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The prevalence of cardiovascular diseases including hypertension increases

dramatically in women after menopause, however the mechanisms involved remain

incompletely understood. Oxytocinergic (OTergic) neurons are largely present within

the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown

that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves

autonomic control of the circulation. Since preautonomic PVN neurons express different

types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes

baroreflex impairment, autonomic imbalance and hypertension by negatively impacting

OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin

gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei

in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings

were used to assess resting blood pressure and heart rate and the autonomic modulation

of heart and vessels was estimated by power spectral analysis. We observed that the

ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity,

increased sympathetic and reduced vagal outflows to the heart and augmented the

resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA

and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN

oxytocin protein levels were positively correlated with decreased baroreflex sensitivity

and negatively correlated with increased LF/HF ratio. These findings suggest that

reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex

dysfunction and autonomic dysregulation observed with ovarian hormone deprivation.
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INTRODUCTION

Cardiovascular diseases are the main cause of death in women
(Mozaffarian et al., 2015). Menopause, characterized by a
reduction in the circulating levels of the ovarian hormones
progesterone and estrogen, is an important risk factor for
cardiovascular diseases. More specifically, ovarian hormone
deprivation has been shown to lead to hypertension, abnormal
plasma lipids, endothelial dysfunction, elevated oxidative
stress, autonomic imbalance and baroreflex impairment, which
collectively result in high cardiovascular morbidity and mortality
(Jensen et al., 1990; Taddei et al., 1996; Mercuro et al., 2000;
Irigoyen et al., 2005; Flues et al., 2010).

It is well known that brainstem nuclei and the paraventricular
nucleus of hypothalamus (PVN) are major sites for regulation
of cardiovascular autonomic responses. A transient blood
pressure rise activates neurons within the nucleus tractus
solitarii (NTS), which stimulate parasympathetic neurons in
the nucleus ambiguus (NA) and the dorsal motor nucleus of
vagus (DMV) (Dampney, 1994). The NTS also projects and
excites the GABAergic neurons in the caudal ventrolateral
medulla (CVLM), which reduce the activity of sympathetic
premotor neurons within the rostral ventrolateral medulla
(RVLM) projecting to heart and vessels (Dampney, 1994)
This information is continuously conveyed to pre-autonomic
PVN neurons, via ascending cathecolaminergic afferents arising
from NTS and CVLM, thus regulating their neurosecretory
activity (Michelini and Stern, 2009; Sladek et al., 2015).
Oxytocinergic (OTergic) pre-autonomic neurons within the
dorsal cap, ventromedial and posterior PVN subnuclei are
activated by the ascending afferents and project back to
brainstem nuclei and spinal cord, thusmodulating the autonomic
circulatory control (Buijs, 1978; Michelini and Stern, 2009;
Geerling et al., 2010; Cruz et al., 2013; Sladek et al., 2015). The
physiological relevance of central oxytocin-dependent signaling
in control of cardiovascular responses has been demonstrated
by several studies. Augmented oxytocinergic drive to brainstem
areas sensitizes the baroreceptor reflex control of heart rate
facilitating bradycardic responses (Higa et al., 2002; Cavalleri
et al., 2011).

Several types of estrogen receptors are expressed in the
PVN. The nuclear estrogen receptor β (ER-β), a G protein-
coupled estrogen receptor, is specifically expressed in OTergic
neurons (Alves et al., 1998; Hrabovszky et al., 1998; Brailoiu
et al., 2007); however, a functional link between ovarian
hormones and central oxytocin signaling remains to be
determined. Therefore, we hypothesized that ovarian hormone
deprivation blunts oxytocin expression and signaling in pre-
autonomic areas of the PVN, thus contributing to baroreflex
impairment, autonomic imbalance and hypertension. In the
present study, we used ovariectomized rats to investigate
whether ovarian hormones are required for normal oxytocin
mRNA expression and protein content in the posterior,
ventromedial and dorsal cap subnuclei of the PVN. Conscious
hemodynamic recordings were used to assess resting blood
pressure, heart rate and autonomic modulation of heart and
vessels.

METHODS

Animals
All surgical procedures and experimental protocols (11/2014)
were approved by the Ethics Committee on Animal Research of
Federal University of Sergipe, in accordance with the guide for
the care and use of laboratory animals published by National
Institute of Health (National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals, 2011). Thirty-three female Wistar rats (193 ± 5 g)
were housed in propylene cages with controlled environmental
temperature (22 ± 1◦C), 12 h dark/light cycle and water and
chow ad libitum. Animals were randomly divided into two
groups and submitted to ovariectomy (OVX, n = 16) or sham
surgery (SHAM, n= 17).

