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Since the pioneering studies of the 1960s, heart rate variability (HRV) has become

an increasingly used non-invasive tool for examining cardiac autonomic functions and

dysfunctions in various populations and conditions. Many calculationmethods have been

developed to address these issues, each with their strengths and weaknesses. Although,

its interpretation may remain difficult, this technique provides, from a non-invasive

approach, reliable physiological information that was previously inaccessible, in many

fields including death and health prediction, training and overtraining, cardiac and

respiratory rehabilitation, sleep-disordered breathing, large cohort follow-ups, children’s

autonomic status, anesthesia, or neurophysiological studies. In this context, we

developed HRVanalysis, a software to analyse HRV, used and improved for over

20 years and, thus, designed to meet laboratory requirements. The main strength

of HRVanalysis is its wide application scope. In addition to standard analysis over

short and long periods of RR intervals, the software allows time-frequency analysis

using wavelet transform as well as analysis of autonomic nervous system status on

surrounding scored events and on preselected labeled areas. Moreover, the interface

is designed for easy study of large cohorts, including batch mode signal processing

to avoid running repetitive operations. Results are displayed as figures or saved in

TXT files directly employable in statistical softwares. Recordings can arise from RR or

EKG files of different types such as cardiofrequencemeters, holters EKG, polygraphs,

and data acquisition systems. HRVanalysis can be downloaded freely from the Web

page at: https://anslabtools.univ-st-etienne.fr HRVanalysis is meticulously maintained

and developed for in-house laboratory use. In this article, after a brief description of the

context, we present an overall view of HRV analysis and we describe the methodological

approach of the different techniques provided by the software.

Keywords: heart rate variability, autonomic nervous system, autonomic neuroscience, parasympathetic,

sympathetic, RR interval variability, software

INTRODUCTION

In the 18th century, Stephen Hales was the first to note that pulse fluctuations were related
to blood pressure and respiratory rate (Lewis, 1994; Billman, 2011). However, not until the
1960s was interest renewed in spontaneous changes in cardiovascular parameters (Hon and
Lee, 1963; Luczak and Laurig, 1973; Sayers, 1973; Billman, 2011). This opened the way to an
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understanding of cardiovascular regulation. Since then,
considerable advances have been made in explorations of the
autonomic nervous system (ANS) through examinations of
heart rate variability (HRV)—or RR interval variability—which
quantifies the successive variations in the interval from the peak
of one QRS complex to the peak of the next, as shown on an
electrocardiogram.

Although, the results interpretation has been the subject of
intense criticism (Eckberg, 1997, 1998; Malik, 1998; Malliani
et al., 1998; Sleight and Bernardi, 1998; Billman, 2013), the
HRV method is widely used today (Rajendra Acharya et al.,
2006; Chouchou and Desseilles, 2014). Generally speaking,
cardiac activity is controlled by both the sympathetic and
parasympathetic systems (Guyenet, 2006), which induce heart
rate oscillations at different rhythms. The analysis of these
oscillations allows assessing the initial efferent autonomic
nervous activity. Pharmacological studies in animals and humans
have identified physiological rhythm components of HRV
(Sayers, 1973; Akselrod et al., 1981; Pomeranz et al., 1985).
Overall, it has been shown that rapid changes of heart rate are due
to parasympathetic activity, whereas slower changes are due to
both parasympathetic and sympathetic activity. In this view, HRV
analysis provides a non-invasive approach that allows examining
physiological phenomena that were previously inaccessible, and
which are often associated to health.

Several methods for HRV quantification have been developed.
They can be classified into frequency, temporal, nonlinear,
and time-frequency analysis methods (Rajendra Acharya et al.,
2006), and they are used in a variety of research fields, as
evidenced by the growing number of publications on HRV
analysis (Figure 1). Furthermore, HRV analysis indices have a
wide range of applications, including research in physiology,
cardiology, sport, health, mortality prediction, sleep, and pain,
as well as for routine procedures in medicine and sports. The
available data for HRV analysis therefore include RR interval
series obtained from Holter systems or heart rate monitors
or EKG data from acquisition or polygraph systems. Analyses
can focus on short-duration recordings or 24-h recordings, and
the data may concern small subject samples as well as large
cohorts of hundreds or thousands of subjects, as in mortality
prediction studies. Several HRV analysis methods are currently
available, including Holter and heart rate monitor systems and
free independent software such as Kubios (Tarvainen et al., 2014),
Kardia (Perakakis et al., 2010), ARTiiFACT (Kaufmann et al.,
2011), POLYAN (Maestri and Pinna, 1998), RHRV (Rodriguez-
Linares et al., 2011), ECGLab (Carvalho et al., 2002), and the
HRV Toolkit developed by the PhysioNet Project (Goldberger
et al., 2000), each with its own specificity. Drawing on a large
panel of users, we developedHRVanalysis (version 1.0), a software
that includes a wide range of HRV analysis functions, from
local to 24 h-recording, from single to large cohort files, and
supporting various import formats. HRVanalysis is the outcome
of almost 20 years of expertise, with each feature developed
and improved for optimum adaptability to a variety of settings.
The objective of this article is to provide an overall view
of HRV analysis to a large community of users, to present
the different proposed techniques along with their interests

