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Despite several studies describing the electrophysiological properties of RVLM

presympathetic neurons, there is no consensus in the literature about their pacemaking

property, mainly due to different experimental approaches used for recordings of neuronal

intrinsic properties. In this review we are presenting a historical retrospective about the

pioneering studies and their controversies on the intrinsic electrophysiological property of

auto-depolarization of these cells in conjunction with recent studies from our laboratory

documenting that RVLM presympathetic neurons present pacemaking capacity. We

also discuss whether increased sympathetic activity observed in animal models of

neurogenic hypertension (CIH and SHR) are dependent on changes in the intrinsic

electrophysiological properties of these cells or due to changes in modulatory inputs from

neurons of the respiratory network. We also highlight the key role of INaP as the major

current contributing to the pacemaking property of RVLM presympathetic neurons.

Keywords: neurogenic hypertension, sympathetic activity, presympathetic neurons

RVLM AND SYMPATHETIC OUTFLOW

Presympathetic neurons located in the rostral ventrolateral medulla (RVLM) are responsible for
generating the sympathetic drive to the cardiovascular system and ultimately determine cardiac
output and vascular resistance (Dampney, 1994). Original studies by Owsjannikow and Dittmar,
from Carl Ludwig’s laboratory, suggested the presence of a vasomotor center in the medulla (apud
Seller, 1996). These authors performed controlled lesions in the brainstem and simultaneously
recorded arterial pressure. After several precise anteroposterior transections in the brain axis, they
observed that a small area in the ventrolateral medulla was critical to keep the baseline arterial
pressure and identified this region as a vasomotor area (apud Seller, 1996). These findings by
the Germans physiologists, in the second half of the 19th century, were the first description of
the pressor area and contributed to the identification of spinally projecting sympatho-excitatory
neurons.

Additional evidence about the relevance of RVLM in the maintenance of baseline arterial
pressure was provided in a study by Guertzenstein and Silver (1974), in which they demonstrated
that bilateral inhibition of specific areas in the ventral medulla, using inhibitory amino acid
glycine, produced a large fall in the arterial blood pressure, similar to that described by Dittmar
after medullo-spinal transections. The role of RVLM in controlling the cardiovascular function
was also described in a study by Granata et al. (1983), which reinforced the concept of a key
region in the medullary surface for the maintenance of arterial blood pressure. Moreover, RVLM
activation by either electrical stimulation or application of excitatory amino acid (glutamate) or
even RVLMdisinhibition by application of GABA receptor antagonist (bicuculline), in anesthetized
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or conscious animals, elicited an increase in sympathetic activity
and arterial blood pressure (Willette et al., 1983; Reis et al., 1984;
Ross et al., 1984a; de Paula and Machado, 2000; Sakima et al.,
2000; Moraes et al., 2011), while bilateral electrolytic lesions,
microinjection of GABA or administration of tetrodotoxin, leads
to a large fall in the arterial pressure to levels comparable to
those observed after transection below brainstem (Dampney and
Moon, 1980;Willette et al., 1983; Reis et al., 1984; Benarroch et al.,
1986).

Fine anatomical studies by Amendt et al. (1979) and
Ross et al. (1981, 1984a) using retrograde transport and
immunocytochemical technique demonstrated that RVLM
neurons project directly to the thoracic spinal cord, where
preganglionic sympathetic neurons are located. Studies by Ross
et al. (1984a,b) also demonstrated that terminals of RVLM
neurons contain phenylethanolamine-N-methyl transferase
(PNMT), characterizing these neurons as C1 adrenaline-
synthesizing neurons. Photostimulation of this neuronal
phenotype, using lentivirus that expresses channelrhodopsin-2,
increased the sympathetic nerve activity and arterial blood
pressure in rats in vivo confirming the involvement of these cells
in the cardiovascular regulation (Abbott et al., 2009).