Surgical Procedures
At 10 weeks of age, rats were anesthetized (Ketamine: Fort
Dodge IA, USA, 80mg.kg−1 plus Xylazine: Fort Worth TX, USA,
12mg.kg−1, i.p.) and an abdominal incision was made. Ovaries
were then exposed and removed through the oviduct section.
SHAM rats were submitted to the same procedures without
ovaries’ removal. Rats were treated with ketoprofen (Biofen
1%, 2mg.kg−1; Biofarm, Jaboticabal, Brazil) and penicillin
(Pentabiotico Veterinario 24,000 i.u.kg−1; Fontoura Wyeth, Sao
Paulo, Brazil) and allowed to recover for 1 week (Irigoyen et al.,
2005). Efficiency of ovariectomy was confirmed by analysis of
vaginal smears collected for 4 consecutive days. Essentially, only
rats that exhibited diestrus phase in all days were included in the
OVX group. All animals allocated to the SHAM group were in a
regular estrous cycle and were euthanized with the same age.

Eight weeks after OVX or SHAM surgeries, rats were
anesthetized (ketamine, 80mg.kg−1, Fort Dodge IA, USA,
plus xylazine, 12mg.kg−1, Fort Worth TX, USA, i.p.) and a
polyethylene catheter was implanted (PE-10/PE-50, Intramedic,
Becton Dickinson Company, Sparks, MD, USA) into the left
femoral artery. Twenty-four hours after the procedure, rats
are freely moving in their cages and did not exhibit signs
of stress. The arterial catheter was then connected to a
pressure transducer coupled to the preamplifier (FE221, Bridge
Amp, ADInstruments, Bella Vista, NSW, Australia) and the
recording system (Powerlab, ADInstruments, Bella Vista, NSW,
Australia). Resting pulsatile and mean arterial pressure (AP)
were continuously recorded for 30min and processed using a
dedicated software (LabChart 7, ADInstruments, Bella Vista,
NSW, Australia). The inflection points of pressure signal were
identified to generate beat-to-beat time series of mean arterial
pressure (MAP), systolic arterial pressure (SAP), diastolic arterial
pressure (DAP) and pulse interval (PI). Heart rate (HR) was
calculated as 1/PI. To avoid any bias, all rats included in this study
were submitted to the same procedures.

Assessment of Cardiovascular Autonomic
Control
The analyses of PI and SAP variability were performed using
the CardioSeries software (v2.4) as previously described (Oliveira
et al., 2012). Beat-to-beat series were obtained from pulsatile
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arterial pressure and converted into discrete points every 100ms,
using cubic spline interpolation (10Hz). Ten-minutes record of
each rat was used for this analysis. Prior to the calculation of
the spectral density, data was visually inspected and the non-
stationary segments were disregarded. Data was then divided
into half-overlapping sequential sets of 512 data points (51.2 s).
Segments were windowed with a Hanning window and then the
spectrum of each segment was calculated by the FFT algorithm.
The PI spectrum, representing the variability of autonomic
control of the heart, is composed by bands of very low frequency
(VLF; <0.02Hz), low frequency (LF; 0.2–0.75Hz) and high
frequency (HF; 0.75–3.0Hz). These values are usually expressed
in normalized (nu). LF and HF units, obtained through the
division of respective LF and HF power by the total power
minus VLF. VLF of PI represents humoral factors that influence
heart rate, HF of PI indicates the cardiac parasympathetic
modulation, while LF of PI is generally accepted as an index
of cardiac sympathetic modulation and LF/HF ratio represents
the sympatho-vagal balance to the heart (Malliani et al., 1991;
Stauss, 2007; Oliveira et al., 2012). The SAP spectrum reflects
arterial pressure variance and is quantified in mmHg2. Its VLF
component is affected by myogenic vascular function, renin-
angiotensin system and nitric oxide, LF of SAP represents the
vasomotor sympathetic modulation plus endothelial nitric oxide
modulation, while HF of SAP is mainly influenced by alterations
in cardiac output coupled to changes in the venous return during
respiration (Janssen et al., 1995; Heart rate variability: standards
of measurement, physiological interpretation and clinical use.
Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996; Stauss,
2007).