FIGURE 1 | Evolution of the annual number of publication related to
Heart rate variability since 1960. Medline search based on the terms “heart

rate variability” or “RR intervals variablityi.”

and limits, to detail the pre-processing of RR series, and,
to present the wide possibilities of analysis allowed by the
software.

HRV: DIFFERENT METHODS FOR
DIFFERENT TYPES OF EXPLORATION OF
CARDIAC AUTONOMIC FUNCTION

Time-Domain Analysis
Time-domain analysis is applied to quantify HRV using indices
based on means or standard deviations, generally calculated
over long-term recordings, typically 24 h (Kleiger et al., 1995;
Balocchi et al., 2006; Rajendra Acharya et al., 2006). Because
these indices represent short- to long-term variations in RR
intervals, some indices are dependent on the recording length.
It is therefore recommended to perform the calculations on
recordings of similar duration to allow comparisons between
measures or subjects.

The standard deviation of normal-to-normal intervals
(SDNN) represents the variability over the entire recording
period, giving the overall autonomic modulation regardless
of sympathetic or parasympathetic arm. Some indices have
been developed to quantify high frequency variations arising
from parasympathetic activity such as the pNN50, calculated
as the percent difference between adjacent normal RR intervals
greater than 50 ms, and the rMSSD, calculated as the square
root of the mean of the sum of the squared differences between
adjacent normal RR intervals. The SDANN index, calculated as
the standard deviation of the mean of all normal RR intervals
for 5-min segments, quantifies the changes in heart rate due to
cycles longer than 5min. The SDNNIDX index, calculated as the
mean of the standard deviation of all normal RR intervals for
all 5-min segments, quantifies the changes in heart rate due to
cycles shorter than 5min (Task Force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology, 1996).

Geometrical Analysis
The geometrical indices are calculated on the sample density
distribution of the RR intervals, which corresponds to the
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assignment of the number of equally long RR intervals to each
value of their length (Malik, 1995; Task Force of the European
Society of Cardiology and the North American Society of Pacing
and Electrophysiology, 1996; Rajendra Acharya et al., 2006). The
main studies that have validated this method have used bins of
7.8125 ms width that were adapted for RR series obtained from
EKG at a sampling rate of 128Hz. To allow comparisons, this
bin width must be the same, regardless of the EKG sampling
rate. Thus, for sampling rates other than 128Hz, the sample
density distribution graph presents discontinuities, and is then
reconstructed by smoothing the curve using a moving average
function. The HRV triangular index is calculated as the integral
of the density distribution divided by the maximum of the
density distribution (Y). The histogram can be interpolated as
a triangle, using the minimum square difference. The triangular
interpolation of the RR interval histogram (TINN) is the baseline
width of this triangle.

These measures quantify overall HRV, and are influenced
mainly by slow—but not rapid—oscillations of RR intervals
(Malik et al., 1989). This geometrical method provides a good-
quality analysis but requires a reasonable number of beats for
effective application.

Frequency-Domain Analysis: Fourier
Transforms
The power spectral density (PSD) defined using Fourier
transform is used to assess the different frequencies in the RR
series. The spectrum is calculated using Welch’s periodogram
algorithm with a Hamming window of 256 points, an overlap of
50%, and at a precision of 256 points/Hz. The analyzed series
can also be resampled from 1 to 8Hz. The frequency indices
are calculated as the integral of the PSD in specific bands of
interest, as standardized by the Task Force in 1996 (Task Force
of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology, 1996). After that time,
frequency-domain analyses of HRV were recommended to be
performed on short-term 5-min recording segments and on
long-term segments of typically 24 h. The two durations involve
different bands of interest. The default bandwidths used to
calculate the total power (Ptot), ultra-low frequencies (ULF),
very low frequencies (VLF), low frequencies (LF), and high
frequencies (HF) are summarized in Table 1. For short-term
analyses, LF andHF are also expressed as normalized values LFnu
= 100∗LF/(Ptot-VLF) and HFnu= 100∗HF/(Ptot-VLF), and the
LF/HF ratio is calculated (Table 1).

