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Issues of parameter identifiability of routinely used pharmacodynamics models are

considered in this paper. The structural identifiability of 16 commonly applied

pharmacodynamic model structures was analyzed analytically, using the input-output

approach. Both fixed-effects versions (non-population, no between-subject variability)

and mixed-effects versions (population, including between-subject variability) of each

model structure were analyzed. All models were found to be structurally globally

identifiable under conditions of fixing either one of two particular parameters.

Furthermore, an example was constructed to illustrate the importance of sufficient data

quality and show that structural identifiability is a prerequisite, but not a guarantee, for

successful parameter estimation and practical parameter identifiability. This analysis was

performed by generating artificial data of varying quality to a structurally identifiable

model with known true parameter values, followed by re-estimation of the parameter

values. In addition, to show the benefit of including structural identifiability as part of

model development, a case study was performed applying an unidentifiable model to

real experimental data. This case study shows how performing such an analysis prior

to parameter estimation can improve the parameter estimation process and model

performance. Finally, an unidentifiable model was fitted to simulated data using multiple

initial parameter values, resulting in highly different estimated uncertainties. This example

shows that although the standard errors of the parameter estimates often indicate a

structural identifiability issue, reasonably “good” standard errors may sometimes mask

unidentifiability issues.

Keywords: structural identifiability, practical parameter identifiability, mixed effects models, pharmacodynamic

models, fixed effects models

INTRODUCTION

Pharmacodynamic (PD) models quantify processes involved in drug action such as distribution
to the effect site, receptor binding and signal transduction. PD models are valuable in making
predictions of drug effects in un-tested scenarios such as outcomes across different populations
or with new dosing schedules. Such predictions may not always be valid: In particular, there may be
issues related to parameter identifiability. Within the concept of parameter identifiability, there are
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two distinct types: structural identifiability (Bellman and Åström,
1970) and practical identifiability (Raue et al., 2009).

As suggested by the name, structural identifiability concerns
the inherent identifiability of the parameters in a model given
its structure and observed outputs (Bellman and Åström, 1970).
If a model is structurally unidentifiable, this means that at
least one parameter can have any value without changing the
model output (albeit with possible readjustment of remaining
parameters). A well-known structurally unidentifiable problem
is the linear model commonly used for estimating bioavailability
F and volume of distribution V from plasma concentrations
measured after oral drug administration, the most simple case
being the one compartment PKmodel with first order absorption,
where the plasma drug concentration C following a single dose is
defined according to

C(t) =
F · DOSE · ka

V
(

ka − ke
)

(

e−ke·t − e−ka·t
)

(1)

where F is the bioavailability of the drug, DOSE is the orally
administered dose, V is the volume of distribution, ka is the
rate of absorption and ke is the rate of elimination. It has
been shown that only the fraction F

V can be identified, and any
estimate of F will therefore inversely correlate to V and both
values will be biologically meaningless (Cheung et al., 2013).
Importantly, predictions of C(t) are still valid as these depend
on the identifiable fraction F

V . While structural identifiability is a
property of the postulated model structure given a set of outputs,
practical identifiability is related to the experimental data. In
particular, it is a measure of the amount of information contained
in the experimental data and how this information is translated
to parameter uncertainty and subsequent prediction uncertainty.

Parameter identifiability is unfortunately often only
investigated and considered at the level of practical identifiability
using more simple measurements such as standard errors or
correlation matrices rather than more sophisticated approaches
such as the profile likelihood approach (Raue et al., 2009). This
is problematic for several reasons. The primary reason is that it
cannot be guaranteed that the estimated parameter values are
uniquely determined by just looking at the estimation results. In
addition, if the structural identifiability of a model is unknown, it
means that the source of uncertainty in the parameter estimates
may be either due to the experimental data, the model structure,
or both (Figure 1). Thus, increasing the quality of the data may
or may not improve the precision of the parameter estimates.
However, if structural identifiability analysis has concluded that
the model is identifiable, the uncertainty in the model parameters
is directly linked to the quality of the data and howwell themodel
can describe them. In this scenario, the uncertainty of the model
parameters can be improved by increasing the quality of the data.
However, there will always be uncertainties in the parameter
estimates even if the model is structurally identifiable and the
quality and quantity of the experimental data are relatively high.
An approach to further strengthen the plausibility of the model
predictions under such conditions is to divide the experimental
data into two parts: data used for parameter estimation and
data used for model validation, i.e., by estimating the unknown

parameters using a subset of the experimental data and using the
resulting estimates to predict the validation data.