The direct neural projection from RVLM neurons to
spinal cord was also electrophysiologically characterized using
antidromic stimulation (Barman and Gebber, 1985; McAllen,
1986; Morrison et al., 1988). In addition to their spinally
projection, RVLM neurons are also characterized by the
reduction in their firing frequency or silence completely
in face of baroreflex stimulation (Schreihofer and Guyenet,
1997). Therefore, it is very well documented that there are
presympathetic neurons in RVLM and that their integrity is
essential to maintain the level of sympathetic activity and,
consequently, the baseline levels of arterial blood pressure.

ELECTROPHYSIOLOGICAL
CHARACTERIZATION OF
PRESYMPATHETIC NEURONS

After anatomical and functional evidence that cell bodies of
presympathetic neurons were located at RVLM (Amendt et al.,
1979; Ross et al., 1981, 1984a; Barman and Gebber, 1985;
Morrison et al., 1988) several studies were performed to evaluate
their pacemaker activity. Initially, studies using anesthetized
animals described that RVLM neurons presented tonic activity, a
state of continuous discharge of action potential, and their firing
was highly synchronized with the sympathetic nerve discharge,
the arterial pulse and respiration (Barman and Gebber, 1985;
Haselton and Guyenet, 1989; Granata and Kitai, 1992). There is
also experimental evidence that the firing frequency of RVLM
presympathetic neurons is modulated by the afferents inputs
from the arterial baroreceptors (Barman and Gebber, 1985;
McAllen, 1986; Granata and Kitai, 1992).

A very important study by Sun et al. (1988a) considered two
theories to explain the tonic activity of RVLM presympathetic
neurons observed in anesthetized animals: (1) the pacemaker
theory, suggesting that these neurons have intrinsic capacity to

generate rhythmic activity and (2) the network theory suggesting
that the activity of these neurons is dependent on the balance
of tonic excitatory and inhibitory synaptic inputs arising from
other brain regions. Although, different studies have documented
the presence of excitatory and inhibitory inputs to RVLM
neurons (Brown and Guyenet, 1985; Cravo and Morrison,
1993; Dampney, 1994; Schreihofer et al., 2000; Schreihofer and
Guyenet, 2002; Gao and Derbenev, 2013), the main issue about
these cells was related to their pacemaking capacity. More
recently, it was documented that glial cells are also involved in the
control of arterial pressure, since selective stimulation of RVLM
astrocytes, using optogenetic approach, induced ATP release,
depolarization of the presympathetic neurons with consequent
increase in the sympathetic nerve activity and arterial pressure
(Marina et al., 2013). Therefore, the controversy about the
capacity the RVLM neurons generate spontaneous and rhythmic
activity persisted by several years.

In this context, Sun et al. (1988a) provided evidence
supporting the concept that RVLM neurons, under experimental
conditions in which synaptic activity is low, are pacemakers.
These authors using anesthetized adult rats and in vitro
experiments (bloc of vascularly perfused bulb), reduced
the excitatory neurotransmission using glutamate-receptor
antagonist (kynurenic acid) and recorded the firing frequency
of RVLM neurons using extracellular recordings. Intracisternal
injection of kynurenic acid increased the firing frequency of
functionally identified barosensitive neurons. On the other
hand, several studies documented that microinjections of
kynurenic acid into RVLM produced no major changes in the
sympathetic nerve activity (Sun and Guyenet, 1987; Kiely and
Gordon, 1994; Araujo et al., 1999). In a subsequent study, Sun
et al. (1988a) suggested that glutamatergic receptor antagonist
may also reduce the neuronal activity in CVLM, which sends
inhibitory inputs to RVLM neurons, as demonstrated previously
by Willette et al. (1984). Studies performed under the effect
of kynurenic acid, Sun et al. (1988a) showed that the majority
of synaptic inputs to RVLM presympathetic neurons are
reduced and that rhythmic firing pattern observed in these
cells using extracellular recordings was due to pacemaker
activity. Therefore, based on these experiments Sun et al. (1988a)
suggested that presympathetic RVLM neurons have intrinsic
pacemaker properties. In their study they stated: “The final
proof of the pacemaker theory will have to await the result of
intracellular recording experiments.”

