboTools, and
finally the validation of the model predictions. Several iterations
of the steps in the second and the third stage may be needed

to generate high-quality contextualized models and to obtain
biologically-plausible model predictions (Table 2). Throughout
the text, functions are written in italic. Input and output
variables are indicated by asterisks (∗. . . ∗). Matlab code is
indicated through >>. Flux units are commonly reported in
the Unit mmol/gdryweight/hr (U); however, the unit can be varied
depending on data.

Stage 1: Preparation of Extracellular
Metabolomic Data and Models
Associate Metabolite IDs of the Data with the

Metabolic Model (Step 1)
As a first step, the names of detected metabolites need to
be associated with the metabolite abbreviations in the model
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TABLE 2 | Test case illustrating possible loophole in the reaction

constraints.

Test case Missing constraints

Expectation A human model requires oxygen, no constraints are applied

to oxygen exchange.

Reality Contextualized models secrete oxygen.

Consequence Additional constraints need to be applied to prevent oxygen

secretion.

(Figure 2A, see Supplementary Material for an introduction
to the model structure). Different standards exist to report
metabolite identity and the human genome-scale reconstruction
contains annotations for multiple identifiers, e.g., KEGG (Ogata
et al., 1999), ChEBI (Degtyarenko et al., 2008), HMDB (Wishart
et al., 2013), because none of the databases covers all its
metabolites (Thiele et al., 2013). Association of a detected
metabolite with a wrong counterpart in the model can lead to
irrelevant predictions and conclusions. Moreover, new reactions
might be introduced into the model as a consequence of the
association and reused by researchers in or outside the working
group, often without questioning why these reactions were
added (Figure 2C). Hence, manual association of the metabolite
identifiers is the method of choice, even though tools have been
developed to facilitate the matching (e.g., Haraldsdottir et al.,
2014). The association is simplest based on, e.g., KEGG orHMDB
metabolite identifiers. When matching metabolite names, one
should consider synonyms and alternative naming conventions,
e.g., palmitic acid is the traditional name of hexadecanoic
acid (common name). Metabolite formulae are non-unique,
and thus can only be used as additional clue to match
metabolites, e.g., glucose and fructose have both C6H12O6 as
formula.

The step results in one group of metabolites successfully
associated with model metabolite IDs and a second group of
metabolites that does not yet exist in the metabolic model. The
addition of novel anabolic or catabolic pathways to include
the latter group of metabolites into the model can be time-
consuming and requires extensive work as well as testing of the
model functionality. The necessary steps have been described in
detail elsewhere (Thiele and Palsson, 2010). Thus, only the steps
needed to prepare the integration of associated metabolites will
be considered in this protocol.

Can Metabolites Be Transported Into and Out of the

Cell? (Step 2)
Although a metabolite is present in the model, this does not
mean that it can be transported between the intracellular [c]
and the extracellular [e] compartment (Figure 3A). Hence, it
needs to be confirmed that transport reactions exist for all
associated metabolites (Figure 2B). Transport reactions (e.g.,
ATP-dependent transport) can be irreversible, and transport
reactions might need to be added that allow secretion or uptake
of a metabolite. One exchange reaction needs to exist in the
model for every associated metabolite (Figure 2B), since these
(artificial) reactions mediate the supply or removal of metabolites
to and from the extracellular environment of the model. These

exchange reactions are used for the integration of extracellular
metabolomic data into the model (Figure 3B).

Identify Missing Metabolite Transporter (Step 3)
Metabolomic data sets often contain metabolites for which
no transport and exchange reactions exist in the models
since (i) high-throughput techniques detect more and more
comprehensively metabolites in extracellular environments (e.g.,
body fluids or spent medium), (ii) these metabolites were outside
the scope of previous reconstruction efforts and applications
(Sahoo et al., 2014), (iii) their existence was unknown, or (iv)
their metabolism was unknown (Figures 2B, 3A).

The correct representation of transport mechanisms is
important to accurately simulate cellular metabolism; thus, the
metabolic reconstructions are continuously extended (Thiele
et al., 2011, 2013; Sahoo et al., 2014; Aurich et al., 2015; Heavner
and Price, 2015). Hence, before getting started with this step,
ensure that the most recent reconstruction version is obtained
(e.g., the human metabolic reconstruction is downloadable from
http://vmh.life).

If extracellular transport reactions are missing for certain
metabolites, they need to be identified from the literature.
The identification of transport systems can take considerable
time, which varies, depending on the number of metabolites
and the extent to which the corresponding transport systems
have been characterized (Sahoo et al., 2014). Diffusion reactions
should only be added if the transport system is unknown or
diffusion of the metabolite has been reported. The model can
use diffusion reactions to transport the metabolite “for free.”
As a consequence, energy and material costs of the metabolite
transport will be underestimated in simulations. Thus, the exact
transport mechanisms, all alternate and co-substrates, transport
proteins, isozymes and ratio of subunits in protein complexes and
their encoding genes, need to be identified. Correct gene-protein-
reaction associations (see Appendix) are particularly important
for integrating transcriptomic or proteomic data as well as
for investigating the effect of genetic alternation in metabolite
transporters. After the literature has been mined thoroughly,
the new mass- and charge-balanced transport reactions have
to be formulated (Thiele and Palsson, 2010) and the transport
reactions need to be added to the model (Figure 2C). References
to the primary studies, on which the addition of the transporter
is based, should be documented (Thiele and Palsson, 2010).

Addition of the Transport and Exchange Reactions

(Step 4)
Transport reactions should be added in a quality controlled
manner to avoid typos in the metabolite abbreviations or
whitespaces in the reaction formula. Typos easily go unnoticed
until much later, since the functions to add reactions in
the COBRA toolbox also automatically add new metabolites.
Hence, reactions should be added in a quality controlled
manner using rBioNet (Thorleifsson and Thiele, 2011). The
addition of reactions (and metabolites) to the source SBML file
is discouraged as they circumvent any quality-assurance and
quality-control measures, and as such, are often a source of errors
in the resulting model.
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FIGURE 2 | (Continued)
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FIGURE 2 | Continued

Stage 1: Preparations for the integration of the metabolomic data. (A) First, the detected metabolites need to be matched to the metabolite ID used in the

model. This step is simplified if the metabolomic data are annotated with standard metabolite IDs [e.g., from KEGG (Ogata et al., 1999) or HMDB (Wishart et al.,

2013)]. (B) Check if transport and exchange reactions exist in the model for each of the matched metabolites using the model metabolite ID. In case of the human

genome-scale reconstruction [Recon 2 (Thiele et al., 2013)], you can check for reactions using the virtual metabolic human database (VMH, http://vmh.life) or directly

in your model with the COBRA toolbox function findRxnsFromMets.The illustrated VMH query for glutamine shows two of the glutamine transport reactions

(highlighted in blue) and the exchange reaction (highlighted in green) of glutamine. Exchange reactions are by definition written as in the given example. (C) Transport

reactions need to be identified as comprehensively as possible from the literature. Based on the information gathered about the transport mechanisms, by which a

metabolite is transported into and out of the cell, the transport reactions can be formulated. The transport and exchange reactions can be added to the model using

rBioNet (Thorleifsson and Thiele, 2011).

FIGURE 3 | Shaping the model to predict condition-specific metabolic states (contextualized model). (A) In order for the model to follow the measured

metabolite uptake and secretion profile, both exchange reactions and transport reactions need to be present to force the metabolite into (uptake) and out of the model

(secretion). If those do not exist in the model, the transporters along with the mechanisms need to be identified in order to allow the model to follow the uptake and

secretion profile of the experimental data. (B) The uptake of metabolites is constrained based on the concentrations of metabolites available to the conditions that

should be investigated. For example, the composition of defined experimental medium can be used. Also, the maximum uptake per cell and time unit can be

calculated from the concentrations of nutrients, the concentration of cells, the cell weight, and the duration of the experiment. Otherwise, those constraints would be

infinite and relative differences in the metabolite uptake would be less bound to the actual environmental conditions one wants to investigate. (C) Metabolomic data

are mapped as constraints to the exchange reactions. Glutamine, glyceraldehyde, and citrulline have to be secreted by the model. (D) Transcriptomic or proteomic

data are mapped to the internal network reactions (qualitatively), restricting which reactions a cell can use to transport and metabolize the metabolites, e.g., the

enforced secretion of glutamine.
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Stage 2: Addition of Constraints and Model
Generation
Define Basic Constraints (Step 5)
Metabolic networks are often distributed as reconstructions and
not as condition-specific models. Hence, exchange and internal
reactions are unconstrained, i.e., they have “infinite bounds”
(Figure 4, Appendix, Supplementary Material). Alternatively,
models may be distributed that mimick with their constraints
a particular environmental or genetic condition, e.g., enabling
growth on minimal medium under anoxic condition. Hence, the
existing constraints of a reconstruction or model may not be
a useful starting point for the one’s own application. Whereas
the directionality of transport reactions and internal reactions
is consistent with current biological and thermodynamical data,
the definition of the extracellular medium, i.e., the constraints
on the exchange reactions (Figure 4), depends on the cell type
and condition one wants to simulate. The application of a
context-specific set of constraints on the exchange reactions
ensures, together with the network topology, that the metabolic
model closely resembles the cell type and experimental condition
one wants to investigate, e.g., oxygen needs to be restricted to
investigate hypoxia. The exchanges are best defined based on
the experimental condition that one aims to model, e.g., culture
medium composition, substrate, and oxygen uptake rates. In
absence of matching experimental data, literature values may
substitute missing information (Thiele et al., 2005; Aurich et al.,
2015), but it should be noted that they can vary substantially
between experimental setups and hence, may affect the prediction
accuracy of the condition-specific model.