To further exemplify the importance of structural
identifiability, consider the two following biological examples. In
Evans et al. (2004), a model which aims to describe the activity of
an anti-cancer agent named topotecan and its delivery to nuclear
target DNA is presented. Prior to parameter estimation it was
found that a subset of the model parameters was unidentifiable
but if additional experimental measurements were made, in
this case determining volume ratios, then the model would
become structurally identifiable. In Evans et al. (2001), a parent-
metabolite model for ivabradine is considered. The model was
shown to be structurally unidentifiable with either intravenous,
oral or combined intravenous and oral administration. It was
also shown that by either fixing the volume parameter for the
central compartment, or with a particular simplification of the
model structure, then the model becomes identifiable for the
given observations. If a formal structural identifiability analysis
had not been performed then these two research projects would
have most likely continued without these insights with the
potential risk of missleading outcomes.

While PD models are highly diverse, many basic processes
involved in drug action are similar across drugs and systems,
such as distribution from the plasma to the target tissues,
interaction with a target such as receptor binding or altered rates
of production or loss of a target. These general processes have
been described using semi-mechanistic models. For example, the
effect compartment model (Sheiner et al., 1979) has been used to
describe short delays in drug action due to distributional delays
using a hypothetical “effect compartment.” Similarly, receptor
binding models (Danhof et al., 2007; Gabrielsson et al., 2011),
turnover models (Gabrielsson et al., 2011) and the operational
model (Black and Leff, 1983; Danhof et al., 2007) have been
used to describe the processes of drug binding and signaling.
However, despite frequent use, relatively few PD models have
been analyzed from a structural identifiability perspective. An
example of a published structural identifiability analysis is for an
approximation of the receptor binding model. Receptor binding
often occurs over very fast timescales relative to the PK, and
sometimes also with respect to the effects elicited by the receptor
once bound. In such cases, the receptor binding model may be
approximated by a quasi- or pseudo-steady state approximation.
When using such an approximation, it has been shown that
the individual on and off rates of drug binding to the receptor
cannot be uniquely identified (Chappell, 1996). Another example
is the target-mediated drug disposition model (Mager and Jusko,
2001) applicable to the modeling of biologics, which has been
shown to be structurally identifiable (Eudy et al., 2015). However,
the identifiability of the effect compartment model and the
operational model have, to our knowledge, not previously been
analyzed. Furthermore, mixed effects (“population”) models
are often used to account for and quantify known sources
of variability in data sets, such as between-subject variability
(BSV). Such models are combined structural and statistical
models, with additional statistical parameters describing the
variance of a postulated distribution of the model parameter
values across e.g., subjects. The structural identifiability of
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FIGURE 1 | Schematic comparing the model development process including or excluding a structural identifiability analysis. If the structural identifiability

of a model is known, the standard errors in the parameter estimates reflect the uncertainty in the data and and how well the model can describe them. However, if the

structural identifiability is unknown, the standard errors in the parameter estimates may reflect both issues with the model structure and the data.

mixed effects models describing BSV has not previously been
analyzed.

The primary goal of this paper is to illustrate the concept and
importance of parameter identifiability, both from a structural
and practical perspective. Structural identifiability analysis is
performed on a family of 16 commonly used PD models to
serve as a database for modelers in the pharmaceutical domain.
Both fixed-effects models and the corresponding mixed-effects
(population) models are analyzed. Pharmacodynamic models
describing combinations of none to three different mechanisms
of delays in drug action are analyzed: (i) delays in drug
distribution to the site of action applying the effect compartment
model, (ii) delays in signal transduction, build-up or loss of effect
applying turnovermodels and (iii) delays due to slow dissociation
to the target applying receptor binding models. These and
similar models are extensively used within mechanism-based PD
models in pharmaceutical research (Ploeger et al., 2009; Peletier
and Gabrielsson, 2012). In addition, the problem of structural
identifiability and its relation to practical identifiability will be
illustrated through a set of examples using both simulated data
and real experimental data.

METHODS

Structural identifiability analysis has been performed on all
models written in state-space form. A fixed-effects state-space
model is written on the following form

ẋ(t) = f (x(t), u(t), θ), x(t0) = x0 (2)

y(t) = h(x(t), u(t), θ) (3)

where x(t) ∈ R
n is the state (e.g., plasma concentration of the

drug, bound and unbound receptors etc.) u(t) ∈ R
q is the input

(IV bolus, IV infusion etc.), θ ∈ R
p is the vector of model

parameters (e.g., clearance rate, maximum saturation, etc.),
y(t) ∈ R

m is the output (measurement of plasma concentration,
drug effects) and f and h are smooth functions asC∞ with respect
to the functional arguments.

A mixed-effects model is written on one of the forms

ẋi(t) = f (xi(t), ui(t),φi) xi(t0) = x0(φi) (4)

yi(t) = h(xi(t), ui(t),φi) (5)

where φi = g(θ , ηi,Ci) are the parameters for the i:th subject,
ηi ∼ N(0,�) are the random effects variables where � is the
variance-covariance matrix of the random effects ηi, θ are the
population parameters and Ci are the covariates for the different
subjects in the population.