Total spectral power (Ptot) indicates overall HRV, and is
used to assess overall autonomic cardiac modulation as well
as the SDNN parameter. HF power represents short-term HR
variation. Studies have shown that injected atropine completely
eliminated HF power (Akselrod et al., 1981; Pomeranz et al.,
1985). Thus, HF power is modulated by parasympathetic activity
only, corresponding to peak respiratory rate. Pharmacological
studies have shown that muscarinic cholinergic blocker and
beta-adrenergic blocker lowered LF power, enhanced by dual
blockade (Akselrod et al., 1981; Pomeranz et al., 1985).
Both parasympathetic and sympathetic cardiac activity would
therefore be associated with HR power in the LF band. Saul et al.
(1990) and others (Pagani et al., 1997) showed a concomitant
increase in LF power and muscle sympathetic nerve activity
measured by microneurography. Furthermore, under atropine,
LF power increased during orthostatic testing (Taylor et al.,
1998). Although, these studies showed sympathetic cardiac
modulation in LF power, changes in LF power can be interpreted
only in relation to HF power. Accordingly, normalized indexes
such as the LF/HF ratio, LFnu, and HFnu are used to examine
this relationship.

To summarize, whereas HF power is modulated by
parasympathetic modulation, LF power is controlled by
both sympathetic and parasympathetic activity, and normalized
indexes or the LF/HF ratio are used to estimate sympathetic
modulation and autonomic equilibrium (Pagani et al.,
1984) although this last index remains criticized (Billman,
2013).

Time-Frequency Transforms: Transit
Changes in HRV
None of the above-described methods allow temporal
localization of sudden changes in RR signal behavior. To
overcome these limitations, we applied wavelet transform
(Pichot et al., 1999), which obtains a temporally localized sliding
analysis of the signal, providing access to the heart rate variability
at any time, for example, when the autonomous nervous system
equilibrium is suddenly disrupted by an acute clinical situation
or a physiological laboratory intervention. This method has
been used successfully to assess autonomic reactivity to tilt tests
(Jasson et al., 1997), exercise (Tiinanen et al., 2009), sleep apneas
(Chouchou et al., 2014), experimental pain (Chouchou et al.,
2011), generalized interictal EEG discharge (Sforza et al., 2014),
pharmacological blockades (Pichot et al., 1999) and, anesthesia
(Pichot et al., 2001).

TABLE 1 | Default bandwidth utilized for the calculation of frequency indices.

HRV analysis Short-term Long-term

Age of subject Newborn Baby Adult Newborn Baby Adult

Ptot (Hz) 0–2.00 0–1.40 0–0.40 0–2.00 0–1.40 0–0.40

ULF (Hz) – – – 0–0.0001 0–0.003 0–0.003

VLF (Hz) 0–0.02 0–0.04 0–0.04 0.0001–0.02 0.003–0.04 0.003–0.04

LF (Hz) 0.02–0.20 0.04–0.15 0.04–0.15 0.02–0.20 0.04–0.15 0.04–0.15

HF (Hz) 0.20–2.00 0.15–1.40 0.15–0.40 0.20–2.00 0.15–1.40 0.15–0.40
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For the analysis, a temporal sliding window of different
weights (corresponding to different analysis levels or frequency
ranges) containing the wavelet function is shifted along the
signal. The weight characterizes a family member with a
particular dilatation factor. The calculation gives a serial list of
wavelet coefficients, which represent changes in the correlation
between the RR signal and a given wavelet at different levels
of analysis (or different frequency ranges) along the signal. The
correspondence between wavelet coefficients and frequencies
allows calculating the standard, ULF, VLF, LF, HF, LFnu, HFnu,
and the LF/HF ratio along time. A complete description of this
method, which is implemented in the software, is available in two
previously published articles (Pichot et al., 1999; Wiklund et al.,
2002).

A Nonlinear Approach: The Complexity of
HRV
An alternative, nonlinear approach was proposed to examine
cardiac autonomic control (Voss et al., 1995). In recent years,
interest has grown in the nonlinear dynamics that characterize
autonomic cardiovascular control (Rajendra Acharya et al., 2006;
Maestri et al., 2007b). Investigations of the complex feedback
loops that impact the cardiac function have led to new indices
designed to reflect signal complexity. We therefore incorporate
certain of these indices that have proven useful for HRV
interpretation and for health and mortality prediction (Maestri
et al., 2007a; Huikuri et al., 2009).