In order to explore in further detail the possible pacemaker
activity of RVLM presympathetic neurons, Sun et al. (1988b)
performed intracellular recordings in brainstem slices of young
adult rats. They described that RVLM neurons display a typical
pacemaker membrane potential trajectory with no evidence of
excitatory synaptic inputs. However, in their study it was not
used any pharmacological tool to exclude possible inputs from
neuronal network. They ruled out neuronal network involvement
in the generation of the regular firing frequency of these neurons
because no excitatory post-synaptic potentials (EPSPs) were
observed in response to intracellular hyperpolarizing currents.
Moreover, an important methodological advancement of this
study was the use of a dye to identify spinal cord-projecting
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RVLM neurons, since the RVLM region is functionally,
anatomically as well as chemically, heterogeneous. For this
purpose, Sun et al. (1988b) performed injection of rhodamine
microbeads into the spinal cord (T3 level) in anesthetized
animal and few days later they visualized labeled cells on
the slices of the ventral medulla. Taking the advantage of
retrogradely identified cells and intracellular recordings, Sun
et al. (1988b) confirmed that the RVLM presympathetic neurons
present electrophysiological properties of auto-depolarization,
i.e., characteristics of pacemaker neurons in accordance with
the following criteria: (1) pacemaker firing frequency, (2) tonic
discharge of at least 4 spikes per second, (3) loss of pacemaker
activity during hyperpolarization around −80 mV, (4) absence
of detectable EPSPs even during hyperpolarization. However,
it is important to mention that the intracellular recordings
may damage the neuronal membrane during the penetration of
pipette into the cell, producing a leak current, depolarized resting
potential (Li et al., 2004) and inactivation of voltage-dependent
sodium channels with a consequent decrease in the frequency
discharge (Staley et al., 1992).

After these important studies by Sun et al. (1988a,b),
several others from different laboratories tried to identify the
presence of pacemaker activity in RVLM neurons using different
experimental approaches, such as whole-cell patch clamp
technique. This approach is more appropriate for recording
neuronal activity since it produces less damage to the membrane
of recorded cell and provides more information about the
intrinsic properties of neurons, such as ionic conductances
related to the firing frequency, which is not feasible using
extracellular records. In this context, Kangrga and Loewy (1995)
performed experiments to analyze the membrane potential of
these cells, using brainstem slices from neonatal rats, retrogradely
labeled neurons and whole-cell patch clamp. They identified two
types of labeled RVLM neurons: pacemaker and non-pacemaker
neurons. The pacemaker cells were classified according to the
following criteria: the regenerative spontaneous firing frequency
at a constant rate and membrane potential trajectory presenting
gradual depolarizing interspike ramps. Kangrga and Loewy
(1995) also suggested that the intrinsic tonic firing frequency
of RVLM neurons was due to the pacemaker activity and not
due to the synaptic inputs. However, it is important to note
that two factors make the interpretation of these experiments
difficult: (1) identification of the intrinsic properties, since no
pharmacological antagonism was used to isolate the recorded
cell from the neuronal network and, (2) the results obtained
using neonatal rats may be different from those observed in
adult animals, since the density distribution of ionic channels in
neurons is established in the brain development period between
P17 and P19 (Beckh et al., 1989; Straka et al., 2005), and
the expression and functional properties of several receptors
involved in the synaptic transmission may also change during the
development (Ben-Ari, 2002; Luján et al., 2005).