Structural Identifiability: Definition
As mentioned in the introduction, structural identifiability is
a theoretical concept with direct practical relevance. This is
because if a model is structurally unidentifiable, some of the
model parameters may take on arbitrary numerical values while
themodelmay still describe the experimental data equally well. In
a numerical structural identifiability analysis different numerical
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values are sought that will result in identical model responses.
In an analytical structural identifiability analysis, more general
conclusions can often be drawn since in such as analysis symbolic
relationsships between the model parameters can be derived
allowing for suggestions of reparametrization and/or additional
measurements required to render an unidentifable model to
become identifiable. Since different values of the unidentifiable
parameters result in identical responses or predictions any
subsequent biological interpretations of the estimates of those
unidentifiable parameters (e.g., clearance, IC50) are effectively
meaningless in a biological context. It is because of this that
structural identifiability is often referred to as a prerequisite to
successful parameter estimation. In other words, if a structural
identifiability analysis (in which perfect experimental conditions
e.g., noise-free and continuous measurements, are assumed) has
shown that some of the model parameters can not be determined,
it follows directly that these parameters can never be determined
in the less ideal case, i.e., under real experimental conditions for
discrete measurements with noise present.

To define exactly what is meant by structural identifiability
there now follows a more rigorous mathematical definition of the
concept in the context of fixed-effects models.

Let the generic parameter vector θ belong to a feasible
parameter space 2, i.e., θ ∈ 2. Let y(t, θ) be the output function
from the state-space model. Further, consider a parameter vector
θ̄ where y(t, θ) = y(t, θ̄) for all t. If this equality, in a
neighborhood N ⊂ 2 of θ , implies that θ = θ̄ then the
model is structurally locally identifiable. If N = 2 then the
model is structurally globally identifiable. If a model is structurally
unidentifiable, then every neighborhood of θ contains a θ̄ 6= θ

such that y(t, θ) = y(t, θ̄) for all t.
Since the mixed-effects models to be considered in this paper

are also analyzed from a structural identifiability perspective it
must first be defined what is meant by the identifiability of such
models. Since mixed-effects models yield individual predictions,
in contrast to single predictions in the fixed-effects case, the
previous definition is not immediately applicable to mixed-
effects models. Instead, a generalized version of the definition
of structural identifiability is used. In this new definition, first
presented in Janzén et al. (2016), a model is defined to be
structurally identifiable if the distribution of the output from the
model determines both the structural and statistical parameters,
i.e., the parameters in the vector θ and the variance parameters
in � denoting the variance of the random effects η respectively.
Now follows a more rigorous definition of structural identifiable
for mixed-effects models.

Let p(y{θ ,�}, t) denote the distribution of the output signals
y at time t. Let the generic parameter vector and matrix {θ ,�}

belong to a feasible parameter space {θ ,�} ∈ 2, and consider
the following two sets of parameters {θ ,�} and {θ̄ , �̄}. If
p(y{θ ,�}, t) = p(y{θ̄ ,�̄}, t) for all t implies that {θ ,�} = {θ̄ , �̄}

in a neighborhood N ⊂ 2 then the model is structurally locally
identifiable, and if N = 2 the model is structurally globally
identifiable. For a structurally unidentifiable parameter, θi, or
ωi ∈ �, every neighborhood N around θi, or ωi, has a parameter
vector/matrix θ̄ , or �̄, where θi 6= θ̄i, or ωi 6= ω̄i, give rise to the
same distribution of identical input-output relations.

Investigated Model Structures
The model structures investigated to determine structural
identifiability were all combinations of sub-models representing
receptor binding, a hypothetical effect compartment and direct
or indirect transduction (see Figure 2). In total, 16 different
model structures were investigated (Table 1). Both fixed-effects
and mixed-effects versions of each model were analyzed from a
structural identifiability perspective.

Structural Identifiability: Example
To exemplify the structural identifiability analysis, a summary of
the analysis of the structural identifiability of Model 13 (Table 1)
is provided. This model is a dynamic receptor binding model
with an effect compartment and linear transduction. The details
of the structural identifiability analysis for this model is available
in the Supplementary Materials. The mathematical model has the
following structure

Ċe = ke0(Cp − Ce)

ṘC = kon(Rtot − RC)Ce − koffRC

E = keRC

(6)

with the unknown parameter vector θ = (ke0, ke, kon, koff ) and
where Cp is the concentration in the blood plasma and is in
this case a known input signal, Ce is a state representing the
concentration in the hypothetical effect compartment, RC is the
receptor complex, E is the observed effect and Rtot representing
the percentage of total number of receptors, which is fixed at
100%.

