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Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely

deteriorate muscle strength and function. Strategies to counteract wasting of muscle

myofibrillar protein are therefore desirable and invite for considerations on the potential

superiority of specific modes of resistance exercise and/or the adequacy of low

load resistance exercise regimens as well as underlying mechanisms. In this regard,

delineation of the potentially mechanosensitive molecular mechanisms underlyingmuscle

protein synthesis (MPS), may contribute to an understanding on how differentiated

resistance exercise can transduce a mechanical signal into stimulation of muscle

accretion. Recent findings suggest specific upstream exercise-induced mechano-

sensitive myocellular signaling pathways to converge on mammalian target of rapamycin

complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation

of signaling through a diacylglycerol kinase (DGKζ )-phosphatidic acid (PA) axis or

implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous

Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since

initiation of translation is reliant on mRNA, it is also relevant to consider potentially

mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription

and whether some of these pathways converge with those affecting mTORC1 activation

for MPS. In this regard, recent findings suggest how mechanical stress may implicate

integrin deformation and/or actin dynamics to signal through a Ras homolog gene family

member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or

implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling

through a small mother of decapentaplegic (Smad) axis.

Keywords: mechanotransduction, PLD-PA, BMP-Smad, Rho-STARS, Rheb

INTRODUCTION: MUSCLE MYOFIBRILLAR PROTEIN
ACCRETION

Skeletal muscle contractile properties can be negatively affected with prolonged inactivity and/or
muscle wasting disease, leading to severe deteriorations in muscle myofibrillar mass, muscle
strength, and mobility (Clark, 2009). Consequently, knowledge on resistance exercise-induced
mechanisms involved in stimulating a positive net muscle myofibrillar turnover is important.
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This turnover is dictated by a balance between protein synthesis
and protein degradation, but is contended to be primarily driven
by regulation of muscle protein synthesis (MPS) (Atherton
and Smith, 2012) and with resistance exercise-induced MPS
accentuated by amino acid supplementation (Rasmussen and
Phillips, 2003; Wolfe, 2006).

Intriguingly, mechanical force changes inherent of resistance
exercise are assumed to exert regulatory action on mechanisms
involved in MPS. With regards to resistance exercise, this
immediately advance questions such as; (a) how mechanical
force changes inherent of resistance exercise is sensed; (b)
how resistance exercise-induced mechano-sensing molecules can
affect biochemical signaling to directly activate MPS and; (c) how
resistance exercise-induced mechano-sensing can exert influence
on MPS by means of regulating net supply of muscle myofibrillar
gene transcripts to the ribosomal machinery.

Below, we will first summarize the burden of proof
that advocate for the significance of mechanotransducing
mechanisms.We will then summarize some emerging knowledge
on how force changes with resistance exercise may be sensed
by mechanosensitive molecules to activate biochemical signaling
for MPS and/or muscle myofibrillar gene transcription. Most
of the current knowledge on mechanotransduction has been
retrieved through employment of in vitro or animal models,
whereas less information exists from human resistance exercise
studies. Consequently, most of the findings presented, originate
from non-human studies. However, human studies that provide
support for the implication of similar mechanisms in human
skeletal muscle are included, with attention on the influence of
resistance exercise modality and intensity.

GROWTH FACTOR-INDEPENDENT
mTORC1 ACTIVATION FOR MPS IN ADULT
SKELETAL MUSCLE SUGGESTS AN
IMPORTANT ROLE OF
MECHANOTRANSDUCING MECHANISMS

Mechanistic target of rapamycin complex 1 (mTORC1) is
regarded as a nodal point for integration of various stimulators,
such as growth factors, nutrients and mechanical forces, to
activate downstream signaling for muscle protein translation
initiation (Laplante and Sabatini, 2012). Its importance has
been justified in different model systems (Bodine et al., 2001;
Hornberger et al., 2004; Sandri, 2008; Goodman et al., 2011;
Goodman, 2014) and activation of mTORC1 signaling in
human skeletal muscle has been shown to be associated with
increased MPS during post-exercise recovery from traditional
high-intensity resistance exercise (Dreyer et al., 2006, 2008;
Drummond et al., 2008) as well as fatiguing low-intensity blood-
flow restricted resistance exercise (Fujita et al., 2007; Fry et al.,
2010).

mTORC1-inhibitor, rapamycin, has been employed in cell
culture and rodent models, to assess whether mTORC1 can be
considered outright necessary for activation of MPS subsequent
to force changes, with studies on acute responses to single-
treatment intervention immediately supporting this (Bodine

et al., 2001; Fingar et al., 2002, 2004; Hornberger et al., 2004;
Kubica et al., 2005), while results from studies on basal MPS are
less conclusive (Kubica et al., 2005; Drummond et al., 2009). The
few human studies that have utilized rapamycin in investigation
of resistance exercise-induced mTORC1 signaling and MPS
provide support that rapamycin exert similar effect upon high-
intensity resistance exercise (Drummond et al., 2009) and low
intensity blood-flow restricted resistance exercise (Gundermann
et al., 2014).