Studies by Lipski et al. (1996) also attempted to shed light on
the controversy about the pacemaker activity of RVLM neurons
and the possible role of the neural network, studying the activity
of RVLM neurons using intracellular recordings in anesthetized
adult rats. In their work, Lipski et al. (1996) identified RVLM

presympathetic neurons by 2 criteria: (1) inhibition of neuronal
activity after stimulation of the aortic depressor nerve and
(2) antidromic responses evoked by stimulation of RVLM
bulbospinal axons. In contrast to the intrinsic pacemaker
properties as previously suggested by Sun et al. (1988a,b)
and Kangrga and Loewy (1995), the findings by Lipski et al.
(1996) indicated that the spontaneous firing frequency in RVLM
presympathetic neurons results from synaptic inputs based on
the following evidence: (1) action potentials were normally
preceded by depolarizing potentials showing features of fast
EPSPs and (2) there was no evidence of regular, ramp-like
depolarization between action potentials. Therefore, the results
by Lipski et al. (1996) raised again new questions about the
“pacemaker” activity of RVLM presympathetic neurons and
brought for discussion the network theory related to the
generation of action potential in RVLM neurons.

In another study, Lipski et al. (1998) evaluated spontaneous
firing frequency in acutely dissociated retrogradely labeled
RVLM neurons from neonatal rats (13- to 19-days old), in
which all cell-to-cell interactions were eliminated. Using whole-
cell patch clamp they verified that these cells presented no
pacemaker activity and suggested that the depolarization of these
neurons observed in the whole animal was dependent on the
influence of inhibitory and excitatory tonic projections from
different neuronal networks in the brainstem, such as excitatory
projections from the nucleus of tractus solitarius to CVLM
neurons, which in turn sendmonosynaptic inhibitory projections
to RVLM presympathetic neurons (Agarwal and Calaresu, 1991).

Although, the pacemaker property of RVLM presympathetic
neurons were evaluated in several studies (Sun et al., 1988a,b;
Kangrga and Loewy, 1995; Lipski et al., 1996, 1998) there was
no consensus about their spontaneous activity, probably due to
different experimental conditions, such as the age of animal,
presence of anesthesia and different electrophysiological methods
used to recordings the neuronal activity (Figure 1). In addition,
it is important to note that the electrophysiological record of
RVLM neurons from juvenile and adult rats is not a simple task
mainly due to the high degree of technical difficulties in recording
neurons in the ventral medulla, a brainstem area presenting high
density of myelin.

In our laboratory, using an in situ preparations of juvenile
rats (P30-P31), we observed that all RVLM presympathetic
neurons fire spontaneously and the frequency of these cells
were heterogeneous ranging from 8 to 22 Hz, with depolarized
(−52mV) and hyperpolarized (−63mV) values of membrane
potential (Moraes et al., 2013). Moreover, we observed
that respiratory network modulates the activity of RVLM
presympathetic neurons, which allow us to classify them into
four types, being three of themmodulated by respiratory activity.
These neurons receive multiple synaptic inputs, observed by a
high level of synaptic “noise,” and their baseline firing frequency
was probably determined by the balance of excitatory and
inhibitory inputs, as observed previously in anesthetized rats by
Lipski et al. (1996). However, after pharmacological blockade of
fast synaptic transmission in the in situ preparation, we clearly
verified the intrinsic properties of auto-depolarization in RVLM
neurons, confirming their pacemaker properties (Figure 2,
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FIGURE 1 | The activity of RVLM presympathetic neurons. Typical action potentials of two RVLM neurons (A,B) using intracellular recordings in brainstem slices

of young adult rats (100–120 g), modified from Sun et al. (1988b, Copyright License Number: 3894201035959). The pacemaker activity of neurons is demonstrated

by the resetting after a single spike and absence of detectable EPSPs. (C,D) Activity of RVLM neurons using intracellular recordings in anesthetized adult rats

(380–500g), modified from Lipski et al. (1996, Copyright License Number: 3894210262580). Synaptic activity and firing in RVLM neurons (membrane potential:

−65mV, C); Synaptic activity and firing during a continuous small polarizing current (−0.1 nA). Arrows indicate EPSPs initiating individual action potentials (D).