The function setMediumConstraints allows the definition
of the model constraints and provides options for various
configurations. If the composition of the cell culture medium
is defined, the metabolite concentrations can be converted
into fluxes that define metabolite uptake in the model
using the function setMediumConstraints (Figure 3B). For this,
cell number, cell dry weight (Supplementary Material), and
experiment duration need to be known. The rationale of the
added constraints is to restrict the model’s metabolite uptake
flux to the amount that was available to one cell and per 1 h
of the experiment. The medium composition can thus be used
to reproduce in silico the experimental, or cell-type specific,
condition (Figure 3B).

The model requires certain inputs and outputs to have a
non-zero value for an objective function. For example, for the
production of biomass of a human cell, the uptake of essential
amino acids, ions, and other compounds needs to be provided to
the model to render the objective function feasible (i.e., non-zero;
see Appendix). Essential uptake reactions can be identified, e.g.,
using flux variability analysis (see Appendix).

The function setMediumConstraints includes an option to
change the infinite bound (which is often defined as −1000 U
for reverse reaction flux and +1000 U for the forward reaction
flux), if it is necessary to prevent that the model is artificially
constrained by imposed “infinite” bounds (see Step 16B). If
the growth rate, or doubling time, for the given experiment is
available, it can be set as constraint on the biomass reaction using
the function setMediumConstraints or changeRxnBounds.

Integration of Metabolomic Data (Step 6–13)
Metabolomic data can be integrated with metabolic models by
enforcing exchange rates to uptake or secrete in accordance
with the experimental data (Figures 3B,C). To enforce the
respective directionality, minimal flux values for uptake and
secretion should be defined, e.g., by using information on the
detection limit for each metabolite (Figure 4). The underlying
rationale is that as the metabolite has been measured at a
higher or lower level after a certain time and hence, the
secretion/uptake had to be above the corresponding detection
limit. The conversion of the limits of detection from ng/ml to
mM can be done using the function calculateLODs and using
the molecular weight of the metabolites (see Supplementary
Supplementary Material). Uptake and secretion profiles for
each sample are generated from an input data matrix using
the function defineUptakeSecretionProfiles. See Supplementary
Tutorial I for an example of the input data matrix. The
directionality of exchange is defined based on the change over
time in the spent medium and with respect to the change in the
controls to rule out effects of spontaneousmetabolite degradation
(Figures 5A,B). The direction of the exchange might change
when the controls are taken into consideration because the signal
might drop over time in these medium controls, whereas it seems
to remain stable in the cell culture medium due to secretion
of the cells. Such cases need to be looked at carefully and it
might be worth to exclude those data points. Mass spectrometric
measurements are not exact and generally associated with an
error. The calculated change between control and sample is also
highly sensitive to the SD. A calculated net change of 5% can be
meaningless if the SD is 10%. Hence, caution should be taken
when incorporating changes in metabolite abundance, when the
change is below or close to the SD. The tutorials illustrate how the
constraints can be adjusted to one’s data set at the different parts
of the workflow.

The uptake and secretion profiles are combined with the
detection limits using the function calculateQuantitativeDiffs
and integrated with the model using the function
setQualitativeConstraints. As a consequence, the flux through
an exchange reaction must lay between the smallest detectable
and the highest possible flux in case of uptake (defined by the
medium composition), and between the minimal detectable
efflux and the “infinite” flux value for secreted metabolites
(Figure 4).

In an additional step, relative differences in metabolite uptake
and secretion can be integrated to compare pairs of models
(Figures 4, 5C). The relative differences are defined using the
function calculateQuantitativeDiffs based on the comparison
of change between the samples and with respect to the
controls (slope ratio, Figure 5A). Subsequently, the quantitative
differences are applied to the two models (Figures 3, 5A,C) using
the function setSemiQuantConstraints.

If absolute concentrations have been obtained for at least
two time points, they can be converted into fluxes using the
function conc2rate and applied as bounds on the exchange
reactions considering a user-defined error (Figure 4). Individual
uptake and secretion profiles are produced from an input data
matrix of flux values with samples (columns) and metabolites

Frontiers in Physiology | www.frontiersin.org 7 August 2016 | Volume 7 | Article 327

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Aurich et al. MetaboTools: Analysis of Metabolic Models

FIGURE 4 | Application of constraints on the bounds of exchange reactions. Infinite bounds (here, −1000 to 1000) express the unlimited supply and removal

of metabolites to and from the system. A negative flux through an exchange reactions corresponds to an uptake (red) and a positive flux corresponds to the secretion

of a metabolite (blue). Maximal uptake can be constraint by restricting the lower bound (lb = −600). The directionality of the exchange can be defined by setting a

negative value as the upper bound (ub) for an uptake or by setting a positive value as the lower bound for secretion. These constraints could be based on the limit of

detection (LOD) or quantification for the metabolite. Relative differences in the uptake and secretion of a metabolite can be expressed as the relative difference from

maximal possible uptake rate (purple as compared to red) and as the relative difference from the minimal secretion rate. Absolute concentration changes over time

can be converted to flux values and added to the constraints, considering a user-defined error to the flux to define lower bound and upper bound.

(rows) using the function prepIntegrationQuant (see tutorial
II). Negative values will be interpreted as uptake and positive
values are interpreted as secretion. Based on the input model
and user-defined minimal and maximal values, the function
prepIntegrationQuant tests whether the uptake and/or secretion
of each individual exchange in the input data matrix is feasible,
using flux balance analysis (Orth et al., 2010). If a metabolite
cannot be consumed or secreted by the model due to missing
synthesis or degradation pathways, these metabolite exchanges
will be removed automatically from the exchange profiles. If only
the secretion is infeasible, the secretion value is eliminated from
the profiles, whereas the uptake value of the same metabolite
will be kept. The function checkExchangeProfiles can be used to
generate statistics on the number and identity of uptake and
secretions added per sample.

After individual uptake and secretion profiles have been
generated for each sample, i.e., cell types or conditions, these
can be integrated with the metabolic model using the function
setQuantConstraints. The function setQuantConstraints offers the

option to add or eliminate constraints, e.g., if quantities or
combination of constraints render the model infeasible. The
function also allows the user to specify a lower bound for the
objective function, which ensures that the output model is able
to grow or to perform a specified metabolic task (e.g., lactate
production), while the upper bound remains unconstrained.
Which objective function is chosen should be carefully decided
based on the experimental context (see Aurich and Thiele, 2016
for discussion on use of different biomass objective functions
for human cells). The output of setQuantConstraints is a
contextualized submodel for each sample. The integration of
quantitative extracellular metabolomic data can be performed for
large sample collections.

Generation of Contextualized Metabolic Models

(Step 14)
The function setQuantConstraints automatically generates a
contextualized model for each sample by calling the function
generateCompactExchModel. These contextualized models are
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FIGURE 5 | Applying semi-quantitative constraints. Relative differences in

the uptake and secretion of metabolites from and into the extracellular medium

can be imposed on the models, emphasizing the differences in metabolite

uptake and secretion between samples. (A) A slope ratio is calculated based

on the data as the relative difference in uptake of a metabolite between two

samples and compared to the control (medium). Flux values are in the unit of

mmol/gdryweight/hr. The result of the preparation is a set of new lower bounds,

which can be applied to the model. Note that the adjusted bound is the gray

number, whereas the orange number constitutes the flux value, which was

defined based on the medium composition (negative bounds for maximal

possible uptake) or based on the minimal detection limits (positive numbers for

minimal possible secretion). (B) Illustration of the trend in quantitative

(Continued)

FIGURE 5 | Continued

differences in glucose uptake between cell lines. A difference in the measured

intensity can be observed between time point 0 and 48 h. The signal also

decreases in the control (medium). (C) Relative differences of metabolite

uptake and secretion are translated into relative differences of the constraints

on exchange reactions of the cell line models, forcing the models to consume

or release metabolites in the same relation as observed experimentally.

based on a minimization of the cardinality of exchange reactions
of the constrained model, which means that the number of
exchanges, in addition to those defined by constraints (e.g.,
metabolomic data), is minimized in the resulting model (Aurich
et al., unpublished). As the function generateCompactExchModel
relies on an approximation, which may not be minimal
(Aurich et al., unpublished), the minimization is repeated until
the number of added exchange reactions cannot be further
reduced. Additional exchanges may be required as untargeted
metabolomics methods can still not measure and identify the
entire metabolome, despite continuous improvements in the
field (Verdegem et al., 2016). In contrast, targeted metabolomics
methods measure only a defined subset of a given metabolome,
and thus, more metabolites may be exchanged with the
environment by the cell. Our computational approach was set up
to deal with these technical limitations by adding the required
minimal set of metabolites that would, together with the defined
uptake and secretion profile, explain the measured differences in
the cell phenotypes (Aurich et al., unpublished).