The approach chosen to study structural identifiability here
is the input-output approach, for which details can be found in
Bearup et al. (2013). A general outline of the method is given here
followed by an example of how a structural identifiability analysis
is performed.

The input-output approach used in this paper was chosen
for three reasons. The first reason was because the input-output
approach can be used to show whether a model is globally or
locally identifiable, or unidentifiable. Some of the other methods
that are available for performing a structural identifiability
analysis can only be used to show whether a model is at least
locally identifiable or unidentifiable. The second reason was that
there is a direct extension from non-population (fixed-effects)
models to population (mixed-effects) models when it comes to
structural identifiability analysis using the input-output approach
as will be explained further below. The third reason is because the
method is applicable to both linear and nonlinear models.

The main idea behind the input-output form approach is to
transform the model to a form from which the identifiability
problem can more easily be studied. This is performed by
iteratively computing higher order time derivatives of the output
function and using subsequent substitution to eliminate all state
variables in order to express the system as a monomial solely in
terms of the output functions(s) and its (their) derivatives. As
the assumption of perfect experimental conditions is made, it
follows that the output function and its higher order derivatives
are assumed to be known. In other words, a model rewritten
on an input-output form is a single equation with the output
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FIGURE 2 | Schematic of the investigated pharmacodynamic models. (A) The 16 investigated models are constructed by combining the following submodels:

Direct or delayed biophase concentration through distribution to a hypothetical effect compartment, dynamic or direct receptor binding using the steady-state

approximation and direct proportional or sigmoid signal transduction or delayed signal transduction applying a turnover model. (B) Example of a full model where all

three processes are assumed to be dynamic and cause delay between plasma concentration and drug effect.

function and its higher order derivatives being known and the
model parameters (that enters as the monomial coefficients)
being unknown. Determining whether a model is structurally
identifiable or otherwise is then a case of showing whether
the resultant input-output equation has a single, finite, or an
infinite number of solutions for the parameters in the coefficient
expressions.

By iteratively differentiating the output signal and eliminating
the state variables the model can be rewritten in the following
input-output form

− Rtot
2Cpk

2
eke0kon − 2Rtot Cpkeke0konE+ Rtot keke0koff E−

Cpke0konE
2 + Rtot keke0Ė+ Rtot kekoff Ė+ ke0koff E

2+

Rtot keË+ ke0EĖ+ EË− Ė2 = 0. (7)

The structural identifiability of a model can then be studied
by considering the coefficients in the input-output form of
the model. Introducing an alternative parameter vector θ̄ and
collecting the coefficients in the input-output form as

l
∑

k= 1

ck(θ , θ̄)φk(E(t, θ), Ė(t, θ), Ë(t, θ), . . . ) = 0 (8)

permits determination of whether the model is structurally
identifiable or otherwise, given that the φk(·) are linearly
independent. The analysis shows that θ = θ̄ , meaning that model
13 is structurally globally identifiable (details are given in the
Supplementary Materials).

Similarly, a mixed-effects version of the model can be studied
by using the coefficients in the input-output relation. As outlined
and discussed in detail in Janzén et al. (Under review), since
individual estimates are obtained in a mixed-effects model
a distribution, assuming an infinite number of subjects (i.e.,
ideal experimental conditions in a mixed-effects context), of
ck(θ) is in turn obtained. This distribution is directly linked
to the distribution of the output functions. By introducing the
random effects on the coefficients from the input-output form,
according to the statistical sub-model, functions of random

variables are derived. By studying whether the distributions of
the generated functions of random variables determine both
the fixed effects and the random effects related parameters,
conclusions regarding whether the mixed-effects model is
structurally identifiable or otherwise can be made. The mixed-
effects version of model 13 with lognormally distributed random
effects on all model parameters with a diagonal covariance
matrix is also structurally globally identifiable. This follows
from the fact that the structural model has been shown to be
structurally globally identifiable (detail in the Supplementary
Material) and the statistical parameters are uniquely determined
by the lognormal distribution.

It is worth mentioning that structural identifiability analysis
using analytical techniques such as the input-output approach
may encounter certain limitations in terms of model size
and complexity. In general, the more complex a model is in
terms of the state-space dimensions and number of unknown
parameters, then the more computationally demanding the
subsequent analysis may become. If an analytical approach is
not possible due to symbolic computational intractability then
a hybrid symbolic/numerical analysis approach is an alternative,
see the profile likelihood approach (Raue et al., 2009) or the
Exact Arithmetic Rank approach (Karlsson et al., 2012). For an
extensive comparison between the profile likelihood approach,
the Exact arithmetic Rank approach and a differential algebra
approach implemented in a software called DAISY, see Raue et al.
(2014).