Moraes et al., 2013). Due to this discrepancy in the firing rate and
resting membrane potential, we combined single cell RT-qPCR
and immunohistochemistry to characterize the neurochemical
profile of these neurons and we observed that all respiratory-
modulated RVLM presympathetic neurons investigated were
glutamatergic neurons. However, the expression of tyrosine
hydroxylase was detected in the inspiratory-modulated and non-
respiratory modulated RVLM presympathetic neurons, but not
in the post-inspiratory modulated neurons, pointing out to the
existence of different subpopulations of RVLM presympathetic
pacemaker neurons (Moraes et al., 2013).

We also performed experiments designed to record
retrogradely labeled RVLM presympathetic neurons in
brainstem slices preparations from juvenile-adult animals
(P35, Almado et al., 2014). Ten days after the surgical procedures
to retrogradely label these cells, whole-cell recordings in
brainstem slices revealed that RVLM neurons are under
synaptic modulation and presented a regular and spontaneous
firing frequency, which are in agreement with our findings
in the in situ preparation. Moreover, after blockade of
fast synaptic transmission, the firing frequency of RVLM
neurons decreased significantly but their activity was not
abolished, indicating that these cells have intrinsic properties
required to auto-depolarization. Thus, RVLM presympathetic
neurons in slices from juvenile/adults rats also behave as

pacemakers under our experimental condition. Therefore, our
studies performed in the in situ preparation, as well as in the
brainstem slices from juvenile-adults rats, support the concept
that RVLM presympathetic neurons are indeed pacemakers
(Figure 2).

RVLM NEURONS AND NEUROGENIC
HYPERTENSION

Several studies have suggested that changes in the intrinsic
properties of RVLM neurons are the main cause of
cardiovascular disorders, such as neurogenic hypertension,
which is characterized by the chronic increase of the arterial
blood pressure mediated by sympathetic overactivity rather than
vascular and renal dysfunctions (Han et al., 1998; Guyenet, 2006;
Toney et al., 2010; Kumagai et al., 2012).

Considering that experimental models of neurogenic
hypertension, such as rats submitted to chronic intermittent
hypoxia (CIH) and spontaneously hypertensive (SH) rats,
show a significant increase in sympathetic tone, more recently
we became directly involved with this important issue. Our
studies were designed to analyze whether RVLM neurons,
from juvenile-adult animals, present an enhancement in their
spontaneous firing frequency and whether this enhancement is
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FIGURE 2 | Pacemaker activity of RVLM neurons. (A) Spontaneous action

potentials of an RVLM neuron using patch clamp technique in in situ

preparation of juvenile rats (85–140 g) before (A) and after blockade (B) of fast

neurotransmission (2.5–6.0mM kynurenic acid + 20µM bicuculline + 1µM

strychnine), modified from Moraes et al. (2013, Copyright order number:

3911900683231). Spontaneous action potentials of an RVLM neuron using

patch clamp technique in brainstem slices of juvenile rats (P30–35) before (C)

and after (D) blockade of fast neurotransmission (1µM strychnine + 20µM

bicuculline + 40µM AP-5 + 20µM DNQX), modified from Almado et al.

(2014, Copyright License Number: 3894220907506).