Poincaré Plot
The Poincaré plot, also called the Lorenz plot, is a graphic tool
used to visualize a series of RR intervals (Kamen et al., 1996).
SD1 and SD2 are calculated as the standard deviation of the
distances of the RR intervals from the y = x line and the y =

−x + 2∗mean (RR) line, respectively. The SD1/SD2 ratio is also
calculated. SD1 represents short-term RR variability and SD2
represents long-term variability.

Fractality
The analysis of the fractality of heart rate variability consist to
quantify the repetition of patterns display at different scales.
Many methods are available:

The detrended fluctuation analysis (DFA) is used to quantify
the degree of self-similarity (fractuality) of the RR signal by
calculating the average amount of RR fluctuation at different
bin sizes. A detailed description of the method is provided in
Peng et al. (1995). Briefly, the root-mean-square fluctuations
of integrated and detrended RR series are measured across
windows of different sizes and plotted according to the size of the
observation window on a log-log scale. Two scaling exponents
α1 and α2 are then calculated as the slope of the fluctuation =

f (window size) line, for short- and long-term fluctuations,
respectively.

Similarly, the Hurst exponent (H) measures the self-similarity
of the RR signal. A fractal signal will result in an exponent value
of around 1, a random signal will result in a value of 0.5, and
strongly correlated signal behavior will result in a value of 1.5.

The power-law slope (ß) is influenced mainly by autonomic
input to the heart. It quantifies the complexity of the RR interval

in the long term, from minutes to hours. The ß index is the slope
calculated on the PSD plotted on a log-log scale from 10−4 to
10−2Hz (Bigger et al., 1996). The smaller the slope, the greater
the loss of complexity. A value of −1.5 was determined to be the
optimum threshold to predict mortality in the elderly (Huikuri
et al., 1998; Makikallio et al., 2001).

Also, Higuchi and Katz algorithms were proposed to
determine the fractal dimension of heart rate variability signal
(Rajendra Acharya et al., 2006).

Entropy
Applied to heart rate variability, entropy is a measure of
the regularity and complexity of pattern of different length.
Entropy is high when the patterns are identicaly distributed
and decreases if some patterns are more likely. Many indices
have been proposed: the Shanon entropy and its derived indices
(conditional entropy, corrected conditional entropy, normalized
corrected conditional entropy) (Porta et al., 1998), the sample
entropy (Richman and Moorman, 2000) and approximate
entropy (Pincus and Goldberger, 1994). Another way to measure
the rate of patterns recurrences in RR series is the Lempel-Ziv
complexity (Ferrario et al., 2004).

Heart Rate Turbulence
Heart rate turbulence (HRT) denotes the fluctuations in RR
following a single premature ventricular contraction (PVC)
(Bauer et al., 2008), typically involving an early 2-to-3-beat
acceleration phase, a late 10-to-20-beat deceleration phase, and a
return to the base RR interval. The method consists of aligning
and averaging all recorded PVCs in order to plot the PVC
tachogram. The obtained pattern is characterized by two indices.
Turbulence onset (TO) is the amount of acceleration following
a PVC (i.e., the difference between the mean of the two RR
intervals immediately following a PVC and the mean of the
two RR intervals preceding the PVC). The turbulence slope
(TS) corresponds to the steepest slope for five consecutive RR
intervals within the 15 beats following a PVC. The TO quantifies
the vagal withdrawal, and TS is explained by vagal reactivation
(Bauer et al., 2008). HRT has been demonstrated a powerfull risk
stratifiers after acute myocardial infarction (Schmidt et al., 1999).
HRT calculation requires several PVCs, and is usually calculated
on long-duration recordings, typically 24 h.

Deceleration and Acceleration Capacities
These two indices are used to estimate the vagal and sympathetic
capacities by analyzing heart deceleration and acceleration
capacity (Bauer et al., 2006). The method consists of finding all
sequences of two successive RR beats that increase (deceleration)
in order to align and average the segments surrounding the
sequences. From the obtained pattern, the deceleration capacity
(DC) is calculated as the difference between the mean of the
two beats following deceleration and the mean of the two beats
before deceleration. Similarly, the acceleration capacity (AC) is
calculated by detecting all sequences that decrease. The DC index
has been demonstrated to predict mortality after myocardial
infarction (Bauer et al., 2006).