Practical Identifiability
Once the structural identifiability of the postulated model has
been determined, parameter estimation can be performed. As
with the structural identifiability example, Model 13 (Table 1)
was selected for the simulation study to investigate the influence
of varying data quality on the practical identifiability of the
parameters. This model includes two different sources of delay,
one from distribution to the effect site, where the rate is
controlled by the parameter ke0, and also through slow receptor
dynamics, where the off-rate is controlled by the parameter koff .
The possibility to distinguish the two different delays in practice
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TABLE 1 | Summary of the 16 PD fixed effects and mixed effects models for which the structural identifiability was investigated.

N Model equations I/O ICs Fixed effects models Mixed effects models

Fixed effect parameters Fixed effect parametersa Random effect parametersb

1 E = ke
RtotCp
Kd +C

Cp/E Rtot, ke,Kd ke,Kd ηke, ηKd

2 E =
Em (RtotCp )

n

(Kd +Cp )nRC
n
50 + (RtotCp )n

Cp/E Rtot,Em,RC50, n,Kd Em,RC50, n,Kd ηEm, ηRC50, ηn, ηKd

3 Ė = kin(1 + ke
RtotCp
Kd +Cp

)− koutE Cp/E E(0) = kout/kin Rtot, kin, kout, ke,Kd kin, kout, ke,Kd ηkin, ηkout, ηke, ηKd

4 Ė = kin − kout (1 + ke
RtotCp
Kd +Cp

)E Cp/E E(0) = kout/kin Rtot, kin, kout, ke,Kd kin, kout, ke,Kd ηkin, ηkout, ηke, ηKd

5 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff , ke kon, koff , ke ηkon, ηkoff , ηke

E = keRC

6 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff ,Em,RC50, n kon, koff ,Em,RC50, n ηRC50, ηkon, ηkoff , ηEm, ηn

E =
EmRC

n

RCn50 +RCn

7 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff , kin, kout, ke kon, koff , kin, kout, ke ηkon, ηkoff , ηkin, ηkout, ηke

Ė = kin(1 + keRC)− koutE E(0) = kout/kin

8 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff , kin, kout, ke kon, koff , kin, kout, ke ηkon, ηkoff , ηkin, ηkout, ηke

Ė = kin − kout (1 + keRC)E E(0) = kout/kin

9 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot, ke,Kd ke0, ke,Kd ηke0, ηke, ηKd

E = ke
RtotCe
Kd +Ce

10 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot,Em,RC50, n,Kd ke0,Em,RC50, n,Kd ηRC50, ηke0, ηEm, ηn, ηKd

E =
Em (RtotCe )

n

(Kd +Ce )nRC
n
50 + (RtotCe )n

11 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot, kin, kout, ke,Kd ke0, kin, kout, ke,Kd ηke0, ηkin, ηkout, ηke, ηKd

Ė = kin(1 + ke
RtotCe
Kd +Ce

)− koutE E(0) = kout/kin

12 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot, kin, kout, ke,Kd ke0, kin, kout, ke,Kd ηke0, ηkin, ηkout, ηke, ηKd

Ė = kin − kout (1 + ke
RtotCe
Kd +C

)E E(0) = kout/kin

13 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot, kon, koff , ke ke0, kon, koff , ke ηke0, ηkon, ηkoff , ηke

ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0

E = keRC

14 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot,RC50, kon, koff ,Em, n ke0,RC50, kon, koff ,Em, n ηke0, ηRC50, ηkon, ηkoff , ηEm, ηn

ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0

E =
EmRC

n

RCn50 +RCn

15 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot, kon, koff , kin, kout, ke ke0, kon, koff , kin, kout, ke ηke0, ηkon, ηkoff , ηkin, ηkout, ηke

ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0

Ė = kin(1 + keRC)− koutE E(0) = kout/kin

16 Ċe = ke0 ∗ (Cp − Ce) Cp/E Ce(0) = 0 ke0,Rtot, kon, koff , kin, kout, ke ke0, kon, koff , kin, kout, ke ηke0, ηkon, ηkoff , ηkin, ηkout, ηke

ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0

Ė = kin − kout (1 + keRC)E E(0) = kout/kin

N, Model number; I/O, Model inputs/outputs; ICs, Initial conditions. aRtot was fixed at 100 when analysing the mixed effects models.
bEach mixed-effects model was assumed to have

a diagonal covariance matrix � with lognormally distributed random effects.

under varying data quality was investigated in a simulation
study. Rtot was fixed to 1 following the results of the structural
identifiability analysis to ensure the structural identifiability of
the model. True parameter values were assigned to each model
parameter: ke = 1, ke0 = 0.2, koff = 0.02 and kon =

0.05 amounts per minute. All parameters were assumed to vary
between subjects following a log-normal distribution as this
ensures positive rates for all subjects, with standard deviation
σ = 0.3 amounts per minute to represent differences in a
population. The model is summarized in Figure 3A.