Downstream from mTORC1, 70 kDa ribosomal S6 kinase
(P70S6K) seem to provide a stronger proxy of signaling for
resistance exercise-inducedMPS, thanmTORC1 (Baar and Esser,
1999; Nader and Esser, 2001). It can therefore be speculated that
P70S6K may be activated by mechanical stress in an mTORC1-
independent manner (Klossner et al., 2009), but as the previous
studies on this have not included mTORC1 loss-off-function
analysis, this requires further investigation.

It has been previously contended that resistance exercise
drives muscle hypertrophy by promoting an increase in systemic
growth factors like IGF-1, which via its receptor activate a
PI3K-Akt-mTORC1 signaling axis to enhance MPS (Yan et al.,
1993; Coleman et al., 1995; Goldspink et al., 1995; Adams
and Haddad, 1996; Musarò et al., 2001; Rommel et al., 2001).
However, more recent studies contradict that systemic growth
hormones are vital for driving resistance exercise-induced MPS
in the adult muscle. This opposite contention is based on
findings including (a); the demonstration of loading-induced
PI3K-independent mTORC1 activation through utilization of
genetic loss of functions models or PI3K-inhibitor Wortmannin
(Hornberger et al., 2004, 2007; O’Neil et al., 2009; Miyazaki
et al., 2011), (b); the demonstration that mechanical overload in
rodents with a dominant-negative IGF-I receptor do not abolish
hypertrophy (Spangenburg et al., 2008), (c); the demonstration
that resistance exercise regimens utilizing high vs. low resistance
exercise training volumes can accentuate increases in systemic
plasma growth factors, but without simultaneously accentuating
mTORC1 activation, MPS and/or hypertrophy (West et al., 2009,
2010), and, (d); the observation that human resistance exercise
in the fasting state does not seem to activate Akt, yet still
promote activation of mTORC1 (Deldicque et al., 2008; Vissing
et al., 2013a). The recent skepticism toward an important role of
exercise-induced systemic hormones has led to the proposal that
intrinsic mechano-sensitive molecules constitute more pivotal
drivers of MPS.

HOW IS A CHANGE IN FORCE DURING
RESISTANCE EXERCISE SENSED BY THE
MUSCLE CELL?

With regards to mechano-sensing, several excellent reviews
has previously addressed how mechanical force imposed on a
muscle cell can be envisaged to induce conformational changes
on specific muscle proteins interlinking extracellular matrix
(ECM) (e.g., collagen or laminin), sarcolemmal (e.g., integrins
or cadherins), focal adhesion (e.g., FAK or actin filaments),
costamere (e.g., dystrophin and vinculin) and/or Z-disk (e.g.,
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titin or phospholipase D) proteins (Patel and Lieber, 1997;
Burkholder, 2007; Ingber, 2010).

For the sake of simplicity, one may distinguish between tensile
and/or compressive stresses that are expectedly generated during
resistance exercise/muscle loading. In accordance, if a muscle cell
is exposed to tensile stress in one direction, it creates a state
of internal stress that causes constriction in the perpendicular
plane, while compressive stress in the transverse plane will
develop internal stresses that cause lengthening and therefore,
once again, a tensile stress (Burkholder, 2007). In essence,
tensile stress therefore likely constitute one very important
trigger of deformation of mechano-sensing muscle proteins
during resistance exercise, with different modes of resistance
exercise, likely imposing partially different effects on specific
mechano-sensing proteins. Thus, with regards to contraction
mode, tensile stress inherent of eccentric contractions may e.g.,
be sensed by sarcolemmal/transmembranal receptor proteins
(such as integrins) that tie the extracellular matrix (ECM)
to focal adhesion complex proteins (Chicurel et al., 1998;
Ingber, 2010; Olson and Nordheim, 2010), whereas concentric
contractions can be speculated to produce a tensile stress
that is predominantly sensed by proteins inherent of the
sarcomere (Hornberger et al., 2006b). As for fatiguing low
intensity resistance exercise with or without blood flow
restriction, this has been shown to produce accumulation of
metabolites and/or increased muscle water retention (Qin and
Hu, 2014; Farup et al., 2015). Accordingly, with reference
to the literature on endothelial cells, shear stress inherent
of such fluid shifts may be sensed by some of the same
ECM and focal adhesion proteins that are speculated to
sense a mechanical stress on muscle cells during resistance
exercise (Hirakawa et al., 2004; Petzold et al., 2009). However,
evaluation on whether eccentric vs. concentric resistance exercise
affect mechano-sensing molecules differentially is challenging,
as it inevitable necessitate simultaneous considerations on
the intensity with which the specific contraction modes are
performed (i.e., the higher the relative intensity/load inherent
of a given resistance exercise regime, the higher the expected
stimulatory effect on mechanosensitive proteins; Eliasson et al.,
2006).