Frontiers in Physiology | www.frontiersin.org 4 November 2016 | Volume 7 | Article 557

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Pichot et al. HRVanalysis Software

TABLE 2 | HRV indices calculated in HRVanalysis program.

Analysis type

Index Unit Entire Day/Night Selected area Along time Arround events Sequencial epoch

TEMPORAL

Mean RR ms x x x x x x

Mean frequency bpm x x x x x x

NN20 n x x x x

pNN20 % x x x x

NN30 n x x x x

pNN30 % x x x x

NN50 n x x x x

pNN50 % x x x x

SDNN ms x x x x

rMSSD ms x x x x

SDANN ms x x

SDNNIDX ms x x

GEOMETRICAL

Triangular Index x x x x

TINN ms x x x x

X ms x x x x

Y n x x x x

M ms x x x x

N ms x x x x

FREQUENCY

Ptot ms2/Hz x 5 min x x

ULF ms2/Hz x

VLF ms2/Hz x 5 min x x

LF ms2/Hz x 5 min x x

HF ms2/Hz x 5 min x x

LF/HF – 5 min x x

LFnu % 5 min x x

HFnu % 5 min x x

EMPIRICAL MODE DECOMPOSITION

pLF1 5 min 5 min x x

pLF2 5 min 5 min x x

pHF1 5 min 5 min x x

pHF2 5 min 5 min x x

IMAI1 5 min 5 min x x

IMAI2 5 min 5 min x x

WAVELET

Ptot ms2/Hz x

ULF ms2/Hz

VLF ms2/Hz x

LF ms2/Hz x x

HF ms2/Hz x x

LF/HF – x x

LFnu % x x

HFnu % x x

POINCARÉ PLOT

Centroïd ms x x x x

SD1 ms x x x x

(Continued)
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TABLE 2 | Continued

Analysis type

Index Unit Entire Day/Night Selected area Along time Arround events Sequencial epoch

SD2 ms x x x x

SD1/SD2 – x x x x

SD1nu % x x x x

SD2nu % x x x x

FRACTAL

α1DFA 5000 beats 5000 beats x x

α2DFA 5000 beats 5000 beats x x

HDFA 5000 beats 5000 beats x x

Hurst 5000 beats 5000 beats x x

HHiguchi 5000 beats 5000 beats x x

HKatz 5000 beats 5000 beats x x

1/f slope x x x x

MOMENTS

Skewness 5000 beats 5000 beats x x

Kurtosis 5000 beats 5000 beats x x

Largest Lyapunov exponent x x

ENTROPY

Approximate entropy 1000 beats 1000 beats x x

Sample entropy 1000 beats 1000 beats x x

Shanon Entropy (SE) 300 beats 300 beats x x

Conditional Entropy (CE) 300 beats 300 beats x x

Corrected CE (CCE) 300 beats 300 beats x x

Normalized CCE (NCCE) 300 beats 300 beats x x

ρ 300 beats 300 beats x x

Lempel-Ziv complexity 1000 beats 1000 beats x x

TURBULENCE

VPC n x

Turbulenve onset % x

Turbulence slope ms/nRR x

DC/AC

Acceleration capacity ms x

Deceleration capacity ms x

SYMBOLIC DYNAMIC

0V 300 beats 300 beats x x

0V% 300 beats 300 beats x x

1V 300 beats 300 beats x x

1V% 300 beats 300 beats x x

2LV 300 beats 300 beats x x

2LV% 300 beats 300 beats x x

2UV 300 beats 300 beats x x

2UV% 300 beats 300 beats x x

MP 300 beats 300 beats x x

MP% 300 beats 300 beats x x

When specified, the value of several indices is calculated as the mean of the successive epochs of indicated length (time duration or number of beats).

Largest Lyapunov Exponent
The largest Lyapunov exponent is used in nonlinear analysis
of physiological signals for detecting chaos (Wolf et al., 1985).
Indeed, its value will tend to zero for slowly varing RR signals,
and will increases as the variations of the RR is higher (Acharya
et al., 2004).

Symbolic Dynamics
The principal of this analysis is to spread the chosen RR sequence
on a fixed number of levels, to transform it into short patterns, to
classified all patterns according to the direction of variation of the
successive RRs (0V, 1V, 2LV, 2UV), and to evaluate their rates of
occurrence (Porta et al., 2001). This method allows to study short
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FIGURE 2 | Main figure of HRVanalysis.

heart rate variability pattern behavior. For example, the symbolic
dynamics permitted to elucidate the neural pathophysiological
mechanisms preceding acute cardiac events (Guzzetti et al.,
2005).