The simulation study was performed in MATLAB 2013b
(The MathWorks, Inc., 2016) and Monolix 4.3.2 (Lixoft, 2012)
as outlined in Figure 3B. (1) PK data were simulated without

variability or noise, applying an intravenous bolus dose of
20 mg/kg to a hypothetical typical individual with volume of
distribution 1 and rate of elimination 0.2 mg/kg. (2) Model
13 with the selected “true” parameter values was used to
simulate data sets of varying size and quality. Three factors were
changed that influence the information available in the data: (i)
different sampling densities 1t = 1, 2, 5, 10, 15, 20, 25, 30 min.
(ii) different additive noise levels σ = 0.05, 0.15, 0.5 response
units and (iii) different numbers of subjects n = 100, 40, 12. (3)
Parameters were estimated using each simulated data set, with the
following initial guess selected for the optimization algorithm:
ke = 1, ke0 = 0.1, koff = 0.01 and kon = 0.01 units per minute
for the structural parameters and 0.3 units per minute for the
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FIGURE 3 | (A) Model 13 and the selected true parameter values. BSV is between-subject variability. (B) Workflow for the simulation study. (C) Accuracy of the typical

parameter estimates for the combined effect compartment/dynamic receptor model fitted to simulated data. The accuracy of each parameter (y-axis: estimated/true

parameter value, line of unity marked by black line) and its uncertainty (normalized standard error, filled lighter area) is given at each data resolution level (x-axis: time

between samples increasing from 1, 2, 5, 10, 15, 20, 25 to 30 min) for simulated data for 100, 40 and 12 subjects (row 1, 2, 3) adding additive noise with standard

deviations 0.05, 0.15, and 0.5 response units (r.u, column a, b, c) respectively.

standard deviations. (4) The ratio between the final parameter
estimates and the true parameter values were calculated and
compared for the typical parameters to investigate the effects of
varying sampling frequency, noise levels and number of subjects
on parameter accuracy.

RESULTS

Structural Identifiability Analysis
The results of the structural identifiability analysis applying the
input-output approach are summarized in Table 2, including
the structural identifiability results and the reparameterization
solutions to achieve structurally identifiable models.

All fixed effects versions of the models were in their original
parameterization shown to be structurally unidentifiable. For all
of the models, the source of the unidentifiability problem was
the parameters Rtot and either RC50 (Models 2, 6, 10, 14) or
ke (remaining models) (see Table 2). The analysis showed that
these parameters are unidentifiable and therefore any numerical
estimates of them are effectively meaningless from a biological
perspective. Furthermore, it was shown that even though Rtot
and ke or RC50 are unidentifiable, the product Rtotke and fraction
Rtot/RC50 are globally identifiable. The remaining parameters in
the analyzed models were all shown to be globally identifiable.
Therefore, three methods may be applied to ensure structurally
globally identifiable models: (1) A new parameter may be defined
as Rtotke, representing the effect when all targets are bound,
and Rtot/RC50, representing the transducer ratio, to replace the
unidentifiable parameters. (2)Rtot or (3) ke andRC50 may be fixed
to known or assumed numerical values. However, this affects the
units and interpretation of the non-fixed parameter. For example,
Rtot may be fixed at 100%, resulting in changed units for ke to
units per percent bound receptor.

As discussed in Janzén et al. (Under review), if the structural
model is structurally globally identifiable, and if the statistical
sub-model is structurally globally identifiable, it follows that
the mixed-effects model is also structurally globally identifiable.
The statistical sub-model for the random effects considered in
this paper takes the form of the structurally globally identifiable
lognormal distribution. Therefore, the mixed-effects versions
of the models in Table 1 are structurally globally identifiable
following the reparameterization or fixing of Rtot or ke.

Simulation Study of Practical Identifiability
In the simulation study, increasing noise, reducing sampling
frequency and reducing the number of subjects all led to worse
parameter estimation results (Figure 3). At the lowest noise level
(column a), the model parameters were well estimated up to a
sampling density of 1t = 10, while increasing the sampling
interval above this level led to over- and underestimation of ke
and kon respectively. At the intermediate noise level (column
b), similar results were obtained, although problems occurred at
smaller sampling intervals. At the highest noise level (column
c), the parameter estimation was unsuccessful for all estimation
runs except for 100 subjects and 1 min sampling interval.
The simulation study shows a trend of decreasing accuracy to
estimate the true parameters when the amount and quality of
the data decreases. Some of the model parameters vary more
than others when the data become worse in terms of noise
levels, the number of measurements and the number of subjects.
For instance, koff was estimated reasonably well, except for
the very worst case 3c, while the estimates for ke and kon are
poor in 1a. It can also be seen that the uncertainty in the
parameter estimates (standard errors) generally widens with
either increased noise, reduced sampling density or reduced
number of number subjects. Interestingly, high precision (small
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TABLE 2 | Results of the structural identifiability analysis of the mixed-effects models 1–16 in Table 1.