HOW CAN A MECHANICAL SIGNAL
ELICITED BY RESISTANCE EXERCISE BE
TRANSDUCED TO BIOCHEMICAL
SIGNALING FOR MUSCLE PROTEIN
SYNTHESIS?

Knowledge on resistance exercise-induced mechanotransduction
for MPS in humans is still relatively sparse. Some indicatory
information can e.g., be retrieved from comparative studies on
the differential effects of differentiated exercise (MacNeil et al.,
2010; Vissing and Schjerling, 2014; Petriz et al., 2016). However,
the knowledge on specific mechanotransducing mechanisms
presented below (see also Figure 1), is predominantly based on
findings from in vitro or animal studies.

FIGURE 1 | Mechanotransduction for muscle protein synthesis. Tensile

stress inherent of mechanical deformation may stimulate muscle protein

synthesis through; (A) yet unidentified mechanosensing proteins acting on the

zeta isoform of diacylglycerol kinase (DGKζ ), resulting in the conversion of

diacylglycerol (DAG) to phosphatidic acid (PA) which then directly activates the

mechanistic target of rapamycin complex 1 (mTORC1); (B) an unidentified

kinase phosphorylating the tuberous sclerosis complex-2 (TSC2) which is then

translocated away from the lysosome allowing Ras homolog enriched in brain

(Rheb) to be in its guanosine triphosphate (GTP) bound state which can then

directly activate mTORC1.

Phosphatidic Acid (PA)
Phosphatidic Acid is a diacyl-glycerophospholipid that is
primarily synthesized from phosphatidylcholine (PC) by the
enzyme phospholipase D (PLD). In the unstimulated state, α-
actinin (in the z-band of the sarcomere) associates with and
inhibits phospholipase D (PLD) (Park et al., 2000; Hornberger
et al., 2006a). It is speculated that phospholipase D dissociates
from α-actinin during mechanical deformation (Hornberger
et al., 2006a). Such dissociation relieve the inhibition of
phospholipase D, leading to its hydrolysis and the formation
of PA. Phosphatidic Acid has been demonstrated to directly
activate mTORC1 signaling (Fang et al., 2001; Park et al., 2002)
by binding to the FKBP12-rapamycin binding (FRB) domain
of mTOR (Fang et al., 2001; Veverka et al., 2008; You et al.,
2012). In accordance, exogenous PA (Foster, 2007; O’Neil et al.,
2009; You et al., 2012) as well as overexpression of the PA-
generating enzymes PLD1 (Jaafar et al., 2013), LPAATθ (Tang
et al., 2006) and DGKζ (Avila-Flores et al., 2005; You et al.,
2014) have been demonstrated to activate mTORC1 signaling,
suggesting an important role for PA in the regulation of cellular
growth. More recently, the role of PLD1 in controlling the
mechanically induced changes in PA and mTORC1 signaling
has been evaluated using the specific PLD-inhibitor 5-fluoro-
2-indolyl des-chlorohalopemide (FIPI) (You et al., 2014). As
FIPI was not able to prevent increases in PA or mTORC1
signaling in rodent muscles following passive stretch, this
suggests a limited role of PLD1. However, other experiments
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using overexpression of the zeta isoform of diacylglycerol kinase
(DGKζ ) has been demonstrated to produce hypertrophy, which
was largely inhibited by rapamycin, while knockdown of the
DGKζ -gene almost completely abolished the passive stretch-
induced increase in PA and impaired activation of mTORC1
signaling (You et al., 2014). These results collectively suggest that
DGKζ may link a tensile stress inherent of resistance exercise to
increases in PA and mTORC1 signaling.