Empirical Mode Decomposition
This principle of this analysis, adapted for nonlinear and non-
stationar time series, is to decompose them into a limited number
of oscillatory components (modes) from which are calculated
the instantaneous frequencies (Balocchi et al., 2004). Then, the
powers associated to selected modes corresponding to the low
and high frequencies are calculated (pLF1, pLF2, pHF1, and
pHF2), as well as the ratios between low and high frequency
indices (IMAI1 and IMAI2).

Limitations
Cardiac activity is controlled by the sympathetic and
parasympathetic systems as well as hormonal system (Guyenet,
2006). These systems induce heart rate oscillations at different
rhythms and HRV methods are used to study these rhythms and
consequently autonomic cardiac modulations.

Slow and fast oscillations do not carry the same accuracy
to represent sympathetic and parasympathetic activities.
HRV analysis has been demonstrated reliable in assessing
parasympathetic activity (Sayers, 1973; Akselrod et al., 1981;
Pomeranz et al., 1985) while this method remains less accurate
to assess sympathetic activity as heart rate slow changes are
related partly to sympathetic and parasympathetic activity (Task

Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996). A
better approach of sympathetic activity relies on examining
relative changes in the LF/HF ratio and LF%, or SD1/SD2
(Pagani et al., 1984; Tulppo et al., 1996; Malliani et al., 1998).
Several studies have shown that relative changes in fast- and
slow-oscillations allow approaching relative sympathetic activity
in response to tilt testing under atropine (Taylor et al., 1998) or
experimental pain (Burton et al., 2009; Chouchou et al., 2011).

Furthermore, some indices, such as temporal indices for
example, depend on the length of the selected RR series to
analyse while other are not, such as PSD. Ideally, except for time-
frequency analyses, the data should be stationary (Chouchou
et al., 2009), not less than 5-min duration or 250 beats, recorded
over comparable time period, and in similar situations as
sitting, upright, lying for example (Bahjaoui-Bouhaddi et al.,
2000).

Also, interpretation of HRV indices remains especially
debated in long-term recordings, because major determinants of
HRV such as environmental factors, physical activity, and sleep
duration vary significantly over time (Lombardi and Stein, 2011).
Thus, HRV indices can be calculated on the whole RR sample or
as the mean of successive epochs. Users might be aware of that
and can refer to Table 2 for these specifications.

The software is optimized for analysing RR signal arizing
from human recordings. R-peaks detection as well as HRV
anayses can be performed on animal dataset by setting the
adapted parameters in the preferences window. However,
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FIGURE 3 | Linear HRV analysis whole recording/day/night periods.

users must verify the accuracy of the methods for animals
while some of them have been previously validated, such
as Fourier analysis (Cerutti et al., 1991), others are not
commonly use.

Finally, HRV analysis requires clean RR series while noisy
recordings may lead to invalid physiological interpretations (Saul
et al., 1988). An accurate preprocessing based on interpolation is
usually utilize to correct for missing and extra beats.

SIGNAL PROCESSING AND SOFTWARE
DESCRIPTION

The RR recording processing is decomposed in three data
treatment steps: (1) RR importation or R peaks detection, (2) RR
corrections and formatting, and (3) calculation of HRV indices
(Figure 2). A tutorial containing a detailed description of the
software is directly accessible from the main menu, and some

sample runs for testing procedures are included with the software
package.

Data Importation and R Peaks Detection
Data can be imported from EKG or RR files. The available
formats for EKG data are EDF, ISHNE, binary, text, Matlab. A
generic import window allows to pre-visualize the EKG trace
while the user sets the data file specifications. Preformatted
RR files can be imported from text and binary files. Several
preformated configurations are proposed (Suunto, Polar, Aria
Delmar, and Vista Novacor Holters).

R peaks are detected from EKG signals using a laboratory-
developed algorithm largely inspired by Chen et al.’s method
(Chen et al., 2006). This moving average-based method, initially
developed for real-time QRS detection, has demonstrated a
99.5% detection rate in the MIT-BIH Arrhythmia Database.
First, the raw EKG signals are upsampled at 1000Hz to ensure
good time resolution for the RR intervals, even at a low initial
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FIGURE 4 | Nonlinear HRV analysis whole recording/day/night periods.