Model description Structural identifiability results

Fixed effects Random effectsa

N Distr. | Binding | Transd. SU parameters SI parameters & combinations SI parameters

1 Direct | SS | Linear Rtot, ke Rtotke,Kd ηke, ηKd

2 Direct | SS | Sigmoid Rtot,RC50 Rtot/RC50, ke,Kd , n ηRC50, ηke, ηKd , ηn

3 Direct | SS | Indirect Rtot, ke Rtotke, kin, kout,Kd ηkin, ηkout, ηke, ηKd

4 Direct | SS | Indirect Rtot, ke Rtotke, kin, kout,Kd ηkin, ηkout, ηke, ηKd

5 Direct | Dynamic | Linear Rtot, ke Rtotke, kon, koff ηRtot/RC50, ηkon, ηkoff , ηEm

6 Direct | Dynamic | Sigmoid Rtot,RC50 Rtot/RC50, kon, koff ,Em, n ηRC50, ηkon, ηkoff , ηEm, ηn

7 Direct | Dynamic | Indirect Rtot, ke Rtotke, kon, koff , kin, kout ηkon, ηkoff , ηkin, ηkout, ηke

8 Direct | Dynamic | Indirect Rtot, ke Rtotke, kon, koff , kin, kout ηkon, ηkoff , ηkin, ηkout, ηke

9 Delay | SS | Linear Rtot, ke Rtotke, ke0,Kd ηke0, ηke, ηKd

10 Delay | SS | Sigmoid Rtot,RC50 Rtot/RC50, ke0, kon, koff ,Em, n ηke0, ηRC50, ηEm, ηn, ηKd

11 Delay | SS | Indirect Rtot, ke Rtotke, ke0, kin, kout,Kd ηke0, ηkin, ηkout, ηke, ηKd

12 Delay | SS | Indirect Rtot, ke Rtotke, ke0, kin, kout,Kd ηke0, ηkin, ηkout, ηke, ηKd

13 Delay | Dynamic | Linear Rtot, ke Rtotke, ke0, kon, koff ηke0, ηkon, ηkoff , ηke

14 Delay | Dynamic | Sigmoid Rtot,RC50 Rtot/RC50, ke0, kon, koff , kin,Em, n ηke0, ηRC50, ηkon, ηkoff , ηEm, ηn

15 Delay | Dynamic | Indirect Rtot, ke Rtotke, ke0, kon, koff , kin, kout ηke0, ηkon, ηkoff , ηkin, ηkout, ηke

16 Delay | Dynamic | Indirect Rtot, ke Rtotke, ke0, kon, koff , kin, kout ηke0, ηkon, ηkoff , ηkin, ηkout, ηke

SU, Structurally unidentifiable; SI, Structurally identifiable. aRtot was fixed at 100 when analysing the mixed effects models.

Structurally identifiable and unidentifiable parameters and a suggested reparameterization are provided for the corresponding fixed effects models. Random effects were evaluated for

the reparameterized models.

standard errors) is in many optimizations acquired despite low
accuracy in the parameter estimates.

Case Study: Analysing Cardiac (Side)
Effects
A case study was conducted in order to exemplify the process of
model development, including structural identifiability analysis.
Side effects of potential new drugs on the heart must be evaluated
by monitoring changes in the duration of specific intervals
monitored in the electrocardiogram (ECG), such as the QT
interval (defined by the Q and T peaks in the ECG) which
corresponds to the duration of the ventricular action potential.
The main part of the QT interval constitutes the ventricular
repolarization phase, corresponding to the JT interval (defined
by the J point and T peak in the ECG), and prolongations are
strongly linked to inhibition of the cardiac ion channel hERG
(Pollard et al., 2010). In this example, model 10 (Table 1) was
applied to link inhibition of the hERG ion channel in vitro
to prolongation of the JT interval following treatment with
the anti-arrhythmic compound and mixed ion channel blocker
AZD1305, a proprietary AstraZeneca compound. Model 10 was
selected since an identifiable version of this model has been
used previously to fit this type of data (Jonker et al., 2005) and
following evaluation of additional structures, for example model
2 (without the effect compartment).