With regards to human studies, one resistance exercise
training study has employed oral supplementation of PA,
producing an increase in lean body mass compared to placebo
(Hoffman et al., 2012).

Rheb
Ras homolog enriched in brain (Rheb) is a GTP-binding protein
that expresses GTPase activity (Aspuria and Tamanoi, 2004).
When in its GTP-bound state, Rheb has been reported to directly
activate mTOR signaling (Sancak et al., 2007; Sato et al., 2009).
Both Rheb and its downstream target mTOR have been reported
to be highly enriched in the lysosome. Furthermore, evidence is
emerging that controlling mTOR-association to the lysosome is
an important step in regulating mTOR activity (Sengupta et al.,
2010; Zhao et al., 2012). In accordance, it has been suggested that
Rheb is regulated by the tuberous sclerosis complex-2 (TSC2)
also found at the lysosome. In basal conditions, TSC2 stimulates
Rheb’s GTPase activity, which, in turn, leads to conversion of
active GTP-Rheb into inactive GDP-Rheb (Huang and Manning,
2008), thereby repressing mTORC1 activity. A recent study
have shown TSC2 phosphorylation and translocation from the
lysosome as well as activation of lysosome-associated mTORC1
following electrically stimulated lengthening contractions in
mice (Jacobs et al., 2013). The TSC2 phosphorylation occurred
on different sites than the Thr1462 site previously described to
be important for Akt-dependent phosphorylation (Inoki et al.,
2002). This suggests that a yet unidentified mechano-sensing
protein is responsible for TSC2 phosphorylation and mTORC1
activation following tensile stress inherent of the lengthening
contractions (Jacobs et al., 2013). In this regard, a recent study
on the effects of inhibition of integrin-associated Focal adhesion
kinase (FAK), suggests that FAK can affect TSC2 phosphorylation
and a subsequent Rheb mediated activation of mTORC1, leading
to concomitant activation of P70S6K and MPS (Crossland et al.,
2013). Interestingly, the integrin-FAK axis also seems to be
involved in the regulation of myofibrillar gene expression (i.e.,
Rho-STARS pathway—see below; Zhao et al., 2007).

HOW CAN A MECHANICAL SIGNAL
ELICITED BY RESISTANCE EXERCISE
INFLUENCE TRANSCRIPTIONAL EVENTS
INHERENT OF MUSCLE PROTEIN
ACCRETION?

While direct regulation of MPS obviously constitutes an
important rate-limiting level of myocellular muscle protein
accretion, MPS also depends on the magnitude and/or rate of
delivery of muscle myofibrillar mRNA to the ribosomes. In this

regard, recent knowledge on specific pathways is presented below
that may link mechanical stress to myofibrillar gene expression
(see also Figure 2).

Rho-STARS
Actin dynamics constitute an element ofmuscle contraction, with
actin exhibiting an interchange betweenmonomeric/globular (G-
actin) and polymeric/filamentous (F-actin) forms (Chen et al.,
2000). This mechanism is proposed to influence signaling via the
transcription factor, serum response factor (SRF), which in turn
possess transcriptional control of a multitude of muscle genes
adhering to proliferation and differentiation events and/or cell
growth (Olson and Nordheim, 2010; Braun and Gautel, 2011).
More specifically, in unstimulated cells, cytosolic G-actin is
bound to the SRF transcriptional co-activator myocardin-related
transcription factor-A (MRTF-A), thereby preventing interaction
of MRTF-A with SRF. However, the release of G-actin from
MRTF-A upon G-actin polymerization into F-actin following
mechanical stimulation, results in the nuclear translocation of
MRTF-A allowing it to associate with SRF to enhance SRF
transcriptional activity (Kuwahara et al., 2005, 2007; Visegrády
and Machesky, 2010).

Further upstream from MRTF, control is suggested to be
mediated by the Ras homolog gene family member A protein
(RhoA) and the striated muscle activator of Rho signaling
(STARS, also known as actin-binding Rho-activating protein,
ABRA). Both proteins can activate actin-associated proteins
following mechanical signals, with activation of STARS or
RhoA leading to G-actin polymerization and SRF-mediated gene
transcription (Arai et al., 2002; Liu et al., 2003). Studies using
STARS knockdown/suppression (Arai et al., 2002; Kuwahara
et al., 2005; Wallace and Russell, 2013) or overexpression
(Wallace and Russell, 2013) has produced decreases and increases
in SRF transcriptional activity and SFR-associated mRNA levels,
respectively. Furthermore, studies utilizing inhibition of RhoA
has been demonstrated to reduce SRF transcriptional activity
following STARS activation (Arai et al., 2002), suggesting that
STARS activation of transcription is partly mediated by a RhoA-
dependent mechanism.