EKG sampling rate. The raw EKG signal is first denoised using
wavelet transform. The denoised signal is then passed through
a moving averaging-based linear high-pass filter in order to
highlight the QRS complex, which is processed by full-wave
rectification and nonlinear amplification followed by sliding-
window summation. The resulting pulse train (i.e., waveform)
is used to calculate an adaptive threshold for QRS complex
detection.

RR Corrections and Formatting
EKG recordings can contain ectopic beats—due to cardiac
dysrhythmia—and missing or spurious beats—generally due
to poor EKG signal quality. These nonsinusal beats must be
corrected, because they induce errors in the calculation of
HRV indices (Saul et al., 1988), which could result in invalid
physiological interpretations.

In order to replace invalid beats, the software therefore
provides automatic correction of the RR series, inspired by
the algorithm developed by Kamath and Fallen (Kamath and
Fallen, 1995). First, false beats are detected using Cheung’s

algorithm (Cheung, 1981): a high and low threshold are set
for the relative variation in successive RR intervals (+32.5%
and −24.5%, respectively). Second, for each detected error, the
number of missing beats is estimated by comparing the total
time duration within the error period with the duration of the
immediately preceding beat. If the number of beats to recalculate
is 3 or less, a cubic spline interpolation is done. This configuration
generally originates from a single supraventricular or ventricular
ectopic beat, or from an isolated R-peak missdetection. For 4
or more successive errors, the missing beats are interpolated by
copying and inserting the same number of previous RRs between
the first and last valid RR Although, these corrections generally
results in a clean RR signal, this type of automatic algorithm
can produce inconsistent values when the original EKG or RR
signal is too corrupted, with lengthy portions of successive false
beats. It is therefore recommended to visually inspect and review
each series before performing HRV analyses. Additionally to RR
correction, the software enables excluding parts of the signal
from analysis, and the number of corrections is displayed in the
results.

Frontiers in Physiology | www.frontiersin.org 9 November 2016 | Volume 7 | Article 557

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Pichot et al. HRVanalysis Software

FIGURE 5 | HRV indices calculated on successive epochs.

RR can also be manually corrected by two methods. First,
the user can select an RR interval and change its value either
by entering a new value or by using spline cubic interpolation
to determine it. Second, when the EKG trace is available, R
peaks can be manually inserted and removed by editing the EKG
signal.

EKG recordings commonly contain excessive artifacted data
that cannot be correctly interpolated. If the number of these data
is low, HRV analysis can be performed on the remaining valid
signals. HRVanalysis 1.0 allows excluding certain data from the
analyses to avoid abnormal HRV values. This can be done by
manually selecting the area to exclude or by using an automatic
method based on successive beat-to-beat variations and RR labels
(if present).

Calculation of HRV Indices
Calculations are performed according to the parameters set in the
Preferencesmenu. For each type of analysis, a menu allows saving
the results as a.txt file, saving the figure, and printing the figure.
When saving the results, if the user selects an already existing.txt
file, the data will be appended to the file. This allows combining

analyses derived from different parts of the signal and/or different
files and using the results directly in a statistical analysis
program.

Linear and Nonlinear HRV Analysis of 24-h, Day, and

Night Periods
The software allows linear and nonlinear HRV analyses
performed for long-term recordings, for example, using the 24-
h ambulatory Holter system, as recommended by the Task Force
(Task Force of the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology, 1996). In
practice, the software allows analyses for RR series of durations
longer than 2 h. If the night time has been entered, the analyses
are computed for day, night, and entire recording periods
(Figures 3, 4).

Sequential Analysis of HRV
This analysis allows calculating changes in linear and nonlinear
indices for successive epochs along the entire signal (Figure 5).
The epoch duration is selected from a list of preset values ranging
from 5 min to 1-h duration or from 250 to 4096 beats. If an
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FIGURE 6 | Local linear and nonlinear analysis on a selected portion of the recording.

epoch contains excluded RR intervals, the HRV calculation is not
performed on the portion of the signal.

Local Analysis

HRV indices
This analysis calculates the linear and nonlinear indices of HRV
for the RR part of the signal which is selected from the total RR
signal (Figure 6).

Time-frequency analysis
The HRV indices are calculated using wavelet transform, as
described in the Signal processing section. Three graphs allow
plotting changes in RR, heart rate, LF, HF, LFnu, HFnu, and the
LF/HF ratio along a time scale (Figure 7).

Analysis of surrounding events
Another analysis is available for the cumulative changes in
HRV indices surrounding a single event or repeatedly calibrated
events entered by the user. The program searches all the
sequences that meet the entered criteria and plots the results
(Figure 8).