After the minimal set of required exchanges is defined,
blocked (i.e., flux inconsistent) reactions are identified (Vlassis
et al., 2014) and a flux-consistent submodel (“pruned”) is
extracted. The pruned model contains the predicted minimal
set of exchange reactions (including constraints based on
the quantitative data) as well as an active set of internal
reactions. The constrained pruned and the constrained unpruned
model are returned from the function setQuantConstraints
as a structure variable ResultsAllCellLines. Additionally, an
overview table is returned (OverViewResults), which summarizes
the numbers of reactions, metabolites, and genes for each
contextualized model of the sample set. The information in these
variables are extended by the downstream analysis functions (see
Step 17).

Note that the function generateCompactExchModel only
returns one of multiple alternative solutions. The relevance
of the set of metabolite exchanges added to the model
needs to be evaluated, e.g., by comparison with the carbon
sources commonly used by the cell type or organism based
on experimental data. The function generateCompactExchModel
can also be applied to generate a contextualized model
after qualitative or semi-quantitative constraints have been
applied.

The function extractConditionSpecificModel has previously
been used to extract a flux consistent model in Aurich et al.
(2015). The “minimal” set of exchanges identified through this
function is also not unique and the number and chosen additional
exchange reactions depended on the order, in which the tested
exchange reactions were closed.
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Multi-Omics Integration (Step 15)
MetaboTools supports the integration of gene expression and
proteomic data. The function integrateGeneExpressionData can
be applied to qualitatively integrate transcriptomic or proteomic
data along with the metabolomic data. The function disables
reactions (i.e., it sets the lower and upper bound to 0) associated
with the user-defined set of unexpressed genes. This stringent
treatment may lead to an infeasible model, if any metabolite
required for the objective cannot be produced anymore by the
model. The manual assessment and curation of gene expression
data integration has been previously described for a signaling
model (Aurich and Thiele, 2012). The same principles apply to
a metabolic network. A multitude of other methods exists for
the integration of transcriptomic data (Machado and Herrgard,
2014). Whether to curate an infeasible model based on literature
or to use a different approach for gene expression data integration
[e.g., createTissueSpecificModel as implemented in the COBRA
toolbox (Schellenberger et al., 2011)] needs to be determined for
each case.

Proteomic data can be integrated in a similar way as
transcriptomic data. In this case, the protein identifiers need
to be matched to the gene IDs in a model, whereby the
same attention should be paid to the conversion of protein
to gene IDs as for the association of metabolite IDs to
the model metabolites. Subsequently, the set of gene IDs
that is associated with the absent proteins constitutes the
input for integrateGeneExpressionData. It is recommended
to treat missing gene/protein data points as present rather
than absent. The additional omics constraints can be applied
either before integrating metabolomic data, after executing
setMediumConstraints, or after generating the contextualized
models (i.e., after executing either setQuantConstraints or
generateCompactExchModel).

Stage 3: Model Validation and Prediction of
Phenotypes
Assessment of Constraints and Expectations (Step

16)
Theworkflow supported byMetaboTools allows rapid generation
of contextualized models. Yet, during optimization, a minimal
set of exchanges, consistent with the provided experimental data,
will be chosenwithout consideration of the biology. Furthermore,
the complexity and redundancy of the metabolic network
allows the prediction of submodels and results that comply
with the applied set of constraints and the biologically well
informed network topology, but which may not be necessarily
biologically meaningful. For instance, cellular processes, such
as signaling and regulation, influence metabolism and might
prevent possible functional states in vivo or in vitro but they
are not included in the model. Thus, the applied constraints
and predicted exchanges need to be manually evaluated
against the biological knowledge before proceeding with further
computational analysis. If falling below the error range or
exceeding the infinite bounds, constraints might need to be
scaled (see Supplementary Material). All added exchanges and
directions of exchange should be controlled to identify missing

or erroneous constraints. For example, in our previous study, the
initially generated set of cancer models predicted consumption
of superoxide and secretion of oxygen because the constraints
had not been appropriately defined (Aurich et al., unpublished).
The example illustrates the importance of manual inspection
and biological insight when generating condition-specific models
from experimental data (Table 2). Table 3 lists questions to
ask and data to consider during this initial validation of the
contextualized models.

The ability of the contextualized models to grow at the
same rate as in the experiment can also be used to validate
the contextualized model (Aurich et al., unpublished). The
optimization of biomass can be applied to cells in the exponential
growth phase, and optimizing for biomass assumes that the
cells are thriving toward optimal biomass production [see for
explanation on the biomass composition (Thiele and Palsson,
2010)]. However, growth might not be the suitable when
dealing with primary human cells, where alternative biomass
reactions, e.g., for maintenance of cells, may be assumed (Aurich
and Thiele, 2016). If doubling times are available for the
experiment, the function setConstraintsOnBiomassReaction can
be used to incorporate constraints on the biomass reaction,
while considering a user-definedmeasurement error (e.g.,±20%)
to separate upper and lower bound. Even slight differences
in the culture conditions may have an impact on the growth
performance of the cells.

MetaboTools contains a set of functions to investigate
different aspects of the metabolic model (Step 24A–F),
particularly when generating multiple models from a large
sample set. The choice of the analysis to be conducted depends
on the biological question to be addressed. Prior knowledge
of pathways to focus the analysis on will prevent getting
overwhelmed by the amount of output data, and will help to
identify inaccuracies in the model(s) before dedicating too much
time on the analysis (Table 2). To facilitate the interpretation
especially for large model sets, MetaboTools contains functions
that organize the analysis output into statistics and digestible
tables.

Define Essential Genes Across a Set of

Contextualized Models (Step 17A)
The function analyzeSingleGeneDeletion predicts and
summarizes essential genes of one or multiple models (Figure 6).
The function returns the number of essential genes per model
and a table, which sorts all genes that appear in one or more
models into the three categories: “no effect,” “all KO,” and “partial
effect” along with the frequency of each effect among the tested
set of models. Based on this table, interesting essential genes can
be identified, e.g., those affecting only a subset of models, or all
models equally (Table 4). The results for the individual model
are added to the ∗ResultsAllCellLines∗ structure.

Identify Essential Reactions (Step 17B)
A gene being essential for a model means that one or more
reactions (i.e., combinations of reactions), which are associated
with this gene, need to carry flux in the model in order to satisfy
the defined objective function. However, the reactions associated
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TABLE 3 | Use expectations to compare the generated models against.

Question to address for model validation Example used in Leukemia cell lines (Aurich et al., 2015)

or NCI-60 cell lines (Aurich et al., unpublished)

Check using MetaboTools*, models,

or alternative resource

What metabolic pathways does/does not my model

include that would (not) be expected for the target cell?

Transcriptomic data integration caused absence of complex I

of the electron transport chain in the models, which complied

with literature (Aurich et al., 2015).

model.subsystems, model.rxns,

metabolic functions (Thiele et al., 2013)

To what extend does the model capture metabolites

detected in the intracellular metabolome?

model.mets

Are the models able to achieve experimental growth

rates given the applied constraints?
− Analysis was conducted using biomass constraints (Aurich

et al., 2015).

setConstraintsOnBiomassReaction* or

changeRxnBounds (add constraint)

− The vast majority of the models was able to grow at

experimental growth rates (Aurich et al., unpublished).

optimizeCbModel (perform FBA)

(changeObejctive—set objective function

in model.c)

Which exchange reactions have been added? Are the

cells known to use/ secrete these substrates?

Cancer cells are known to use fatty acids to support their

growth (Aurich et al., unpublished).

statisticsAddedExchanges*

The table lists examples of questions and data that can be used to validate contextualized models along with existing examples and MetaboTools functions that can be used for this

analysis.