Interestingly, RhoA is activated by β1 Integrin upon
mechanical stress (McClung et al., 2004), a process also involving
activation of Rho guanine exchange factors by integrin-linked
kinases such as ILK, FAK, and SRC (Huveneers and Danen,
2009), with ILK and FAK seemingly also able to activate Akt (Xia
et al., 2004; Wang et al., 2008).

In vivo, force changes have been shown to activate the actin-
MRTF-SRF pathway and to promote increases in RhoA protein
expression in overloaded rat muscle (McClung et al., 2003;
Sakuma et al., 2003). In humans, single-bout high intensity
resistance exercise have been observed to produce increased
STARS gene expression (Lamon et al., 2009, 2013; MacNeil et al.,
2010) and prolonged resistance training have been observed to
produce increased gene expression and/or nuclear protein levels
of several members of the Rho-STARS-SRF pathway (Lamon
et al., 2009; Vissing et al., 2013b). As judged from analysis
of gene expression, eccentric resistance exercise modality may
constitute a stronger driver of these responses (Lamon et al.,
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FIGURE 2 | Mechanotransduction for muscle mRNA transcription. Tensile stress inherent of mechanical deformation may stimulate muscle mRNA transcription

through; (A) deformation of membrane-associated β1-Integrin activating focal adhesion kinase (FAK), integrin-linked kinase (ILK) and SRC, which then promotes

activation of striated muscle activator of Rho signaling (STARS) and Ras homolog gene family member A (RhoA) through Rho guanine nucleotide exchange factors

(GEFs) leading to polymerization of globular actin (G-actin) into filamentous actin (F-actin). Release of cytoplasmic G-actin from myocardin-related transcription factor

(MRTF) then allows MRTF to translocate to the nucleus to act as a co-transcription factor with transcription factor serum response factor (SRF), leading to gene

expression of multiple muscle myofibrillar and cytoskeletal genes; (B) competitive inhibition of Myostatin (MSTN) signaling by Bone Morphogenetic Protein (BMP)

signaling through the common mediator small mother of decapentaplegic 4 (Smad4). Binding of MSTN to its receptor, leads to phosphorylation of Smad2/3 enabling

formation of a transcriptional complex with Smad4, which then translocate to the nucleus to modulate transcriptional events resulting in impaired muscle growth. BMP

leads to phosphorylation of Smad1/5/8 resulting in the possible formation of a Smad1/5/8-Smad4 transcriptional complex resulting in expression of genes important

for muscle growth. Tensile stress inherent of mechanical deformation limits smad2/3 signaling through the membrane-associated protein Notch thereby allowing

Smad1/5/8 signaling resulting in muscle accretion.

2009, 2013; MacNeil et al., 2010). However, as increased STARS
protein expression has been observed exclusively with concentric
resistance, further investigation on this is required (Vissing et al.,
2013b).

BMP-Smads
The transforming growth factor-beta (TGFβ) family of ligands,
such as Myostatin/TGFβ, has been shown to negatively affect the
regulation of muscle mass due to receptor-mediated activation
of a class of effector molecules known as small mother of
decapentaplegic (Smad) proteins (Lee and McPherron, 2001;
Lee et al., 2005). This may be counteracted by cytokines
referred to as Bone Morphogenetic Proteins (BMPs) also acting
on Smad proteins in a manner influenced by potentially the
mechano-sensing transmembranal protein, Notch (MacKenzie
et al., 2013). More specifically, binding of the Myostatin or TGFβ
ligand to the activin type II receptors (ActRIIA and ActRIIB)
and TGFβ receptors (TGFβRII), triggers the recruitment and
activation of the tyrosine kinases activin type I receptors (ALK4,
ALK5, and ALK7), resulting in phosphorylation of specific
Smad proteins (Smad2 and Smad3, Smad2/3), which enables

