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Intermittent hypoxia (IH) recapitulates morphological changes in the maxillofacial bones

in children with obstructive sleep apnea (OSA). Recently, we found that IH increased

bone mineral density (BMD) in the inter-radicular alveolar bone (reflecting enhanced

osteogenesis) in the mandibular first molar (M1) region in the growing rats, but

the underlying mechanism remains unknown. In this study, we focused on the

hypoxia-inducible factor (HIF) pathway to assess the effect of IH by testing the null

hypothesis of no significant differences in the mRNA-expression levels of relevant factors

associated with the HIF pathway, between control rats and growing rats with IH. To

test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in

the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor

(VEGF) in periodontal ligament (PDL) tissues. Seven-week-old male Sprague–Dawley rats

were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone

proper of the distal root of the mandibular M1 were evaluated using micro-computed

tomography (micro-CT). Expression of HIF-1α and VEGF mRNA in PDL tissues were

measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline

phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2). The null hypothesis was

rejected: we found an increase in the expression of all of these markers after IH exposure.

The results provided the first indication that IH enhanced osteogenesis of the mandibular

M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal

model.
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INTRODUCTION

Intermittent hypoxia (IH) during sleep has been implicated in
the pathogenesis of obstructive sleep apnea (OSA; Noda et al.,
1998; Lal et al., 2012), although the role of IH in the growth
of children with OSA has not been clarified. In particular, it
has been reported that pediatric OSA is frequently associated
with impairment in the growth and development of craniofacial
and otolaryngological tissues, as well as with neuromuscular
diseases (Balbani et al., 2005; Huang and Guilleminault, 2012).
Hypertension, cardiac remodeling, and other complications of
OSA have been studied using rodent models of IH induced by
short cycles of hypoxia–normoxia (Skelly et al., 2012; Maeda
et al., 2013; Nagai et al., 2015). Previously, we demonstrated that
IH exposure induces a decrease in the volume of the nasal cavity,
reflecting impaired development of maxillofacial bones (Kuma
et al., 2014). Other researchers showed that IH increased the bone
mineral density (BMD) in the inter-radicular alveolar bone in the
mandibular first molar (M1) region during growth (Oishi et al.,
2015), but the underlying mechanism remains unknown.

Hypoxia is critical to the remodeling and repair of damaged
bones via hypoxia-inducible factor (HIF; Maes et al., 2012), the
key stimulator of vessel formation and angiogenesis. The gene
encoding the prominent angiogenic factor vascular endothelial
growth factor (VEGF) is the primary target for HIF-1α (Riddle
et al., 2009). A recent study provided evidence supporting the
view that HIFs andVEGF play essential roles in coupling between
angiogenesis and osteogenesis during bone formation and repair
(Schipani et al., 2009).

Alveolar bone proper is covered with collagen fibers in the
periodontal ligament (PDL; Shimizu et al., 2014). The PDL is a
specialized soft connective tissue that connects the tooth with the
alveolar bone socket, thereby promoting the development and
maintenance of periodontium (Kaku and Yamauchi, 2014). PDL
tissues are comprised of PDL cells (Shimizu et al., 2014), collagen
fibers (Kaku and Yamauchi, 2014), blood vessels (Muramoto
et al., 2000), nerve elements (Muramoto et al., 2000), extracellular
substances (Kaneko et al., 2001), osteoclasts (Kaneko et al., 2001),
and osteoblasts (Mayahara et al., 2012), and provides progenitor
cells for bone formation and remodeling. Alkaline phosphatase
(ALP) and bone morphogenetic protein-2 (BMP-2) are known to
induce osteogenesis and the osteogenic transformation of PDL
cells (Kuru et al., 1999; Selvig et al., 2002). ALP activity reflects
early osteogenic differentiation in the presence of osteoblasts
(Kuru et al., 1999). Previous data showed that ALP activation
and BMP-2 upregulation in PDL cells induce periodontium
osteogenesis in response to growth hormones (Li et al., 2001)
or matrix Gla proteins (Li et al., 2012). In addition, mechanical
forces such as moderate occlusal stimuli and dissipation of
masticatory force are transmitted from the teeth through the PDL
to the progenitor cells, thereby promoting bone remodeling in
the periodontal tissue (Chen et al., 2005). As such, PDL tissues
maintain proper alveolar bone homeostasis via ALP and BMP-2.