Spontaneous baroreflex sensitivity (sBRS) was measured in
the time domain using the sequence method (Rienzo, 1995).
Beat-to-beat arterial pressure series were analyzed with the
CardioSeries software (v2.4) to detect sequences of at least 4 beats
with increased SAP followed by PI lengthening or decreased SAP
with PI shortening that showed correlations greater than 0.85.
The slope of the linear regression between SAP and PI was used
as a measure of sBRS (mmHg/s).

Tissue Sampling
After the functional measurements, rats were deeply anesthetized
with ketamine and xylazine (300 and 60mg/kg, respectively, ip)
leading to the respiratory arrest. Rats assigned to the PCR
experiments were immediately subjected to transcardiac
perfusion with saline solution (0.09%, 40ml/min, 5min)
and decapitated to remove the brain, which was quickly
transferred to dry-ice. A slice including the medial and
caudal parts of the nucleus (from 1.40 to 2.30mm caudal to
bregma, 800–1000µm) was taken at the hypothalamic level
and immediately frozen for bilateral punching of the PVN.
Samples were then stored at −80◦C for subsequent analyses.
Rats assigned to immunohistochemistry assay were subjected
to transcardiac perfusion with Dulbecco’s Modified Eagle’s
Medium (DMEM-Sigma, 40ml/min, ∼300ml), followed by
infusion of 4% paraformaldehyde in 0.01M PBS (pH 7.4,
40ml/min, ∼300ml) and decapitated for brain removal. The
brain was post-fixed in 4% paraformaldehyde for 48 h at room

temperature, cryoprotected in Tris-PBS (10mM Tris, 0.9% NaCl,
10mM phosphate buffer, pH 7.4, containing 0.05% merthiolate)
containing 20% sucrose at room temperature for 24–30 h,
and then incubated in 0.01M PBS that contained 30% sucrose
solution and stored at 4◦C for 3–4 days before further processing.

Quantitative Real-Time PCR
mRNA expression was assessed via quantitative real time PCR
(qPCR). TRizol reagent (0.5ml) was added to samples and
RNA extraction was performed according to the manufacturer’s
instructions. After extraction, RNA was dissolved in 10µl of
DEPC water and stored at−80◦C. Reverse transcriptase reaction
was performed only after DNase I was added to samples, and first-
strand cDNA synthesis was made with 1µg RNA/reaction, using
ImProm-II Reverse transcriptase (Promega, USA), according
to the manufacturer’s instructions. RNaseOUT was also present
during this process and cDNA was stored at −20◦C. qPCR
was performed in the Applied Biosystems 7500 Fast Real-Time
PCR System (ThermoFisher, California, USA) using Platinum
SYBR QPCR Supermix-UDG and specific oligonucleotides for
Oxytocin (OT, sense primer, TAGACCTGGATATGCGCAAG;
antisense primer, CTCGGAGAAGGCAGACTCAG) and
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, sense
primer, GGGCAGCCCAGA ACATCAT; antisense primer,
CCGTTCAGCTCTGGGATGAC). OT mRNA expression,
normalized to GAPDH, was calculated using the 11Ct method
(Pfaffl, 2001) and expressed as fold change in relation to
values exhibited by the SHAM-operated rats. All reagents
and oligonucleotides were purchased from Invitrogen (San
Diego, CA).

Immunohistochemical Analyses
Sequential hypothalamic coronal sections (30µm, −1.80 to
−2.12 caudal to the Bregma) were obtained as previously
described (Paxinos and Watson, 2006) using a cryostat (Leica
CM 1850; Nussloch, Germany). Sections were collected in tissue
culture wells with 0.01 M PBS and then incubated with 0.03%
Triton X-100 and 10% normal donkey serum for 30min. For the
immunofluorescence assay, sections were incubated overnight
with primary antibody (polyclonal guinea pig anti-oxytocin,
1:200,000 dilution; Bachem, Bubendorf, Switzerland), followed
by a 2-h incubation with secondary antibody (donkey anti-
guinea pig Cy3-labeled, 1:500 dilution; Jackson ImmunoResearch
Laboratories,West Grove, PA) diluted in T-PBS containing 0.03%
Triton X-100 at room temperature. Slices were placed on slides
and mounted with a coverslip and SlowFade Gold anti-fade
reagent. Specificity of the antibody was tested by processing side-
by-side slices without the incubation with the primary or the
secondary antibody.