responsible for the sympathetic overactivity and hypertension
observed in CIH and SH rats. To reach these goals, we used
in situ, as well as in vitro preparations. Firstly, we performed
blind whole cell patch clamp recordings of RVLM neurons,
using in situ preparations of juvenile rats (Paton, 1996). This
preparation has the advantage of being anesthesia-free with
intact brainstem circuits, while the lack of pulsatility makes
the brain amenable to whole-cell recordings (Moraes et al.,
2013). Although, we have observed an increase in the firing
frequency of RVLM presympathetic neurons from CIH rats
in the late-expiratory phase of the respiratory cycle (late-E),
the blockade of fast synaptic transmission revealed similar
intrinsic firing frequency, membrane potential, input resistance
as well as intrinsic excitability when compared with RVLM
presympathetic neurons from control rats. These important
findings show that the sympathetic overactivity observed
in this model of neurogenic hypertension is not due to
changes in the intrinsic properties of RVLM presympathetic
neurons. Therefore, these cells are not in charge of sympathetic
overactivity observed in CIH rats. Furthermore, in the intact
respiratory and sympathetic brainstem networks, respiratory-
modulated RVLM presympathetic neurons from SH rats
revealed an increase in their activity, also in the late-expiratory
phase, when compared with those neurons from normotensive
rats. It is important to highlight that after synaptic blockade,
the pacemaking capacity of RVLM presympathetic neurons
was similar in either control, CIH or SH rats, indicating
clearly that their increased firing frequency during the late-
expiratory phase was driven by excitatory synaptic inputs

FIGURE 3 | Intrinsic firing frequency discharge of RVLM neurons in

different models of neurogenic hypertension. Intrinsic firing frequency

discharge of RVLM neurons after positive current injection in in situ preparation

of control and CIH juvenile rats (A,B), modified from Moraes et al. (2013,

Copyright order number: 3911900683231); Intrinsic firing frequency discharge

of RVLM neurons after positive current injection in in situ preparation of control

and spontaneous hypertensive rats (C,D), modified from Moraes et al. (2014,

Copyright License Number: 3894221294317). All the experiments were

performed in the presence of synaptic blockade (2.5–6.0mM kynurenic acid +

20µM bicuculline + 1µM strychnine).

from neurons of the respiratory network (Moraes et al., 2013,
2014).

In a series of experiments performed in slices, we also
analyzed the effects of CIH on the electrophysiological properties
of RVLM presympathetic neurons. As described for the in
situ approach, in the presence of synaptic blockade RVLM
neurons from CIH rats presented no changes in their resting
membrane potential, firing frequency and input resistance. Thus,
the intrinsic properties of RVLM presympathetic neurons in
brainstem slices from juvenile rats exposed to CIH were similar
to those observed in neurons from control rats, as we observed in
in situ preparations of CIH and SH rats. Although, our findings
indicate that RVLM presympathetic neurons are pacemakers,
our studies using two experimental models of neurogenic
hypertension (CIH and SH) also indicate that the increased
firing frequency of these cells is not due to changes in their
intrinsic properties (Figure 3), but is associated with changes
in their modulation by synaptic inputs from the respiratory
network.

Taken together, our data, from in situ and in vitro
preparations, allow us to consider that: (1) RVLMpresympathetic
neurons have intrinsic mechanism that allow them to behave
as pacemaker neurons; and (2) the increased respiratory
modulation to these neurons is mainly due to excitatory
drives (Moraes et al., 2013, 2014), supporting the hypothesis
that sympathetic overactivity, present in different models of
neurogenic hypertension, might involve changes in the neurons
from the respiratory network; the observed changes in these
respiratory network neurons seems to increase the excitatory
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inputs to the RVLM presympathetic neurons (Czyzyk-Krzeska
and Trzebski, 1990; Moraes et al., 2013, 2014).