Bone remodeling, a complex process by which old bone
is continuously replaced by new tissue, is affected by a
variety of biochemical and mechanical factors (Hadjidakis and
Androulakis, 2006). With regard to signaling pathways, the Wnt

(Wang et al., 2014), OPG/RANKL/RANK (Hsu et al., 2006), and
HIF pathways (Mamalis and Cochran, 2011) are well-known in
the control of bone remodeling. In this study, we specifically
focused on the HIF pathway to assess the effect of IH by testing
the null hypothesis that no significant differences in the mRNA-
expression levels of relevant factors associated with the HIF
pathway in PDL occur between control rats and growing rats with
IH. To this end, we analyzed the microarchitecture and mineral
density of the alveolar bone proper around the mandibular M1
after 3 weeks of IH in growing rats, with reference to HIF1-α,
VEGF, ALP, and BMP-2 mRNA expression.

MATERIALS AND METHODS

Experimental IH Model
Experiments were conducted on twelve 7-week-old male
Sprague–Dawley rats randomly divided into two groups.
Experimental rats were exposed to IH at a rate of 20 cycles per
h (nadir, 4% oxygen; peak, 21% oxygen; 0% carbon dioxide) for 3
weeks (IH group), and control rats breathed room air (C group).
The control cage was placed next to the cage equipped with the
IH apparatus, and all rats underwent their respective treatments
for 8 h per day during the 12-h “lights on” period (Maeda
et al., 2013; Nagai et al., 2015). The experiments were conducted
while the rats were 7 to 10 weeks of age, when craniofacial
bones actively develop (puberty), as documented by studies of
craniofacial growth (Spence, 1940) and puberty onset (Cheung
et al., 2001) in male rats. All rats were allowed free access to food
and water throughout the experimental period, as previously
described (Skelly et al., 2012; Maeda et al., 2013; Nagai et al.,
2015). Immediately after the IH-exposure period, all rats were
anesthetized by a sodium pentobarbital injection and sacrificed.
All experimental procedures were performed according to the
Guide for the Care and Use of Laboratory Animals published
by the US National Institutes of Health (NIH publication 85-23,
revised 1996). The animal protocol was approved by the Animal
Experimental Committee of Tokyo Medical University (approval
number S-26063).

Three-Dimensional Microcomputed
Tomography (Micro-CT) Analysis
Changes in the bony microstructure of the alveolar bone
proper around roots of the mandibular M1 and in the PDL
space were investigated using micro-CT with a desktop X-ray
micro-CT system (SMX-100CT; Shimadzu, Kyoto, Japan) with
a scanning resolution of 20-µm intervals on individual images.
The region of interest (ROI) for structural morphometry
was enlarged to a 40-µm radius around the distal root
(Figure 1A; Shimizu et al., 2014). Each ROI was analyzed
with respect to BMD, bone volume/tissue volume (BV/TV),
trabecular thickness (Tb.Th), and trabecular number (Tb.N)
using three-dimensional image-analysis software (TRI/3D-BON;
Ratoc System Engineering, Tokyo, Japan). Additionally, to
evaluate changes from mechanical stimuli in the PDL space,
tissue volume (TV) around the distal root of the mandibular M1
was computed (Figure 1B; Shimizu et al., 2014).
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Reverse Transcription Quantitative
Real-Time PCR (RT-qPCR) Analysis
PDL tissues were removed from extracted roots of the
mandibular M1. Total RNA was isolated from PDL tissues using
the PureLinkTM FFPE Total RNA Isolation Kit (Invitrogen, CA,
USA) according to instructions provided by the manufacturer
(Afanador et al., 2005; Luan et al., 2007). cDNA was synthesized
from total RNA with reverse transcription random primers
using High-Capacity cDNA Reverse Transcription Kits (Applied
Biosystems, Foster City, CA, USA). Quantitative PCR assays
were carried out in triplicate for each sample using a 7500
Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA). PCR analyses were conducted with gene-specific primers
and fluorescently labeled TaqMan probes (Takara Bio, Shiga,
Japan). Appropriate primers were chosen for real-time PCR
amplification of VEGF (forward primer: 5′-ccttgctgctctacctccac-
3′, reverse primer: 5′-ccacttcgtgatgattctgc-3′), HIF-1α (forward
primer: 5′-ctaccagaagggcaggatacag-3′, reverse primer:
5′-gcaggcagatgaaataccagtc-3′), ALP (forward primer: 5′-
acgtggctaagaatgtcatc-3′, reverse primer: 5′-ctggtaggcgatgtcctta-
3′), BMP-2 (forward primer: 5′-tcaagccaaacacaaacagc-3′, reverse
primer: 5′-acgtctgaacaatggcatga-3′), andHprt-1 (forward primer:
5′-cagactttgctttccttgg-3′, reverse primer: 5′-tccactttcgctgatgacac-
3′). The thermocycling conditions used were 95◦C for 30 s,
followed by 40 cycles of 95◦C for 5 s and 60◦C for 34 s. Gene
expression levels were calculated according to the 11CT
method of relative quantification. The threshold cycle (Ct)
value of the target mRNAs (VEGF, HIF1α, ALP, or BMP-2) was
normalized to the Ct values of the internal control (Hprt-1)
in the same sample (1Ct = Cttarget – CtHprt−1), followed by
normalization to the control (11Ct= 1CtIHgroup – 1CtCgroup).
The fold change in expression was calculated as the relative
quantification value (RQ; 2−11Ct; Livak and Schmittgen, 2001).