FIGURE 6 | Heat-map depicting differences in single gene deletion across 120 NCI-60 cell line models. The growth ratio is defined as the maximal objective

value of the model divided by the maximal objective value of the model when the gene was deleted when optimizing for biomass production. Genes that were absent

in individual models have a growth ratio value of –1. Genes that were absent in all models and genes whose deletion did not affect any model are not illustrated. The

coloring in the heat-map corresponds to the maximal objective values obtained from flux balance analysis at each step of the analysis.

with a gene can be distributed across different pathways, and
depending on the pathway, the reaction may be more or less
interesting for a biological question. E.g., an antimetabolite
designed to target a non-essential reaction is useless because it
would not stop a cell from proliferating. Hence, the function
checkEffectRxnKO identifys the subset of essential reactions that
are associated with a specified set of (essential) genes.

Investigate Common and Distinctive Features of a

Set of Models (Step 17C)
Common and distinctive features between condition specific
models can be insightful, e.g., to build a generic tissue model
from a set of context specific tissue models. The function
makeSummaryModels generates both, a union model and an
intersect model, which sum either the common or the superset
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TABLE 4 | Questions to guide the analysis of predicted sets of essential genes.

Purpose Question

Stratify models into groups How much does the number of essential genes vary across models? Does this variation coincide with model size or growth

rates, or with phenotypes predicted by another analysis?

Which genes are essential only in a small subset of the submodels? Which essential genes affect all models in the set of model?

Are the essential genes directly connected to an enforced metabolite exchanges?

Validation, generate testable hypothesis Are the predicted essential genes known or already used for therapeutical purposes?

Generate testable hypothesis Do you find interesting essential genes, pathways affected in single models or model groups? Could predicted essential genes

constitute interesting targets (e.g., drug targets)?

of reaction, metabolites, and genes of a set of contextualized
models.

Analyze Flux Splits (Step 17D)
Cells use different pathways to produce energy and other
crucial metabolites (Aurich et al., unpublished). The function
predictFluxSplits predicts how a metabolite of interest (e.g., ATP)
is produced or consumed by the different reactions in the models
(Figure 7). The analysis is based on a flux vector generated by
using parsimonious flux balance analysis (Lewis et al., 2012).

The function predictFluxSplits can also be used to predict a
“metabolite yield,” i.e., the sum of flux producing a metabolite
(e.g., ATP) divided by the uptake flux of a user-defined carbon-
source, e.g., glucose exchange. Because no additional constraints
are applied for this analysis, the, e.g., ATP generated by the
model will not only be produced from glucose but also other
substrates available to the model depending on the constraints
on the exchange reactions of the individual model. Nevertheless,
the metabolite yield constitutes a valuable measure to stratify
metabolic models (Aurich et al., unpublished).

The results generated by predictFluxSplits can be summarized
using the function sumFluxSplits, which provides a table
listing for each model the reaction that produces the highest
amount of the metabolite (highest flux among the reactions
producing/consuming the metabolite of interest). Another
output table provides the flux values to allow a comparison of
the metabolite producing reactions across the model set. Based
on the different strategies of how models produce or consume
different relevant metabolites, sets of models can be divided into
phenotypes (Aurich et al., unpublished).

Sampling the Solution Space (Step 17E)
Sampling is a method to explore the metabolic phenotype
of a contextualized model without relying on an objective
function (Price et al., 2004; Thiele et al., 2005); and hence,
it is particularly suitable for modeling of human cells and
biomedical applications (Aurich and Thiele, 2016). The function
performSampling performs the sampling analysis, including a
priori generation of warm-up points using the functions of the
COBRA toolbox (Schellenberger et al., 2011). After a specified
number of flux vectors (sampling points) has been collected from
the solution space of the model, the result of the analysis is
illustrated as the probability distribution of flux for individual
reactions in the model (Price et al., 2004; Schellenberger

and Palsson, 2009; Supplementary Material). The function
summarizeSamplingResults obtains statistics on the sampling
points and for each reaction (mean, median, and minimal
and maximum flux values determined through flux variability
analysis). It also generates histograms of the probability
distributions for a set of user-defined reactions (Figure 8).
Distinct use of pathways or reactions (e.g., directionality) can be
directly observed from the histograms (Thiele et al., 2005; Mo
et al., 2009; Aurich et al., 2015).

Predict Response to Environmental Changes (Step

17F)
Contextualized models can react differently to perturbations of
the existing constraints (Aurich et al., unpublished). The function
performPPP can be used to analyze the impact of stepwise
variations of flux forced through two exchange reactions. The
“behavior” of the model is equal to the model being able to
satisfy the stated objective. In other words, a flux balance analysis
is performed at each step of the analysis, which means after
the constraints of one of the two exchange reactions have been
modulated. The variations can be either uptake or secretion, and
the direction can differ between the two exchange reactions. This
analysis was used to test the models response to variations in
oxygen uptake and lactate secretion (Aurich et al., unpublished).
The results of the analysis can be illustrated as a heat-map
using the function illustrate_ppp. The size and the shape of the
feasible solution space within the heat map was used to manually
distinguish different phenotypes among the set of contextualized
models (Aurich et al., unpublished).

Validation of the Model Predictions (Step 18)
The predicted set of essential genes (analyzeSingleGeneDeletion),
preferential pathway use (predictFluxSplits), and feasible uptake
rates (performPPP), constitute hypotheses and need to be
validated. The validation of model predictions is an indispensable
part of the computational workflow. In many studies the results
are experimentally validated to substantiate the computational
results (Ahn et al., 2011; Frezza et al., 2011; Fan et al., 2013;
Agren et al., 2014; Yizhak et al., 2014; Aurich et al., 2015). Others
relate the model predictions to the analysis of omics data sets
from cell cultures or patients (Stempler et al., 2014; Mardinoglu
et al., 2014a). In case model predictions cannot be experimentally
validated, model predictions should be supported by literature
evidences (Agren et al., 2012; Mardinoglu et al., 2014b). As many
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FIGURE 7 | Models can be stratified into distinct metabolic phenotypes based on the pathway that they use prevailingly.

results as possible should be validated, but at least all main results
of the study. The validation of themodel prediction completes the
workflow for the integration of extracellular metabolomic data
and phenotype prediction.

MATERIALS

Equipment
Hardware
◦ Personal computer

Software
◦ Matlab (Mathworks, Inc.)
◦ COBRA Toolbox v2.0 & MetaboTools.
◦ fastFVA (http://wwwen.uni.lu/lcsb/research/mol_systems_
physiology/software).

◦ A linear programming solver. We recommend the industrial
quality solver cplex (IBM Inc.) as it can be used under a
free academic license. Note that generateCompactExchModel
requires cplex (IBM Inc.) to be installed and called from
Matlab.

◦ Obtain model (e.g., download the most recent version of the
human metabolic genome scale model and numerous gut

microbe metabolic models from the virtual metabolic human
database (VMH, http://vmh.life).

Knowledge
◦ Knowledge on the use of COBRA toolbox.
◦ Knowledge on the use of matlab.

Additional Training in COBRA Can be Acquired From
◦ Detailed description on the installation of the COBRA toolbox
v2.0, are provided in a previous protocol on the COBRA
toolbox (Schellenberger et al., 2011).

◦ Consider the COBRA toolbox forum for help (https://groups.
google.com/forum/#!forum/cobra-toolbox).

◦ FBA primer Supplementary tutorial (Orth et al., 2010).

Equipment Setup
◦ Install Matlab.
◦ Download COBRA toolbox (incuding MetaboTools) from
(https://github.com/opencobra/cobratoolbox) and add to
Matlab path.

◦ Hint: Specifically, follow procedure steps 1–4 of the COBRA
toolbox protocol (Schellenberger et al., 2011) to ensure a
functional COBRA toolbox. Functions that are not further
explained in this protocol are part of the COBRA toolbox and
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FIGURE 8 | Interpreting the results of the sampling analysis. (A) During the sampling analysis, a large set of sampling points is collected (red dots, each

comprising a flux distribution). The fluxes collected from the sampling points can be illustrated as probability distribution for individual reactions. (B) Comparing the

histograms of the probability flux distributions through the glutamine exchange reaction in two models (blue and green) reveals a shift of the feasible steady-state

solution space for this reaction. (C) The irregular histogram is typical for an unbounded reaction (distribution ranges from −1000 to 1000). (D) A premature flux

distribution of the glutamine exchange reaction. Even though the final shape of the distributions can be guessed, additional sampling points need to be generated to

get a unimodal distribution of the fluxes. Generation of additional points could shift the distribution. U = flux units.

their use has been described in detail in the COBRA toolbox
protocol (Schellenberger et al., 2011).

◦ Install solver.
◦ Obtain a metabolic model (e.g., http://vmh.life).

Input Data When Integrating Metabolomic
Data
Mandatory Input Data
• Extracellular metabolomic data (minimum two time points to

calculate fluxes, see tutorials for format requirements).
• For conversion of metabolomic data to fluxes: cell weight, cell

concentration\ml, duration of the experiment.
• Information about medium composition.
• Serum in medium (yes/no).
• Detection limits of the measured molecules.

Optional Input Data
• Growth curves/ doubling times (hours).
• Transcriptomic or proteomic data (A/P calls).
• Additional measurements (e.g., oxygen consumption, CO2).