RVLM PRESYMPATHETIC NEURONS:
CONDUCTANCE AND ROLES IN THE
AUTO-DEPOLARIZATION

Although, changes in the intrinsic electrophysiological properties
of RVLM presympathetic neurons are not the cause of
neurogenic hypertension in CIH and SH rats, a considerable
amount of effort has been committed to understanding the
mechanisms underlying the ability of these neurons to auto-
depolarize. Studies by Lipski et al. (1998) using retrograde
labeled isolated RVLM neurons demonstrated that these cells
express high and low voltage-activated calcium channels. These
type of channels presents several functionalities including:
(1) neurotransmission, (2) activation of calcium-dependent
potassium channels, and (3) neuronal excitability control (Llinás,
1988, 2014; Catterall, 2011). Furthermore, low voltage-activated
Ca2+ channels have been implicated in the auto-depolarization
of RVLM presympathetic neurons during short periods of
hypoxia (Sun and Reis, 1994a). However, Kangrga and Loewy
(1995), using brainstem slices observed that only in 2 out
13 RVLM presympathetic neurons tested, the application of
CdCl2, a broad-spectrum calcium channel blocker, abolished
the spontaneous firing frequency of cells, while the majority
showed a significant enhancement. These results by Kangrga
and Loewy (1995) suggested that some RVLM neurons may
require Ca2+ influx and/or synaptic drive for regenerative firing
and are in agreement with studies by Sun and Reis (1994a)
demonstrating that increases in the firing frequency of RVLM
neurons are synchronized with the rapid increase in Ca2+

channel conductance.
In our laboratory, we also investigated the role of calcium

channels in the auto-depolarization behavior of RVLM
presympathetic neurons. Using in situ preparations, we
observed that Ni2+, a blocker of type T calcium channels, did
not eliminate the activity of neurons, but increased their firing
frequency (Moraes et al., 2013). However, we believe that type
T calcium channels may play an indirect role in the RVLM
neurons activity by stimulating calcium-activated potassium
channel (BKCa channels), which in turn may influence the firing
frequency of neurons as suggested by Pierrefiche et al. (1995).
This suggestion is supported by a slight increase in the action
potential duration and the marked decrease in the amplitude
and duration of after-hyperpolarization observed previously by
Kangrga and Loewy (1995). All together these studies revealed
that calcium currents seems to be involved, but are not the main
conductance in the intrinsic auto-depolarization observed in the
majority of RVLM presympathetic neurons.

A second conductance that seems to be involved in the
auto-depolarization of RVLM presympathetic neurons is related
to voltage-dependent potassium channels. Previously, it was
demonstrated in neonate rats that RVLM presympathetic
neurons express a variety of voltage-dependent K+ channels
(Kangrga and Loewy, 1995; Li et al., 1995). Therefore,

this previous information leads us to investigate whether
these channels could drive the intrinsic activity of RVLM
presympathetic neurons. We documented that RVLM
presympathetic neurons show a delay during the depolarizing
phase of action potentials generation. In this case, the current
that underlies this delayed excitation seems to be similar to
transient potassium current. However, when we blocked this
conductance using 4-aminopyridine, it resulted in a decrease
in after-hyperpolarization amplitude and an increase in the
firing frequency. These findings highlight the contribution of
this conductance to the action potential kinetics, but not for
the auto-depolarization characteristic of RVLM presympathetic
neurons (Moraes et al., 2013).

Considering auto-depolarization as a possible summation of
a set of smaller conductances operating at membrane potentials
just below the spike threshold, we also explored the presence
and contribution of such conductances to RVLM presympathetic
neurons, mainly those involved in pacemaker activity. The first
to be investigated was a current originated by hyperpolarization-
activated cyclic-nucleotide-gated channels or HCN channels
(McCormick and Pape, 1990; Wahl-Schott and Biel, 2009) that is
responsible for keeping the resting potential near to the threshold
value. Although, HCN channels strongly modulates spontaneous
discharge of several cells (Gu et al., 2005; Rodrigues and Oertel,
2006; Kase and Imoto, 2012), it does not seem to be essential
for auto-depolarization of RVLM presympathetic neurons and
consequently for blood pressure control, since ZD7288, a specific
blocker of these channels, did not change the excitability of
RVLM presympathetic neurons, sympathetic activity or mean
arterial pressure (Miyawaki et al., 2003; Moraes et al., 2013;
Tallapragada et al., 2016).