Statistical Analysis
Statistical calculations were performed using statistical analysis
software (IBM SPSS Statistics Version 20.0 Chicago, IL, USA).
We first examined the normality and variance of the data using

FIGURE 1 | Schematic drawing of observational area of micro-CT. (A)

Observational area for alveolar bone proper (heavy black line). (B)

Observational area for the periodontal ligament (heavy black area). M, Mesial;

D, distal; AB, inter-radicular alveolar bone; AP, alveolar bone proper; PDL,

periodontal ligament.

the F-test. The control and experimental groups were compared
using the Mann–Whitney U-test for nonparametric data, and
statistical significance was established at a p level of less than 0.05.

RESULTS

Body Weight Changes in Rats after IH
Themedian body weight (mean± standard error) of rats exposed
to IH for 3 weeks (277.5 ± 3.8 g) was significantly lower than
that of control (C) rats (356.0 ± 9.8 g). Previous reports using
this animal model showed that the correlation between the body
weight and whole-body growth in this IH model was low (Maeda
et al., 2013; Kuma et al., 2014; Oishi et al., 2015).

Three-Dimensional Micro-CT Analysis
We investigated changes in the bony microstructure of the
alveolar bone proper around the distal roots of mandibular
M1 using micro-CT. Micro-CT images of alveolar bone proper
around the distal root of mandibular M1 showed higher
bone volume (BV) density in the IH rats than in the C
rats (Figure 2). In addition, micro-CT analyses demonstrated
significant increases in the BMD, BV/TV, Tb.Th, and Tb.N in the
distal root alveolar bone proper of IH rats, compared with those
of C rats (Figure 3).

Quantitative Real-Time PCR
We evaluated the relative expression levels of osteogenesis–
angiogenesis coupling markers (Figure 4) and osteogenic
markers (Figure 5) in PDL tissues by RT-qPCR analysis. IH

FIGURE 2 | Microarchitecture of the alveolar bone proper of the distal

roots in the mandibular first molar region in the C and IH groups.

Representative micro-CT images of alveolar bone proper in the distal root of

mandibular first molar region (A) and half of mesial surface (B). Scale bar:

1.0mm. C, control group; IH, IH group; L, lingual; B, buccal.
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FIGURE 3 | Comparisons of bone morphology between the C and IH groups by micro-CT analysis. Cancellous bone of the alveolar bone proper of the distal

roots in the mandibular first molar region was compared between the C and IH groups. Box edges represent the upper and lower quantiles, the middle lines in the

boxes represent the medians, and the whiskers represent the maxima and minima. BMD, bone mineral density; BV/TV, bone volume/tissue volume; Tb.Th, trabecular

thickness; Tb.N, trabecular number. *p < 0.05 by the Mann–Whitney U-test.