Image Acquisition and Analysis
OT immunoreactivity was captured using an epifluorescence
microscope (Leica DMLB, Wetzlar, Germany; ×200
magnification) coupled to a digital camera (Axio-Cam HRC;
Carl Zeiss, Vision GmbH, Aalen, Germany). Slides were visually
inspected to localize the dorsal cap, ventromedial, posterior
and magnocellular PVN subnuclei, and image analyses were
performed using the ImageJ software (NIH) as previously
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described (Higa-Taniguchi et al., 2007; Cavalleri et al., 2011;
Cruz et al., 2013). The relative OT density and integrated OT
density were used as indexes of protein content in specific PVN
subnuclei. Relative OT density was calculated as the ratio of
the area occupied by the thresholded signal and the total area
of interest, and expressed as a percentage (% of total area).
Integrated OT density (in arbitrary units, AU) was obtained by
the product of OT density and the signal intensity.

Statistical Analysis
Results were expressed asmeans± SEM. Bodymass was analyzed
by two-way ANOVA followed by the Bonferroni post hoc test.
Potential differences in OT mRNA and OT protein content
within the PVN subnuclei, as well as hemodynamic parameters
and baroreflex sensitivity were compared between SHAM and
OVX rats and analyzed by unpaired t-test. Relationships between
OT content within the ventromedial PVN and sBRS was
assessed by the Pearson correlation coefficient. Differences were
considered significant at p < 0.05.

RESULTS

Body Mass and Autonomic Cardiovascular
Control
Although there were no differences between groups in body mass
at beginning of experiments, OVX rats gained significantly more
weight than SHAM rats by the end of the study (∼50% vs.∼26%,
respectively; Table 1). OVX rats also exhibited higher basal MAP
(p = 0.019) accompanied by a trend toward higher HR when
compared to the SHAM group (p = 0.062, Table 1). PI variance,
VLF, LF andHF in absolute units were similar inOVX and SHAM
rats (p = 0.344, 0.667, 0.474 and 0.551, respectively); however,
these rats exhibited reduced HF of PI (p= 0.015) and elevated LF
of PI (p = 0.015) yielding an elevated LF/HF ratio (p = 0.015).
SAP variance was higher in OVX vs. SHAM rats (p = 0.011),
without significant differences between groups in the VLF, LF or
HF of SAP (p= 0.059, 0.210 and 0.730, respectively). In addition,
sBRS was largely reduced in OVX group when compared to
SHAM (−59%, p= 0.005).

Effects of Ovarian Hormone Deprivation on
PVN OTergic Neurons
Relative OT mRNA expression in the PVN was 45% lower in
OVX rats compared to SHAM rats (p = 0.030) (Figure 1, upper
panel). Accordingly, ovarian hormone deprivation significantly
reduced OT protein expression levels, quantified by both relative
and integrated OT densities within the posterior (p = <0.001
and p = 0.024, respectively), ventromedial (p = 0.009 for
both comparisons) and dorsal cap (p = 0.041 and p = 0.029,
respectively) PVN subnuclei (Figures 1A–C). In contrast, no
differences were observed in relative and integrated OT densities
in the magnocellular neurons of OVX rats compared to SHAM
controls (p= 0.778 and p= 0.852, respectively) (Figures 1A–C).

Interestingly, reduced oxytocin protein levels within the
posterior and ventromedial PVN subnuclei were strongly
correlated with decreased autonomic control of the heart in
OVX rats, as indicated by both decreased baroreflex sensitivity

TABLE 1 | Body mass (before and after surgeries), baseline mean arterial

pressure (MAP) and heart rate (HR) and cardiovascular autonomic

evaluation in rats submitted to ovariectomy (OVX) or SHAM surgery.

SHAM OVX

Body mass (g) Before 196±2 191±1

After 248±3††† 288±7†††***

HEMODYNAMIC/AUTONOMIC EVALUATION

MAP (mmHg) 99±3 109±2*

HR (b/min) 353±6 368±3

PI variance (ms2) 27.84±2.38 24.80±1.81

VLF of PI (ms2) 12.40±5.04 9.78±2.48

LF of PI (ms2) 3.26±1.57 5.79±3.22

HF of PI (ms2) 11.50±3.87 8.40±3.04

LF of PI (nu) 22.50±3.18 39.33±5.14*

HF of PI (nu) 77.50±3.18 60.66±5.14*

LF/HF ratio 0.31±0.05 0.77±0.16*

sBRS (ms/mmHg) 1.76±0.25 0.73±0.11**

SAP variance (mmHg2) 13.56±1.57 19.82±1.23*

VLF of SAP (mmHg2) 4.17±0.96 7.31±1.15

LF of SAP (mmHg2) 5.13±1.23 7.59±1.39

HF of SAP (mmHg2) 4.38±0.99 4.90±1.05

Values are expressed as mean ± SEM. Body weight was evaluated in 16–17 rats/group