PROCEDURE

Stage 1: Preparations for the Integration of
the Data (Steps 1–5)
(1) Associate Metabolite Identifiers with Metabolite IDs,

Trouble Shooting.Manually relate the metabolite identifiers
in the metabolomic data to the corresponding metabolite
abbreviation in the model (Figure 2A). If no HMDB
(Wishart et al., 2013) or corresponding IDs exist, associate
the metabolites based on the metabolite name using
metabolite databases. Find the exact matches.

(2) Identify Metabolites that Have no Transport or Exchange

Reaction, Trouble Shooting. Compile a list and check off
metabolites that have transport reactions (e.g., gln_L[e]
<=> gln_L[c]) and exchange reactions [“EX_gln_L(e)”]
in the model. This can be done manually using the VMH
database (http://vmh.life, Figure 2B) or the models reaction
list:

Alternatively use the function findRxnsFromMets to generate
a list of reactions (∗rxnList∗) that are associated with the list
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of successfully associated metabolites (∗metList∗):

>> [rxnList, rxnFormulaList] = findRxnsFromMets(model,
metList)

Check also the lower and upper bounds of the transport
and exchange reactions to confirm that the directionality
corresponds to the reaction formula.

To print the reaction list use:
>> a = printRxnFormula(model, rxnList,0,0,0,”,0);

Note that the reversibility vector (∗model.rev∗) is not
updated by all functions in the COBRA toolbox. Most
functions rely on the definition of the lower and upper
bounds rather than the reversibility vector. Use the following
code to make the reversibility vector consistent with the
lower and upper bounds:

>> model.rev = zeros(length(model.rxns));
>> model.rev(find(model.lb<0)) = 1;

(3) Identify Metabolite Transporter. Manually identify and
define as detailed as possible the extracellular metabolite
transport systems for all associated metabolites lacking
extracellular transport reactions based on the relevant
literature (Figure 2C; (Thiele and Palsson, 2010; Sahoo et al.,
2014)). Start, e.g., by typing “metabolite AND transport”
into a search engine or the NCBI PubMed database
(http://www.ncbi.nlm.nih.gov/pubmed/). Variations of
the key words will provide you with a first impression
on the amount of literature that exists on the transport
systems of individual metabolites. Transporters vary
between compartments. Hence, specifically identify
extracellular transport systems. Check for organism, tissue-
and cell-type specific metabolite transport mechanisms.
Does the literature describe or indicate active or passive
transport (primary transport, secondary transport, or simple
diffusion)? Identify additional substrates and co-substrates
(such as ions, energy currency, or other metabolites), as well
as the direction of transport (antiport vs. symport). What is
the reaction stoichiometry of the transported compounds?
Identify the genes that encode the transport proteins.
Consider the existence of isoforms and multiple subunits of
protein complexes. Keep track of references to all aspects
of the transport. Take notes on contradictory information
to enable yourself or others to recapitulate decisions at a
later stage. Identify all existing transport mechanisms. Keep
the number of diffusion reactions as low as possible by
resolving as many transport mechanisms and as detailed as
possible. When using information from databases, confirm
the correctness of the information based on the primary
literature, e.g., confirm that it is extracellular transport and
appears in your cell or organism.

(4) Add Reactions

Reconstruct the transport reactions based on your notes and
add them to the model using rBioNet (Thorleifsson and

Thiele, 2011) in Matlab. Add missing exchange reactions
using rBioNet (Thorleifsson and Thiele, 2011).

Stage 2: Set Constraints and Derive
Contextualized Models
(5) Define Basic Constraints, Trouble Shooting

Use the function setMediumConstraints to impose the
condition-specific sets of constraints to a model (∗model∗).
When data values exceed the infinite bounds, increase
the current bounds (∗current_inf∗) such that the infinite
bounds no longer act as constraints (∗set_inf∗). Based on
cell concentration (∗cellConc∗), the duration (∗t∗) of the
cultivation, and the cell dry weight (∗cellWeight∗) fluxes
are calculated from metabolite concentrations given in
mM (∗met_Conc_mM∗) for a defined set of metabolites
exchange reactions (∗medium_composition∗), which were
part of the defined cell culture medium, and the model
is constrained with these fluxes. Uptake of additional
compounds, e.g., ions or vitamins can be restricted
(∗mediumCompounds∗, ∗mediumCompounds_lb∗). The
optional input variable ∗customizedConstraints∗ allows
individual definition of additional reaction constraints, e.g.,
growth rates.

>> [modelMedium, basisMedium] = setMedium
Constraints(model, set_inf, current_inf, medium_
composition, met_Conc_mM, cellConc, t, cellWeight,
mediumCompounds, mediumCompounds_lb,
[customizedConstraints], [customizedConstraints_ub],
[customizedConstraints_lb], [close_exchanges])

(6) Transform the LOD from ng/ml to mM

Use the molecular weight (∗theo_mass∗) of the metabolites
and the respective exchange reaction for the metabolites
(∗ex_RXNS∗) to transform the LOD from ng/ml
(∗lod_ngmL∗) to mM (∗lod_mM∗).

>> [LODmM] = calculateLODs(ex_RXNS, theo_MASS,
LODngmL);

(7) Define Uptake and Secretion Profiles (No Absolute

Quantification)

Define sets of metabolites that are consumed
(∗cond1_uptake∗ and ∗cond2_uptake∗) and released
(∗cond1_secretion∗ and ∗cond2_secretion∗) based on the
individual data matrices (∗input_A∗ and ∗input_B∗) and
the corresponding exchange reactions (∗data_RXNS∗)
using the function defineUptakeSecretionProfiles for
sample pairs. Manually define the threshold (∗tol∗) to
accept a change as uptake or secretion. The function
contains further options to manually tailor the uptake
(∗exclude_upt∗, ∗add_upt∗) and secretion profiles
(∗exclude_secr∗, ∗add_secr∗).

>> [cond1_uptake, cond2_uptake, cond1_secretion,
cond2_secretion, slope_Ratio, data_RXNS] =
defineUptakeSecretionProfiles(input_A, input_B,
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data_RXNS, tol, essAA_excl, exclude_upt, exclude_secr,
add_secr, add_upt);

(8) Calculate Semi-Quantitative Differences

Use the function calculateQuantitativeDiffs to add
the LODs to the uptake and secretion profiles and
to obtain the values for the relative adjustment of
constraints (∗cond1_upt_higher∗, ∗cond2_upt_higher∗,
∗cond2_secr_higher∗, ∗cond1_secr_higher∗) based on
the ∗slope_Ratio∗ of the commonly consumed and
released metabolites (Figure 5A). Additional inputs are
the uptake and secretion profiles generated in the previous
steps by the functions defineUptakeSecretionProfiles and
calculateLODs. The input ∗LODmM∗ is of the same length
as the vector specifying the exchange reactions ∗ex_RXNS∗.

>> [cond1_upt_higher, cond2_upt_higher, cond2_secr_
higher, cond1_secr_higher, cond1_uptake_LODs, cond2_
uptake_LODs, cond1_secretion_LODs, cond2_
secretion_LODs] = calculateQuantitativeDiffs(data_RXNS,
slope_Ratio, ex_RXNS, lod_mM, cond1_uptake,
cond2_uptake, cond1_secretion, cond2_secretion);

(9) Set Qualitative Constraints

Use the function setQualitativeConstraints to apply
individual uptake (∗cond_uptake∗) and secretion
(∗cond_secretion∗) profile to a model by using the
detection limits to enforce uptakes and secretions
(∗cond1_uptake_LODs∗, ∗cond2_uptake_LODs∗,
∗cond1_secretion_LODs∗, ∗cond2_secretion_LODs∗).
Execute this function for each model individually:

>> [modelLOD] = setQualitativeConstraints(model,
cond_uptake, cond_uptake_LODs, cond_secretion,
cond_secretion_LODs, cellConc, t, cellWeight,
ambiguous_metabolites, basisMedium);

Use the input variable ∗ambiguous_metabolites∗ to keep
exchanges open and let the model freely consume or release
the associated metabolites, e.g., if direction of exchange is
undefined or differs between biological replicates. All lower
bounds of exchange reactions, apart from those defined as
ambiguous, mediumCompounds, or from the uptake and
secretion profiles, will be constrained to zero. The output
model ∗modelLOD∗ has the same size of the input model.