Possible indices are RR, heart rate, LF, HF, LFnu, HFnu,
and the LF/HF ratio calculated using wavelet transform. All
calculations are resampled at 1Hz to allow plotting at 1-s steps.
To allow comparisons, several options enable adding multiple
analyses using different HRV indices and/or different events
to the same graph. Results can be plotted with all sequences
or on the mean ± SD, and simple outlier filtering can be
applied.

Batch Analysis
All the above-described HRV analyses can be performed in
batch mode to enable processing a wide series of RR files
without running repetitive operations. The results for all files
found in the selected folder are then saved as.txt files, which
are directly importable and ready for use in statistical software
environments.

Five types of analysis are provided: Linear and nonlinear HRV
(24 h/day/night), sequential HRV, HRV analysis of surrounding
events, as described above, and, HRV analysis on all areas preset
by the user.
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FIGURE 7 | Time-frequency analysis using Wavelet transform.

FIGURE 8 | Evolution of HRV around user-entered events.
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HARDWARE SPECIFICATIONS AND
SYSTEM REQUIREMENTS

HRVanalysis was developed using MATLAB 2016a and compiled
using MATLAB compiler 6.2. MATLAB functions were used
to develop the program, except for the calculation of entropy
indices, Katz and Higuchi fractal indices, which were adapted
from copyright files of Alvarez JM, the detrended fluctuation
analysis, which was adapted from copyright files of Wenye G, the
largest Lyapunov exponent which originates from copyright file
of Wolf A, the Lampel-Ziv complexity index which comes from
copyright files of Thai Q, and, the empirical mode decomposition
which were adapted from copyright files of Rilling G and Flandrin
P. It is not necessary to have MATLAB installed on the computer,
because MATLAB Runtime v9.0.1 is packaged with the software,
and is automatically installed if required.HRVanalysisworks with
Windows 64-bit operating systems.

To enable rapid plotting and calculation, it is recommended
to have 2 GB of RAM and a minimal screen size of 1280× 768.

SAMPLE RUNS

Some sample runs are distributed with the software package.
These files are included to help the user get acquainted with the
general functioning of the software and the included features.

AVAILABILITY, LICENSING AND
INSTALLATION PROCEDURE

HRVanalysis is available free of charge for non-commercial
use only (Freemium license, November the 9th 2015, under
the number IDDN.FR.001.470001.000.S.P.2015.000.30000).
Interested persons can download the software from the Web
page at: https://anslabtools.univ-st-etienne.fr. Registration is
requested so that users may be kept informed of free software
updates.

The software is installed by running the Installer program and
following the installation procedure. The program is delivered
with a tutorial and sample runs. Bug reports, comments,
and suggestions concerning the program can be emailed to
ANSLabTools@univ-st-etienne.fr.

When using HRVanalysis to analyze data meant for
publication, please cite this article and the software download

webpage in the methods section. Please also credit the authors
of the software when referencing it for the evaluation of the
usefulness of the software and to add the reference to the
HRVanalysis web pages.

CONCLUSION AND FUTURE DIRECTIONS

HRVanalysis was designed to meet laboratory requirements.
It has been used and improved for over 20 years by the
SNA-EPIS laboratory, Saint-Etienne, France. It has enabled
the analysis and publication of HRV analyses for numerous
purposes, including training and overtraining, cardiac and
respiratory rehabilitation, sleep-disordered breathing, large

cohort follow-ups, and children’s autonomic status, pain (see
references at https://anslabtools.univ-st-etienne.fr).

The main strength of HRVanalysis is its wide application
scope. In addition to standard analysis, the software allows time-
frequency analysis using wavelet transform as well as analysis
of autonomic nervous system status surrounding scored events
and on preselected labeled areas. Moreover, HRVanalysis is
suitable for a considerable range of recording modes, from
single recordings to large cohorts, and including batch signal
processing.

HRVanalysis is meticulously maintained and developed for in-
house laboratory use, and in response to users’ comments and
needs. Upcoming features to be developed in future versions
include (1) more types of preformatted files for importing
RR and EKG data; (2) selection of automatic RR correction
levels, with specific thresholds for particular populations, such
as newborns, babies, or athletes; (3) options to import events
scored with other software such as polysomnography or
polygraphy software, or from user-entered.txt files; (4) more
time-frequency task options, such as selecting the wavelet
shape and analysis level; and, (5) the addition of other
significant cardiovascular signals such as blood pressure and
respiration.
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