the Smad proteins to form a transcriptional complex with the
Smad4 protein. The Smad2/3-Smad4 complex then translocate
to the nucleus where it modulates chromatin structure in
a manner to decrease expression of genes associated with
muscle growth (Gaarenstroom and Hill, 2014). Interestingly,
it has more recently been discovered, that BMPs can activate
a Smad1/5/8 complex that can influence activity of Smad2/3
(Sartori et al., 2013; Winbanks et al., 2013). Accordingly, Smad
1/5/8 phosphorylation occur in consequence of binding of BMP
to BMP- (BMPRII) or activin type II receptors (ActRIIA and
ActRIIB) leading to subsequent recruitment and activation of
other activin type I receptors than myostatin/TGFβ (namely
ALK2, ALK3, and ALK6; Walsh et al., 2010). Phosphorylation
of the BMP-dependent Smad proteins has been proposed to
enable the formation of a transcriptional complex with Smad4
in a similar manner to what is observed for Smad2/3. Yet,
whereas the Smad2/3-Smad4 complex negatively influences
muscle growth-related genes, activation of the Smad1/5/8-Smad4
complex produce increased expression of genes associated
with cell growth and differentiation (Miyazono and Miyazawa,
2002). Evidence that a balance between muscle atrophy and
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hypertrophy depends on the recruitment of the shared mediator
Smad4 to either the Myostatin vs. the BMP signaling pathways,
is based on observations from transgenic mouse models. In
accordance, inhibition of Smad1/5/8 (by overexpression of a
BMP-inhibitor, Noggin) increased denervation-mediated muscle
atrophy compared to wildtype. This inhibition of BMP signaling
was accompanied by increased recruitment of phosphorylated
Smad2/3 binding to Smad4 and translocation to the nucleus
(Sartori et al., 2013). Moreover, activation of BMP signaling
through utilization of adeno-associated viral vector (AVV)-
mediated overexpression of a constitutively active type I BMP
receptor (caALK3) was observed to prevent muscle atrophy as
well as to stimulate hypertrophy in denervated muscle fibers
(Winbanks et al., 2013). Furthermore, rapamycin was shown to
counteract muscle accretion promoted by BMP overexpression
(Winbanks et al., 2013).

Interestingly, transmembranal protein Notch has been shown
to increase in response to high frequency electrical stimulation
and has been suggested to possess a negative regulatory effect on
TGFβ signaling by inhibiting Smad 2/3, thereby allowing Smad
1/5/8 signaling for hypertrophy (MacKenzie et al., 2013).

A present, little is known on how resistance exercise may favor
activation of the Smad1/5/8-Smad4 complex, but transcriptome
analysis from our own previous analysis serve to support that
certain BMP and Smad isoforms are transcribed in adult human
skeletal muscle and that certain isoforms exhibit differential
expression with differentiated exercise (Vissing and Schjerling,
2014). Thus, human resistance exercise can be speculated to
produce BMP to function in an autocrine manner.

CHALLENGES TO ADDRESS IN
ELUCIDATION OF
MECHANOTRANSDUCING MECHANISMS
WITH DIFFERENTIATED RESISTANCE
EXERCISE

Most of the knowledge on potential mechanotransduction
mechanisms summarized in the current review is derived

from in vitro or animal models. The advantages of such
models are that they offer genetic homogeneity, manipulation
through genetic engineering and easy use of compounds
such as wortmanin and rapamycin. On the other hand, the
stimulation protocols utilized in those studies typically do not
ideally mimic resistance exercise regimens as they are genuinely
practiced in humans. In this regard, animal models that can
render voluntary resistance exercise possible would offer an
experimental advantage. Moreover, animal models that employ
surgical ablation models and electrical stimulation likely impose
non-exercise related stressors and/or omit true stressors inherent
of voluntary human resistance exercise. In this regard, non-
intervention control models would improve the ability to deduce
potential separate effects of invasive procedures and/or dietary
premises inherent of stimulation protocols that potentially
obscure interpretation of results. Human studies offer volitional
resistance exercise, but imply genetic heterogeneity and a similar
need to for non-intervention control models to control for
e.g., systemic effectors. Furthermore, loss of function and/or
overexpression manipulation is difficult to apply to human
studies. Consequently, results from human studies are often most
quite descriptive unless of comprehensive comparative designs.
However, comparative studies introduce difficult considerations
on sample size and whether/how to match exercise protocols
for volume, intensity and/or whether exercise is performed to a
state of fatigue. In this regard, increased use of administration of
rapamycin and wortmanin in future human resistance exercise
studies might help provide more causal information.

As previously suggested, the ability to address these
challenges would benefit from a multi-site consortium of
scientists, to facilitate translational studies through use
of non-human and human model systems (Neufer et al.,
2015).
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