(10) Apply Semi-Quantitative Differences

Use the function setSemiQuantConstraints to apply the
semi-quantitative differences to two models ∗modelA∗

and ∗modelB∗, which were previously defined by the
function calculateQuantitativeDiffs (∗cond1_upt_higher∗,
∗cond2_upt_higher∗, ∗cond2_secr_higher∗, ∗cond1_secr_
higher∗). This step is performed simultaneously for the two
models.
>> [modelA_QUANT,modelB_QUANT] = setSemiQuant
Constraints(modelA, modelB, cond1_upt_higher, cond2_
upt_higher, cond2_secr_higher, cond1_secr_higher);

(11) Obtain Uptake and Secretion Profiles [Integration of

Absolute Concentration Changes], Trouble Shooting

Use the function prepIntegrationQuant to generate
individual uptake and secretion profiles from a data
matrix (∗metData∗) of fluxes, where the rows are the
metabolite exchanges (∗exchanges∗) and the columns are
the conditions (∗samples∗). Negative values are interpreted
as uptake and positive values are interpreted as secretion.
The individual exchange profile is saved to the user-defined
location (∗path∗). The minimal and maximal flux values
(∗test_max∗, ∗test_min∗) are used to test whether the
∗model∗ can consume and secrete the ∗exchanges∗. All
fluxes below a user-defined tolerance value (∗tol∗) are
set to zero. The output consists of the flux values to be
applied to the upper and lower bounds, which are based
user-defined variation (of, e.g., 20%, ∗variation∗) for uptake
and secretion, and written to a file named according to the
same name to the specified location.

>> prepIntegrationQuant(model, metData, exchanges,
samples, test_max, test_min, path, tol, variation);

(12) Check the Exchange Profiles

Check if additional metabolites have been removed
from the uptake and secretion profiles. Use the function
checkExchangeProfiles to generate statistics on the number
and identity (∗mapped_exchanges∗, ∗mapped_uptake∗,
and ∗mapped_secretion∗) of uptake and secretions added
per sample (∗minMax∗). Specify the number of metabolites
in the data set (∗nmets∗). The function loads the exchange
profiles generated by using the definition of the ∗path∗ and
the sample names (∗samples∗).

>> [mapped_exchanges, minMax, mapped_uptake,
mapped_secretion] = checkExchangeProfiles(samples,
path, nmets);

(13) Integrate Quantitative Constraints, Trouble Shooting

Use the function setQuantConstraints
to generate a contextualized model
(∗ResultsAllCellLines.sample.modelPruned∗) for each
sample (∗samples∗). A minimal flux value (∗minGrowth∗)
can be specified for a defined objective function (∗obj∗).
A set of metabolite exchanges (∗medium∗) can be
specified, which will be part of the retained minimal
set of exchange reactions in the output model. Allow
additional secretion of metabolites (∗addExtraExch∗,
∗addExtraExch_value∗). The exchange profile is loaded
from the specified location (∗path∗). The default value
of epsilon is 1e−4, see Vlassis et al. (2014) for a detailed
description.

>> [ResultsAllCellLines,OverViewResults] =
setQuantConstraints(model, samples, tol, minGrowth,
obj, no_secretion, no_uptake, medium, addExtraExch,
addExtraExch_value, path, [epsilon]);
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The output structure ∗ResultsAllCellLines∗ contains the
pruned and unpruned but constrained contextualized
model for each sample (∗samples∗). ∗OverViewResults∗ is
a table which lists statistics of the generated models.

(14) Generate the Contextualized Subnetworks

(A) Use generateCompactExchModel to generate a
submodel. This pruned model is based on the
prediction of a minimal set of metabolite exchanges
for a given, constrained model, e.g., the model
resulting from running setQualitativeConstraints or
setSemiQuantConstraints, while permitting a feasible
steady state flux distribution. The prediction of the
additional metabolite exchanges is based on the
minimization if the cardinality of the exchange reactions
(Aurich et al., unpublished). Define the minimal flux
value (∗minGrowth∗) that should be achieved by a
defined objective (∗biomassRxn∗) in the output model
(∗modelMin∗, ∗modelPruned∗). The use of fast flux
variability analysis (Gudmundsson and Thiele, 2010)
(∗fastFVA∗) is optional.

>> [modelMin, modelPruned, Ex_Rxns] =
generateCompactExchModel(model, minGrowth,
biomassRxn, prune, fastFVA);

(B) Alternatively, use extractConditionSpecificModel to
extract the submodel using the approach as in Aurich
et al. (2015). Specify the cutoff (∗theshold∗) for calling a
flux value zero (e.g., 1e−8).

>> [modelPruned] = extractConditionSpecificModel
(model, theshold);

(15) Integrate Gene Expression Data

Use the function integrateGeneExpressionData to integrate
transcriptomic data (set of genes found to be unexpressed
(∗dataGenes∗)) with the ∗model∗.

>> [modelGE] = integrateGeneExpressionData(model,
dataGenes);

Stage 3: Validation and Prediction
(16) Validation of the Model, Trouble Shooting Perform a

quality control of the models by checking constraints
against biological insight. The steps 16E–F can only be
performed if the data exists.

(A) Create an expectation

If not done already, review the literature to learn about
the biological background of your cells, organisms, and
what to expect from the analysis: Identify metabolic
traits and inabilities of the target cell and what is known
about the respective set of environmental conditions
and its response to perturbations. Validate the generated
models based on these biological insights, e.g., by asking
questions such as those given in Table 3.

(B) Check constraints, Trouble Shooting

Check lower and upper reaction bounds in the generated
models. Check that all constraints have been applied
as intended, e.g., typos in the exchange reaction names
might have prevented that constraints were applied. Are
all exchange reaction constrained to zero that should
have been closed? Do constraints exceed the infinite
bounds? Are any constraints below the threshold and
thus equal to zero? Are there any constraints that
do not concur with the expectation, e.g., uptake of
oxygen?

(C) Analyze added exchanges, Trouble Shooting

Summarize the set of added exchanges using
the functions statisticsAddedExchanges and
mkTableOfAddedExchanges:

>> [Ex_added_all_unique] = statisticsAddedExchanges
(ResultsAllCellLines, samples);

>> [Added_all] = mkTableOfAddedExchanges(Results
AllCellLines, samples, Ex_added_all_unique);

Check the additional exchanges that were added to the
model. Are the metabolites predicted to be consumed
part of the medium composition? Was serum added
to the culture medium? For all metabolites, which the
model needs to secrete, could these metabolites have
been detected? Were they targeted by the metabolomic
analysis? Could they have been below the limit of
detection? Does untargeted metabolomic data support
the presence of these metabolites in the extracellular
medium?

(D) Check metabolic functions, Trouble Shooting

After confirming that the constraints are accurately
set, check the functionality of the model against the
expectation build earlier. Does the model include
metabolic pathways known to be operated by the cell
and in the considered condition? Which pathways
are in the model that are not expected to be present
in the modeled cell type? Keep in mind that the
model was optimized to explain the uptake and
secretion profile and that the internal reaction
redundancy remains, if no additional omics data is
included. Check, using flux variability analysis, if the
unexpected pathways have to carry flux. What imposed
exchanges are responsible for the flux through such a
pathway?

(E) Validate the contextualized model based on

experimental data

Use, e.g., intracellular metabolomic data. Check to
which extend metabolites reported in intracellular
metabolomic data are captured by the contextualized
model (i.e., are the metabolites part of model.mets). Do
the models reflect sample-specific differences?
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(F) Test for condition-specific growth rates

If growth rates were not applied as constraints
during the model building, use the function
setConstraintsOnBiomassReaction to apply constraints
to the biomass reaction based on doubling times (∗dT∗).
The upper and lower bounds of the biomass objective
function (∗of∗) are adjusted with a ∗tolerance∗ around
the calculated growth rate (e.g., 10%).

>> [modelBM] = setConstraintsOnBiomassReaction(model,
of, dT, tolerance);

Alternatively, use the function changeRxnBounds to
apply growth rates to the model. Make sure the objective
is set in the model (use the function changeObjective to
change the objective in the model).

If no doubling times or growth rates exist for the data set,
literature derived rates can provide an approximation
for the expected growth rates, as growth rates can vary
depending on the culture conditions (e.g., serum or no
serum). Use flux balance analysis (optimizeCbModel) to
see if the model can produce biomass at experimental
rates.

(17) Predict Metabolic Phenotypes, Trouble Shooting

Choose the most suitable analysis (e.g., 17A–E)
based on the individual biological question to gain
insight into the use of the most relevant pathways,
reactions, or metabolites by individual or groups of
models.

(A) Summarize and illustrate the set of essential genes

Use the function analyzeSingleGeneDeletion to define
and to analyze the set of essential genes for single or
large set of models (∗ResultsAllCellLines∗, ∗samples∗).
Define through the input variable ∗heat∗ if a heat map
should be generated, illustrating the differences across
the model set (Figure 6). Save the output at the specified
location (∗path∗).

>> [genes,ResultsAllCellLines,OverViewResults] =
analyzeSingleGeneDeletion (ResultsAllCellLines, path,
samples, cutoff, OverViewResults);

The output variable ∗genes∗ contains a table that lists
per unique gene the number of models with “no effect,”
“partial effect,” essential genes or “KO,” and in howmany
models the gene is not present. Additionally, the number
of essential genes is added to ∗OverViewResults∗ and
the output of the single gene deletion is added to
∗ResultsAllCellLines∗.