and hemodynamic/autonomic measurements were made in 6–7 rats/group. VLF, LF, and

HF represent the very low frequency, low frequency and high frequency bands of pulse

interval (PI) and systolic arterial pressure (SAP) variance. sBRS, spontaneous baroreflex

sensitivity. Significances (*P< 0.05), **P< 0.01; ***P< 0.001 are *vs. SHAM;
†
vs. before.

and increased LF/HF ratio (Figure 2, Table 2). Despite not
reaching statistical significance, a similar relationship was also
observed between OT expression levels at the dorsal cap and
sBRS (Table 2).

DISCUSSION

The present findings provide further support for a dysfunctional
autonomic cardiovascular control caused by ovarian hormone
deprivation. More specifically, our results demonstrate that lack
of ovarian hormones impairs baroreceptor reflex control of
heart rate, causes autonomic imbalance and increases blood
pressure. Although several cellular and molecular mechanisms
are likely involved, the present findings further indicate that
reduced expression of oxytocin in OTergic neurons of the
pre-autonomic PVN subnuclei are involved in the defective
autonomic regulation observed. An important role for oxytocin
in autonomic regulation has been previously documented
(Mercuro et al., 2000; Cavalleri et al., 2011; Cruz et al., 2013).
However, to our knowledge, this is the first study demonstrating
that ovarian hormone deprivation reduces oxytocin gene and
protein expression in pre-autonomic PVN neurons, and that
these changes are closely correlated with autonomic dysfunction
in ovariectomized rats.

The incidence of cardiovascular diseases is considerably
lower in pre-menopausal women than in men. Nevertheless,
this difference is mitigated by the reduction of circulating
estrogen levels as women age (Becker and Corrao, 1990;
Wenger et al., 1993; Tunstall-Pedoe et al., 1994; Golden et al.,
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FIGURE 1 | Oxytocin (OT) gene and protein expression within the paraventricular nucleus of hypothalamus (PVN) in SHAM and OVX rats. Upper panel:

Comparison of relative OT mRNA content in SHAM and ovariectomized (OVX) rats (n = 6/group). Lower panels: Quantification of relative (A) and integrated OT density

(B) within the posterior (post), ventromedial (VM), magnocellular (Mg) and dorsal cap (DC) PVN subnuclei of SHAM and OVX groups. Values are measured in 4–5

slices, 4 rats/group. Significances are (*P < 0.05; **P < 0.01; ***P < 0.001 vs.) SHAM group. (C) Illustrates photomicrographs representative of OT immunoreactivity

in the different subnuclei of the PVN in SHAM and OVX rats. 3rd ventricle (3V). Scale bar corresponds to 50µm.

2002). Consistent with our findings, previous studies have
shown that estrogen promotes cardioprotection and metabolic
homeostasis and that ovarian hormone deprivation, in addition
to cardiovascular deficits, causes body weight gain with increased
abdominal fat and reduced signaling in central nuclei that
control appetite and satiety (Irigoyen et al., 2005; Flues et al.,
2010; Lizcano and Guzmán, 2014). Oxytocin is an important
peptide involved in the food intake control. Oxytocin or oxytocin
agonist centrally administered decreased food consumption
while oxytocin antagonist pretretment failed to increase chow
intake (Olson et al., 1991; Mullis et al., 2013). In fact, weight
gain induced by abnormal central oxytocin expression could

per se contribute to baroreflex dysfunction and hypertension
development (Skrapari et al., 2007; Re, 2009).

Previous studies indicate that ovarian hormone deprivation is
able to reduce oxytocin mRNA expression in the brain, including
the PVN (Miller et al., 1989; Patisaul et al., 2003). This study,
however, is the first to indicate that lack of female hormones is
specific to decrease oxytocin expression in preautonomic PVN
subnuclei and that this effect is related to autonomic impairment.