FIGURE 4 | Relative expression levels of osteogenesis–angiogenesis

coupling markers. Relative HIF-1α (A) and VEGF (B) expression in the PDL

tissues was compared between the C and IH rat groups by RT-qPCR. The

mRNA-expression levels measured in C rats were set to a value of 1. Data are

shown as the mean ± standard deviation for each group. *p < 0.05 by the

Mann–Whitney U-test.

increased the mRNA levels of HIF-1α and VEGF by 1.71- and
1.97-fold, respectively, in PDL tissues compared with those
observed in C rats (Figure 4). Similarly, ALP and BMP-2
mRNA levels were increased 2.75- and 2.57-fold in PDL tissues
compared to the corresponding levels in C rats (Figure 5). These
changes are not likely to have been mediated by mechanical
forces, as IH had no effect on the PDL space surrounding the
distal root of the mandibular M1 (Figure 6).

DISCUSSION

The null hypothesis that no significant differences would occur
in the mRNA-expression levels of some factors associated with

FIGURE 5 | Relative expression levels of osteogenic markers. Relative

ALP (A) and BMP-2 (B) expression in the PDL tissues was compared between

the C and IH rat groups by RT-qPCR. The mRNA-expression levels measured

in C rats were set to a value of 1. Data are shown as the mean ± standard

deviation for each group. *p < 0.05 by the Mann–Whitney U-test.

the HIF pathway in PDL between control rats and IH rats was
rejected: IH enhanced osteogenesis in the mandibular M1 region
in association with VEGF, ALP, and BMP-2 gene up-regulation
in PDL tissues. These molecules are abundantly expressed
in osteoblasts and promote angiogenesis in association with
osteogenesis via the HIF-1α pathway (Mamalis and Cochran,
2011).

Previously, we reported that morphological changes occur
in craniofacial bone after IH exposure in growing rats. IH
suppressed development of the nasal cavity and decreased the size
of the mandibular and viscerocranial bones, which could have
disturbed nasal breathing (Kuma et al., 2014; Oishi et al., 2015).
Oxygen is indispensable for enzymatic reactions to promote
tissue development, whereas HIF and VEGF play pivotal survival
roles under hypoxic conditions (Maes et al., 2012). In the elderly,
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FIGURE 6 | Micro-CT analysis of the periodontal ligament (PDL) space around the distal roots in the mandibular first molar. (A) Three-dimensional

reconstructed images of the periodontal ligament (PDL) space. Scale bar: 1.0 mm. C, control group; IH, IH group; L, lingual; B, buccal. (B) Comparison of tissue

volume (TV) of the PDL around the distal root of the mandibular first molar. Box edges represent the upper and lower quantiles with the median values shown by the

middle line in each box. The whiskers represent the maxima and minima. There was no significant difference in TV in the PDL between the 2 groups. *p < 0.05 by the

Mann–Whitney U-test.

it was reported that OSA is associated with an increase in BMD,
which suggests that IH can stimulate bone remodeling (Sforza
et al., 2013). Moreover, activation of the HIF pathway by hypoxia-
mimicking agents prevents bone loss in estrogen-deficient mice,
but increases BMD and trabecular microarchitecture (Peng et al.,
2014). Data from the present study revealed enhanced BMD and
bone development in the alveolar bone proper in the mandibular
M1 region after IH exposure (Figures 2, 3). The 3 weeks of IH
exposure starting at the age of 7 weeks in rats reflects pre-puberal
development (Sengupta, 2013). Given that remodeling of inter-
radicular alveolar bone, such as alveolar bone proper, in the
mandibular M1 region is promoted by signals from PDL tissues
(Kaku and Yamauchi, 2014), we considered that IH induced the
peri-M1 changes via enhanced coupling in the signaling pathways
for osteogenesis and angiogenesis in the PDL.

HIF-1α, a member of the HIF subfamily, is a ubiquitously
expressed transcription factor that regulates cellular adaptation
under hypoxia (Liu and Simon, 2004). VEGF is transcriptionally
activated byHIF and positively regulates angiogenesis (Miyagawa
et al., 2009; Wan et al., 2010). Previous findings have indicated
that HIF-1α promotes both angiogenesis and osteogenesis via
VEGF upregulation in osteoblasts (Wang et al., 2007). In
addition, it was reported that VEGF stimulates the differentiation
and chemotactic migration of osteoblastic cells (Hankenson
et al., 2015), whereas HIFs and VEGF are involved in skeletal
development and bone homeostasis (Wan et al., 2010; Maes
et al., 2012). IH stimulates vessel network formation and
VEGF production in a highly correlated fashion (Ehsan and
George, 2015). The vascular system not only supplies nutrients
and oxygen to developing bones, but also delivers critical
signals that stimulate mesenchymal cell differentiation toward an
osteogenic phenotype, whereas HIF triggers the initiation and
promotion of angiogenic-osteogenic cascade events (Mamalis
and Cochran, 2011). It was also shown that hypoxia promotes
VEGF production in PDL cells (Motohira et al., 2007) and
that the PDL plays an important role in tooth eruption (Kaku
and Yamauchi, 2014). Consistent with these findings, we found