(C) Identify the essential reactions driving gene

essentiality, Trouble Shooting

Use the function checkEffectRxnKO to identify, which
reactions are essential. Provide the set or subset of

models (∗samples_to_test∗) from ∗samples∗ that should
be tested. The functions tests all individual reactions
associated with a set of specified genes (∗genes_to_test∗).
The variable ∗fill∗ defines what to add into the output
matrix if a reaction is not in the model, e.g., 100, num
(“NAN”).

>> [FBA_Rxns_KO, ListResults] =
checkEffectRxnKO(samples_to_test, fill, Genes_to_test,
samples, ResultsAllCellLines);

The output variable ∗FBA_Rxns_KO∗ contains the
FBA results for constraining one reaction at a time to
zero. The second output ∗ListResults∗ lists the reactions
associated with the input gene list in the same order as
∗FBA_Rxns_KO∗.

(C) Generate intersect and union model

Use the function makeSummaryModels to find the
shared and superset of reactions, metabolites and genes
of a set of models by creating a union (∗unionModel∗)
and an intersect model (∗intersectModel∗). The
models are generated based on the generic model
(∗model∗) from which the subnetworks have been
generated.

>> [unionModel, intersectModel, diffRxns, diffExRxns]
= makeSummaryModels(ResultsAllCellLines, samples,
model, mk_union, mk_intersect, mk_reactionDiff);

Both output models (∗unionModel∗, ∗intersectModel∗)
and differential reaction sets (∗diffRxns∗, ∗diffExRxns∗)
are generated by default.

(D) Predict flux splits

Use the function predictFluxSplits to predict either
production or consumption (∗dir∗) of metabolites
(e.g., ∗met2test∗ = {“atp”}) for the models in
∗ResultsAllCellLines∗ defined by ∗samples∗. Define
the objective function (∗obj∗) that should be used
to generate the flux vector, from which the reaction
contributions to production or consumption of the
considered metabolite are calculated. Define a full sized
model (∗model∗), as the set of models can use distinct
subsets of the reactions of the full model to produce
or consume the metabolite of interest. A default value
(eucNorm = 1e−6) is set for the parsimonious flux
balance analysis. Set a quadratic programming solver
[changeCobraSolver(solver, “QP”)] before running
predictFluxSplits.

>> [BMall, ResultsAllCellLines, metRsall, maximum_
contributing_rxn, maximum_contributing_flux,
ATPyield] = predictFluxSplits(model, obj, met2test,
samples, ResultsAllCellLines, dir, transportRxns,
ATPprod, carbon_source, eucNorm);
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Exclude reactions, which do not produce or consume
the metabolite, e.g., reactions that transport the
metabolite between compartments. Define all reactions
that produce/consume the metabolite in a first
run (∗transportRxns∗ = []), and subsequently,
exclude unwanted contributors by adding them to
∗transportRxns∗.

In case that the production of ATP is predicted,
additional statistics on the use of glycolysis, the citric
acid cycle, and the oxidative phosphorylation can be
automatically generated (∗ATPprod∗ = 1). With this
option, the ∗ATPyield∗ is calculated, which relates the
total ATP production to a user-defined carbon source
[default: ∗carbon_source∗ = “EX_glc(e)”;].

The output lists the reaction with highest flux value for
producing or consuming a defined metabolite across
analyzed samples (∗maximum_contributing_rxn∗,
∗maximum_contributing_flux∗) to simplify the analysis
over large groups of samples (and metabolites of
interest). Detailed results of the analysis are added to
∗ResultsAllCellLines∗.

(E) Sampling the steady-state solution space

Use the function performSampling to sample the
solution space of a model:

>> performSampling(model, warmupn, fileName,
nFiles, pointsPerFile, stepsPerPoint, fileBaseNo,
maxTime, path);

The function is based on COBRA toolbox, refer to the
corresponding protocol for details (Schellenberger
et al., 2011). Subsequently, use the function
summarizeSamplingResults:

>> [stats, statsR] = summarizeSamplingResults
(modelA, modelB, path, nFiles, pointsPerFile, starting_
Model, dataGenes, show_rxns, fonts);

Inspect the histograms automatically saved to the
user-defined location (∗path∗, Figure 8, Supplementary
Material). If the distributions are not unimodal (only
bounded reactions will reach this, but not loop reactions,
see Appendix), generate more sample points by using
points from the last file as starting point (see tutorial_I).
Analyze the results: Are the distributions shifted apart
for any reactions or pathways that were expected or
unexpected for a certain condition or group of samples?
Make sure that your interpretations do not rely on
unbounded reactions (Figure 8).

(F) Predict behavior to environmental changes

Use the function performPPP to predict the
simultaneous variation of two parameters (∗mets∗)
at a time and for one or more submodels (∗samples∗

in ∗ResultsAllCellLines∗). Define the range of flux
rates (uptake or secretion defined in ∗direct∗) through
the variables ∗step_size∗ (flux units) and number of
steps ∗step_num∗. This can be individually defined
for each exchange reaction. The output is added to
∗ResultsAllCellLines∗.

>> [ResultsAllCellLines] = performPPP(ResultsAllCell
Lines, mets, step_size, samples, step_num, direct);

Illustrate your results with heat-maps using the function
illustrate_ppp.

>> illustrate_ppp(ResultsAllCellLines, mets, path,
samples, label, fonts, tol);

The heat maps are saved to the defined ∗path∗. The
function uses flux variability analysis (Gudmundsson
and Thiele, 2010; Schellenberger et al., 2011), and the
zero cutoff (∗tol∗, e.g., 1e−8) needs to be specified. The
function allows some additional inputs, i.e., label and
font size (∗label∗, ∗fonts∗), to customize the illustrations.
Analyze the output, e.g., by manually grouping the
models based on the similarity of the planes in the heat
maps (e.g., size and shape).

(18) Validate the Predicted, Metabolic Phenotypes

(A) Compare to experimental data

Compare the results of the previous steps to data sets,
e.g., cell culture and perturbation experiments, or
compare the predictions to the results of the analysis of
additional omics data, e.g., mRNA. Does regulation in
metabolic genes support predicted metabolic differences
between cells or conditions?

(B) Compare to literature

Check if the results of the predictions generated in
the previous step agree with what is reported in the
literature. For example, has the cell line been previously
reported to heavily rely on an alternative pathway,
e.g., reverse flux through the citric acid cycle? Are the
essential genes already known to be essential in this
cell type, or under the experimental conditions, such as
hypoxia?

TROUBLE SHOOTING

Step 1: Metabolites Cannot Be Associated with Model

Metabolites

Exclude metabolites, which are not part of the model. Leaving
out constraints has as consequence that physiologically
irrelevant flux distributions (network states) may remain part
of the steady-state solution space. However, no wrong flux
distributions are introduced! Another solution would be to
add demand reactions (see Appendix; Thiele and Palsson,
2010) that “artificially” remove metabolites from the system,
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which were experimentally consumed but that could not
be consumed by the model. A sink reaction (see Appendix;
(Thiele and Palsson, 2010)) could be included to represent
an intracellular source for a metabolite, which cannot be
produced by the model. However, such reactions have only an
effect on the model if, e.g., the transport of the metabolite is
dependent on energy or other substrates and might otherwise
also be ignored. The consecutive addition of demand and sink
reactions is not recommended.

Step 2: Exchange Reactions Are Constrained Although the

Formula Indicates that They Are Reversible

Change reaction bounds on the transport reaction using
the function changeRxnBounds. Reactions might be closed
to prevent thermodynamically infeasible cycles. Opening
these reactions might lead to a leaking model (i.e., the
model is able to produce metabolites, such as ATP without
substrates). Thus, the model should be tested for leakage
before proceeding to further steps (see Thiele and Palsson,
2010).

Step 3: Transporter Is Unknown

Add a diffusion reaction.

Step 4: Existing Reactions Need to Be Modified. New

SubstratesHave Been Identified for an Existing Transporter

Add, replace, or modify reactions if literature provides novel,
convincing clues on the metabolite transport mechanisms.
If diffusion is unlikely for a metabolite, consider removing
the diffusion reaction that allow the transport “for free.”
Add a reaction if the metabolite constitutes an additional
substrate to an existing transporter. Make sure that the new
substrate is transported in the same way as the original one
before duplicating the reaction. Does the reaction mechanism
correspond to that in the model? Check if the reaction
stoichiometry, directionality, co-substrates, genes, and Gene-
protein-reaction association (GPR) of the existing reaction
agrees with your notes. Add the reaction with a new name
corresponding to the transported metabolite. If the transport
mechanism is different from the reaction mechanism already
present in the model (particularly for diffusion reactions),
review whether the original reaction needs to be updated
based on the novel literature clues. The mechanism might
have been better resolved since the original reconstruction
(see references associated with the reaction, e.g., VMH
database for the human genome scale reconstruction, http://
vmh.life). Correct the original reaction in the model based on
the result of the literature review. Remove diffusion reactions
if no longer adequate.