Another conductance potentially involved in intrinsic auto-
depolarization of RVLM neurons is the Na+ conductance
resistant to TTX, or the INaP currents. INaP has been implicated
in the regulation of subthreshold excitability in a variety of
excitable cells (French and Gage, 1985; Stafstrom et al., 1985).
Computational modeling has shown that INaP is involved
with spontaneous excitability due to its contribution for after-
hyperpolarization phase increasing the cellular excitability by
reducing threshold, and also by increasing the discharge
frequency in response to depolarizing current (Vervaeke et al.,
2006).

Studies by Kangrga and Loewy (1995) demonstrated that the
spontaneous firing of RVLM presympathetic neurons is due to a
cellular mechanism that is fully dependent on INaP. In a recent
study from our laboratory, we obtained similar findings, since
a blocker of sodium channels responsible for INaP (riluzole)
abolished the spontaneous activity of these cells (Moraes et al.,
2013) revealing the conductance responsible for the intrinsic
auto-depolarization of the RVLM presympathetic neurons.
Therefore, the INaP current is essential for the spontaneous
activity of these neurons (Figure 4).

Although, our previous studies documented the absence of
changes in the intrinsic properties of RVLM presympathetic
neurons in neurogenic hypertensive models, we cannot
ignore that under some conditions, their intrinsic properties
may be altered. There are some studies reporting the
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FIGURE 4 | Schematic representation of the role of RVLM

presympathetic neurons conductances in the pacemaker activity.

Schematic representations of calcium, potassium and TTX-resistant sodium

channels (A–C) and the effect of selective blockade of each channel on

intrinsic firing frequency of a pacemaker neuron (A1–C1). Note that blockade

of calcium and potassium channels increase the intrinsic firing frequency of

RVLM presympathetic neurons while the blockade of TTX-resistant sodium

channel abolished the spontaneous activity of these neurons.

possibility that these neurons present chemosensitivity,
especially to hypoxia (Sun et al., 1992; Sun and Reis, 1993,
1994a,b; Wang et al., 2001; Koganezawa and Terui, 2007;
Koganezawa and Paton, 2014). Therefore, it is possible that
RVLM presympathetic neurons present a detection system of
brainstem hypoperfusion/ischaemia through specific membrane
conductances. It has been emphasized that hypertension can be
produced in response to brain hypoperfusion, but themechanism
for detecting this brain condition remains poorly understood
(Paton et al., 2009; Cates et al., 2011). We suggest that RVLM
presympathetic neurons can switch from synaptically modulated
firing frequency to almost pure pacemaking-driven discharge,
in a reversible way, during severe hypercapnic/hypoxia, such
as gasping and it may represent the last physiological strategic
response to increase sympathetic activity and to the survival
of the animals under these challenges. It is also important
to note that previous studies demonstrated the involvement
of intrinsic membrane conductance such as potassium and

calcium currents as well as persistent sodium currents for the
intrinsic response of RVLM presympathetic neurons exposed to
hypoxia (Sun and Reis, 1994a; Koganezawa and Paton, 2014).
The contribution of different intrinsic membrane conductances
for generating changes in pacemaker RVLM presympathetic
neuronal activity in hypoperfusion/ischemia awaits additional
experiments and it is a critical step for our understanding of the
electrophysiological complexity of the RVLM presympathetic
neurons under physiological challenges.

CONCLUSION

In this review we described the functional characteristics
of RVLM presympathetic neurons and discussed their
intrinsic capacity to auto-depolarize and work as pacemakers,
a controversial concept in the recent past. Experimental
evidence that these neurons are not responsible for sympathetic
overactivity observed in models of neurogenic hypertension,
such as CIH and SH rats were also discussed. In addition, we
highlighted that the main cause of the increased frequency
discharge of RVLM presympathetic neurons in these
experimental models of neurogenic hypertension is likely
related to changes in synaptic inputs from the respiratory
network.
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