Reduced baroreflex sensitity and increased sympathetic
outflow to the heart are predictors of morbidity and mortality
in several cardiovascular diseases (Billman et al., 1982; Becker
and Corrao, 1990; Mercuro et al., 2000). Here, we observed
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FIGURE 2 | PVN oxytocin (OT) immunoreactivity correlates with baroreflex sensitivity. Decreased spontaneous baroreflex sensitivity (sBRS) is strongly

correlated with the reduction of OT content within the ventromedial PVN (as measured by relative or integrated OT density) after ovarian hormone deprivation. Linear

regression equations, correlation coefficients (r) and P values are shown in Table 2. *P < 0.05 and **P < 0.01 denote significant correlations.

TABLE 2 | Regression equations correlating OT immunoreactivity (OTir,

measured as relative density and integrated density in different PVN

subnuclei) with spontaneous baroreflex sensitivity (BRS) and

sympatho-vagal balance to the heart (LF/HF ratio) in rats submitted to

SHAM and OVX surgery.

Relative OT density Integrated OT density

(% área) (arbitrary units)

OTir x BRS

PVN ventromedial Y = 0.109 × −1.213**

r = 0.806 P = 0.005

Y = 0.037 × −0.319*

r = 0.730 P = 0.017

PVN posterior Y = 0.193 × −0.886***

r = 0.945 P < 0.001

Y = 0.054 × +0.041*

r = 0.630 P = 0.049

PVN dorsal cap Y = 0.247 × +0.110

r = 0.568 P = 0.087

Y = 0.091 × +0.409

r = 0.436 P = 0.207

PVN magnocellular Y = 0.057 × +0.153

r = 0.181 P = 0.615

Y = −0.042 × +1.725

r = −0.184 P = 0.611

OTir × LF/HF ratio

PVN ventromedial Y = −0.037 × +1.372

r = −0.431 P = 0.213

Y = −0.009 × + 0.930

r = −0.288 P = 0.419

PVN posterior Y = −0.095 × + 1.590*

r = −0.737 P = 0.015

Y = −0.008 × + 0.710

r = −0.142 P = 0.696

PVN dorsal cap Y = −0.147 × + 0.082

r = −0.536 P = 0.110

Y = −0.044 × + 0.948

r = −0.336 P = 0.342

PVN magnocellular Y = −0.018 × + 0.887

r = −0.091 P = 0.802

Y = 0.072 × −0.279

r = 0.501 P = 0.140

OTir x BRS and OTir x LF/HF ratio correlations were made with 8–10 rats. *(P < 0.05),

**(P < 0.01) and ***(P < 0.001) denote significant correlations.

significant reduction in sBRS coupled with increased sympathetic
modulation to the heart and elevated blood pressure in rats
deprived of ovarian hormones. These findings are in line with
previous studies in ovariectomized rats, in which these changes
were associated with augmented oxidative stress in the heart
(Irigoyen et al., 2005; Flues et al., 2010). It should be noted that
some studies did not find blood pressure changes and autonomic
misbalance in ovariectomized rats (Nickenig et al., 1998; Dias
et al., 2010). This inconsistency may be explained by the time
that rats were exposed to ovarian hormone deprivation. In these
studies, the ovariectomy lasted 3–5 weeks. To our knowledge,
studies showing high blood pressure levels and dysautonomia

were performed at least 8 weeks after ovariectomy induction
(Hernández et al., 2000; Irigoyen et al., 2005; Flues et al., 2010
and the present set of data).

Our results together with previous studies suggest that
deficient oxytocin expression within preautonomic PVN
subnuclei may be an important mechanism of central autonomic
deregulation, which contributes to cardiac oxidative stress and
may lead to heart dysfunction. Future studies are necessary
to test this proposition. In fact, heart disease is a major
cause of morbidity and mortality in post-menopausal women
(Mozaffarian et al., 2015).