Step 5: Identify Minimal Set of Exchanges for a Model and

Objective

Use flux variability analysis (FVA) to identify mandatory
metabolite uptakes (negative non-zero minimal and maximal
flux).
Step 7: Detection Limits Are Unavailable

An arbitrary low value may be used to set the upper bounds
on uptake fluxes and lower bounds on secretion fluxes that is

close to the cutoff value (e.g., –0.00001/0.00001).

Step 13: Generate Metabolic Fluxes

Use the function conc2rate to convert concentration
changes (∗metConc∗) measured over the time course of the
experiment (∗t∗), for a certain number of cells (∗cellConc∗),
and dry weight (∗cellWeight∗) into flux (∗flux∗).

>> [flux] = conc2Rate(metConc, cellConc, t, cellWeight);

Step 16B: Constraints Are Too Small and Fall Below the

Error Range and/or Exceed the Infinite Bounds (Cobra

Toolbox Default Is 1e−8)

Multiply or divide all reaction bounds (except infinite
constraints) with the same factor. Adjust the unit the fluxes
accordingly using the same factor. Scale the unit the fluxes are
reported in with the same factor. Repeat the previous steps
to apply the reconciled constraints. If scaling is not possible
because the range of fluxes is too wide (e.g., −1000 to 1000),
the infinite bounds can be increased (setMediumConstraints).

Step 16C: Additional Metabolite Exchanges Are Unlikely

From a Biological Point of View

Close exchange reaction in the starting model and
repeat the model building by setQuantConstraints (or
generateCompactExchModel).

Step 16D: The Model Contains Unexpected Pathways

Keep in mind that the integration of metabolomic data only
indirectly causes the removal of metabolic pathways. Pathways
are only removed if they become blocked as a consequence
of exchanges being closed. An additional reduction of the
internal metabolic network can be achieved by the integration
of additional omics data sets, if the imposed flux rates are
not deterministic enough. The contextualized models miss

central features of the cells or certain metabolic functions

cannot be performed. Note that the models constructed
herein are condition-specific. Are the reported pathways
really active in the considered experimental condition?
Identify whether there is an exchange connected to the
pathway, which is not defined by the consumed metabolites.
Could these be missing from set of targeted metabolites?
You can add the metabolite to the medium composition
(e.g.,∗ambiguous_metabolites∗) to prevent that it is removed
during model building. Iterate until models are conform to
the expectation.

Step 17: Generate the Variables ResultsAllCellLines

and OverViewResults to Collect the Information of the

Downstream Analysis for Models Not Generated Herein

For models of name ∗model∗, ∗model2∗, . . . loaded in the
workspace, execute:

>> samples = {‘model’, ‘model2’, . . . };
>> for i=1:length(samples)
>> model_name= samples{i}
>> eval([‘ResultsAllCellLines.’ model_name ’.modelMin =’
model_name]);
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>> eval([‘ResultsAllCellLines.’ model_name ’.modelPruned
=’ model_name]);
>> end

The difference between the models is that the ∗modelMin∗

has all reactions, whereas the pruned model is the reduced
model. If only one exist, both can be equal. In the workflow
the ∗modelMin∗ is used for the single gene deletion, instead
of the ∗modelPruned∗.

To generate the variable OverViewResults, execute:

>> samples = {‘model’, ‘model2’};
>> cntO=1;
>> OverViewResults{1,cntO} = ‘samples’;
>> for i=1:length(samples)
>> OverViewResults{i+1,cntO} = samples{i};
>> end

Some of the analysis require the specification of a generic
model, which is a superset of the models specified in
∗samples∗.

TIMING

Step 1, Map metabolite identifiers to Recon IDs, Timing:
∼hours.
Step 2, Find which metabolites cannot be transported in the
model, Timing:∼minutes.
Step 3, Identify missing metabolite transporter, Timing:
depends on number∼ hours—days.
Step 4, Add reactions, Timing:∼hours.
Step 5, Define medium constraints, Computational Time:
∼seconds.
Step 6, Calculate detection limits, Computational Time:
∼seconds.
Step 7, Define uptake and secretion profiles, Computational
Time:∼seconds.
Step 8, Calculate semi-quantitative differences,
Computational Time:∼seconds.
Step 9, Set qualitative constraints, Computational Time:
∼seconds.
Step 10, Apply semi-quantitative differences, Computational
Time:∼seconds.
Step 11, Obtain uptake and secretion profiles (flux rates),
Computational Time:∼seconds.
Step 12, Check the exchange profiles, Computational Time:
∼seconds.
Step 13, Integrate quantitative constraints and generate
minimal exchange model, Computational Time: ∼minutes
per model.
Step 14, Generate the subnetwork by pruning model,
Computational Time:∼minutes.
Step 15, Integrate gene expression data, Computational Time:
∼seconds.
Step 16, Validate the model, Timing:∼ days–weeks.

(A) Literatue review to create an expectation, Timing:∼ days
to weeks.

(B) Check constraints, Timing:∼minutes to hours.
(C) Analyze added exchanges, Timing:∼minutes to hours.
(D) Check metabolic functions, Timing:∼minutes to hours.
(E) Comparison to experimental data, Timing: ∼ days to

weeks.
(F) Test growth rates, Computational Time:∼ seconds.

Step 17, predict metabolic phenotypes, Timing: ∼ hours to
weeks.

(A) Define essential genes, Computational Time:∼minutes.
(B) Identify essential reactions behind the gene essentiality,

Computational Time:∼seconds.
(C) Generate intersect and union model, Computational

Time:∼seconds to minutes.
(D) Predict flux splits, Computational Time: ∼seconds per

model.
(E) Sampling the steady-state solution space, Computational

Time:∼hours to days per model.
(F) Predict behavior to environmental changes,

Computational Time:∼minutes to hours per model.

Step 18, Validate predicted, metabolic phenotypes, Timing: ∼
days to weeks (or months)
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APPENDIX

Glossary

Antimetabolite—structurally similar metabolite that inhibits the use of the original metabolite by an enzyme and thus, can diminish proliferation.

Cell-type or tissue-specific model—model that contains all reactions and pathways a cell type or tissue can use in under any set of environmental and/or genetic

condition. A condition-specific model contains a subset of reactions of the cell-type or tissue-specific model.

Closed exchange reaction—reaction, whose lower and upper bounds are set to zero and which, due to these constraints, cannot carry any flux (flux value is zero).

Constraints—limits set on reactions in the metabolic model and defined through the upper bound (“ub”) and lower bound (“lb”) variable vector in the model.

Possible computed flux values for a reaction can only lie between or on these bounds.

Contextualized model—model that has been tailored toward a particular experimental condition.

Data integration—applying constraints based on experimental (e.g., high-throughput) measurements.

Data mapping—matching names of the metabolites in the reconstruction and the data.

Demand reaction—unbalanced network reactions, which allow accumulation of metabolites in the model and as such circumvent the steady-state assumption

underlying constraint-based modeling.

Exchange profile—the profile of a sample (e.g., cell line, hypoxic condition, etc.), detailing, which metabolites are consumed and which metabolites are released.

It will be used to established constraints during the data integration process.

Feasible model—a model that can satisfy the user-defined objective function while being consistent with the applied constraints.

Gap-filling approaches—predict possible ways to fill network gaps using pathway and reaction information from other organisms.

Generic model—a model that captures all metabolic functions and pathways known to be active in at least one cell and/or under at least one condition in organism.

Gene-protein-reaction association (GPRs)—a reaction is associated with one or more genes encoding for one or more enzymes, which catalyze the reaction.

The gene-protein-reaction associations are formulated as Boolean rules, whereby isozymes are associated with an OR and subunits of the functional protein

complex are associated with an AND in the GPRs.

Infinite constraint—an arbitrary high value that does not limit reaction flux.

Loop reactions—cyclic internal reactions that do not depend on the inputs and outputs of the model. Loop reactions are thermodynamically infeasible and

common artifacts in metabolic models due to missing constraints (e.g., temporal separation of pathways, regulation).

Open model—all exchange reactions in the model are unconstrained.

Sample—one experimental condition.

Sampling point—each sampling point contains an entire flux vector, and thus contains a flux value for each reactions in the metabolic model.

Sink reaction—adds compounds that cannot be produced by the metabolic model, because they originate from pathways outside metabolism or because the

production pathways are unknown.

Steady-state assumption—the modeled system is assumed to be in steady state, i.e., no metabolites are accumulated over time (dx/dt = 0).

Unbounded reactions—reactions, whose fluxes are not limited through the network topology and applied constraints, but which expand over the entire span

between the constraints (i.e., infinite bounds).

Unconstrained—the upper and lower bounds are set to infinite.
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