increased HIF-1α and VEGF mRNA expression in peri-M1
PDL tissues after IH exposure (Figure 4), and the lack of
change observed in the PDL space (Figure 6) suggests that, not
mechanical force, but chemical stimulation related to HIF-1α
from PDL tissues induced peri-M1 osteogenesis. Collectively, our
findings indicate that HIF-1α mediated VEGF induction in PDL
tissues and that VEGF induced peri-M1 osteogenesis.

We evaluated osteogenesis by studying ALP and BMP-
2 expression. Given that ALP is a well-known indicator
of osteoblastic differentiation, ALP expression indicates the
presence of osteoblasts and osteogenic activity (Kuru et al., 1999;
Nettelhoff et al., 2016). BMP-2, a member of the transforming
growth factor beta superfamily, induces osteogenesis from PDL
cells and the regeneration of alveolar bone by promoting
osteoblastic differentiation (Selvig et al., 2002). We found
significantly higher ALP and BMP-2 expression levels in PDL
tissues in rats after IH exposure (Figure 5), which are thought
to induce osteogenesis in the alveolar bone proper.

Cephalometric analysis indicated small mandibular sizes and
posterior displacements in patients with OSA (Rivlin et al., 1984).
Children with OSA present with increased over jet, reduced
over bite, narrowed upper dental arches, and shorter lower
dental arches (Pirilä-Parkkinen et al., 2009). Oral appliances
and mandibular-advancement devices have been used to treat
abnormal craniofacial development, such as morphological
changes and intermaxillary relations in patients with OSA
(Almeida et al., 2006; Hou et al., 2006). It has been suggested
that a priori changes in craniofacial bones induce pathogenesis
in patients with OSA.

Data from previous reports have indicated that the
morphologies of mandibular and dental changes play primary
roles in the development of OSA pathophysiology, whereas
the present data indicated that the changes of molecular
mechanism about PDL tissues in IH rat model. The osteogenesis–
angiogenesis coupling phenomenon with HIF-1α and VEGF was
involved in the increased BMD observed in developing alveolar
bone under IH. Collectively, our data demonstrated for the first
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time that short periods of IH exposure can enhance peri-M1
abnormally osteogenesis via the HIF-1α-VEGF pathway in
growing rats. Similar mechanisms may occur in the craniofacial
bones in young children under IH exposure. Our results
suggested the necessity of early treatment in children with
OSA to maintain normal bone growth. Furthermore, we also
demonstrated the usefulness of this IH model in studying the
molecular mechanism underlying the morphological changes
occurring in craniofacial bones in children with OSA. Although
IH has been strongly implicated in OSA pathogenesis, OSA is
associated with multifactorial pathogenesis, such as hypercapnia,
intrathoracic negative pressure, and sympathetic overactivation
(Fletcher, 2001). IH exposure as a single pathogenesis of OSA,
a limitation of this study, is that the morphological changes
observed in rats may differ somewhat from those that occur
in children with OSA; thus, further morphological studies on
pediatric OSA are required. Further study is also expected under
different experimental settings, involving differences in IH
exposure and age.

In conclusion, we demonstrated that IH increases BMD in
alveolar bone proper around the roots of the first mandibular
molar. Our data suggest the involvement of an osteogenesis–
angiogenesis coupling phenomenon with HIF-1α and VEGF in
PDL tissues. IH was found to significantly increase BMD and
alter bone microstructure, potential risk factors for homeostasis

disturbance in alveolar bone proper in growing IH rats. The
expression levels of HIF-1α, VEGF, ALP, and BMP-2 transcripts
were up-regulated in PDL tissues subjected to IH exposure
for 3 weeks. Although the signaling pathway underlying IH-
induced changes in the bony microstructure is not yet fully
elucidated, these findings improve our current understanding of
the molecular mechanisms underlying the impacts of IH on bone
homeostasis.
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