Accumulating evidence indicate a critical role for
preautonomic PVN OTergic neurons in the modulation of
baroreceptor reflex control of heart rate. The nucleus tractus
solitarii/dorsal motor nucleus of vagus (NTS/DMV) complex
receives dense PVN OTergic projections, whose activation
facilitates vagal outflow to the heart, thus improving reflex
bradycardia during transient pressure increases (Buijs, 1978;
Higa et al., 2002). It has also been shown that oxytocin
released within the NTS/DMV during an acute bout of exercise
reduces exercise tachycardia and causes resting bradycardia in
trained rats (Braga et al., 2000; Higa-Taniguchi et al., 2009).
Collectively, these observations indicate that adequate levels of
oxytocin expression in PVN subnuclei are required for effective
autonomic regulation of the cardiovascular system. In fact,
our current results demonstrate reduced oxytocin expression
within the ventromedial and posterior PVN and baroreflex
impairment in OVX rats. It was shown that reduced oxytocin
content, the neurotransmitter co-released with glutamate in
those preautonomic neurons, blunts the activation of OTergic
projections to dorsal brainstem areas (Piñol et al., 2014). Peters
et al. (2008) also showed that activation of these projections
augments glutamate release probability and the frequency of
miniature excitatory post-synaptic currents in 2nd order NTS
neurons while oxytocin antagonist pretreatment completely
blocks this effect. Indeed, in a previous study in conscious rats
we observed that oxytocin administration within the NTS/DMV
area, mimicking the activation of the long-descending PVN
oxytocinergic projections, augments the reflex bradycardia
during baroreceptors loading, while its endogenous blockade
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reduces the bradycardic response (Higa et al., 2002). We also
demonstrated that atropine, but not propranolol pretreatment,
abrogates the augmentation of reflex bradycardia, indicating
that improvement of baroreflex gain is mediated by oxytocin-
induced increase in the vagal tonus to the heart (Higa et al.,
2002; Michelini, 2007). The present set of data also showed
strong positive correlations between OT content and baroreflex
sensitivity. Although the correlations per se are not proof of
causality, our results taken together with previous data on
oxytocin and autonomic control strongly suggest that the
reduction of PVN oxytocinergic drive in ovariectomized rats
may be responsible for both the blunting of baroreflex sensitivity
and the increased sympatho-vagal balance to the heart, as shown
by the present set of data.

Heart rate variability has been widely accepted as an
index of cardiovascular autonomic function. HF has always
been associated to parasympathetic modulation; LF represents
the sympathetic modulation, but there is evidence that
parasympathetic component is also partially aggregated to this
band (Appel et al., 1989; Burr, 2007). Some studies verified that
LF of PI does not correlate with cardiac norepinephrine spillover
and is very low in heart failure individuals (Adamopoulos
et al., 1992; Guzzetti et al., 1995; Eisenhofer et al., 1996; Moak
et al., 2007). However, the normalization procedures applied
to absolute results yield values that are exchangeable across to
different evaluation methods. Helpfully, presentation of data in
normalized units mitigated several differences in the computed
band power (Burr, 2007) and LF (in normalized units) is
generally accepted as an index for sympathetic variability. In
addition, our results corroborate previous studies that performed
cardiac autonomic evaluation by pharmacological blockade (a
gold standard method) in a similar protocol of ovarian hormone
deprivation (Irigoyen et al., 2005; Flues et al., 2010).

OTergic neurons express β estrogen receptors (ER-β), which
may control neuronal oxytocin gene/protein expression within
PVN subnuclei (Alves et al., 1998; Hrabovszky et al., 1998).
Stern and Zhang (2003) showed that preautonomic neurons
within the posterior PVN subnucleus projecting to the rostral
ventrolateral medulla exhibited high ER-β density and reduced

excitability after ovarian hormone deprivation. It has also been
shown that G-protein coupled estrogen receptors (GPERs) are
located in several areas of the central nervous system, including
the ventromedial and dorsal cap parvocellular neurons (Brailoiu
et al., 2007). GPERs have been shown to co-localize with oxytocin
in magnocellular PVN and supraoptic neurons (Brailoiu et al.,
2007). Whether a direct physical interaction between GPERs
and oxytocin in PVN subnuclei indeed occurs, and how such
interaction may potentially contribute to the maintenance of
oxytocin levels (e.g., via stabilization) remain to be determined. A
potential transcriptional regulation of the oxytocin gene by ER-β
may also be in place and deserves further investigation.

In summary, our results showed that ovarian hormone
deprivation decreases oxytocin gene and protein expression
within PVN pre-autonomic neurons involved in circulatory
control. The observed deficits in OTergic modulation were
accompanied by reduced vagal and increased sympathetic
modulation to the heart and augmented SAP variability. Finally,

oxytocin content in the PVN was closely correlated with
autonomic control of the heart suggesting that depressed
hypothalamic OTergic modulation significantly contributes
to the cardiovascular deficits observed in ovarian hormone
deprivation.
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