Methods
Clinical study and PK and QT interval data are described in
Parkinson et al. (2013). This phase I study was performed in
accordance with the ethical principles of the Declaration of

Helsinki and is consistent with the International Conference
on Harmonisation (ICH)/Good Clinical Practice. JT intervals
were calculated by subtracting QRS from QT. In vitro data
were acquired from the original data collected by Carlsson et al.
(2009). Methods for PKPD model development are detailed in
Bergenholm et al. (2016). Baseline variability of JT intervals
was minimized applying a circadian rhythm and RR correction
models (Chain et al., 2011; Bergenholm et al., 2016). The PK
and PD were modeled sequentially, and Model 10 (Table 1) was
selected to describe the drug effect. Kd was estimated prior to the
PKPD modeling using the Imax model, where the inhibition in %
is calculated according to

I(C) = 100 ∗ C/(IC50 + C) (9)

where IC50 corresponds to the drug concentration resulting
in 50% inhibition, substituting Kd in Model 10. Parameter
estimations were performed using the stochastic approximation
expectation maximization (SAEM) algorithm as implemented in
Monolix 4.3.2 (Lixoft, 2012).

Results
The estimated IC50 of hERG was 0.37 ± 0.04 µM with between
cell variability of 0.19 ± 0.09 µM. Fitting all parameters of
the operational model led to high uncertainty and correlation
between Rtot and RC50 (Table 3). Structural identifiability
analysis of this model showed that only the fraction Rtot/RC50

is identifiable (see Table 2) and the model was therefore
reparameterized with τ = Rtot/RC50, resulting in a structurally
identifiable model. Estimation of the reduced model resulted in
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TABLE 3 | Estimated parameter values for the original and

re-parameterized Model 10 fitted to AZD1305 PK-hERG-JT interval data.

Parameter Unit Unidentifiable model Identifiable model

Estimate

(SE)

BSV % (SE) Estimate

(SE)

BSV % (SE)

Em ms 172 (23.9) 18.7 (9.09) 162 (18.9) 20.6 (7.67)

RC50 µM 0.753 (173) 13.3 (15300) – –

n 2.02 (0.24) 35.1 (7.5) 2.1 (0.219) 36.4 (7.69)

Rtot µM 1.1 (252) 13.2 (15400) – –

τ – – 1.55 (0.163) 15.2 (8.17)

IC50 µM 0.37 (fixed) 0.19 (fixed) 0.37 (fixed) 0.19 (fixed)

ke0 h−1 9.37 (2.96) 125 (24) 9.42 (2.91) 123 (23.4)

Residuals ms 6.64 (0.155) – 6.64 (0.155) –

−2LL 7662 7670

SE, Standard error; BSV, Between-subject variability; −2LL, −2 LogLikelihood.

similar parameter values for all of the identifiable parameters,
similar goodness of fit values and residuals and good precision in
the population estimate of τ (Table 3). The fits to the generated
data can be seen in Figure 4.

Discussion
Both the full and reparametererized versions of model
10 described the data well. However, standard errors and
correlations of Rtot and RC50 correctly indicated identifiability
issues with the former. The estimated parameters were converted
to the traditional Emax and EC50 parameters, which describe the
maximal effect and the drug concentration at half-maximum
effect respectively. Emax and EC50 were calculated according to

Emax =
Emτn

1+ τn
(10)

EC50 =
IC50

(2+ τn)1/n − 1
(11)

and resulted in an estimated Emax of 117ms and 116ms and EC50

of 0.36 and 0.35 µM respectively for the full and reparameterized
models. This highlights that identifiable parts of a structurally
unidentifiable model are still informative. The estimated Emax

is similar to that in previous hERG-QT modeling of dofetilide
(Jonker et al., 2005), while the estimated hERG block at 10 ms JT
prolongation was slightly higher (18 vs. 9%). This may be caused
by AZD1305-induced calcium block (Carlsson et al., 2009), as
the calcium current depolarizes the cardiac cells (Amin et al.,
2010), counter-acting the repolarization by hERG. The structural
identifiability analysis showed that two model parameters could
not be estimated. This led to model reduction. Performing this
analysis prior to parameter estimation ensures the theoretical
possibility of estimating all parameters in the model. Estimating
the parameters of the unidentifiable model could have been
avoided, reducing the number of iterations in the optimization.
Also, ensuring structural identifiability improves confidence in
the biological interpretation of the estimated parameter values.

DISCUSSION

Unidentifiability issues can cause many different types of
problems if not mitigated when models are used to quantify,
predict and understand the effects of potential drugs. Most
importantly, the biological/physiological interpretations of
structurally or practically unidentifiable parameters are not
valid. This may lead to wrong conclusions, for example when
unknowingly comparing unidentifiable parameters to rate
candidate drugs or for comparison with competitors. Also,
any predictions based on the profiles of unmeasured states of
the system may be meaningless if the parameters directly or
indirectly related to those states are unidentifiable. For example,
if the effect of interest in a toxicity or efficacy study depends
on the concentration in a compartment for which the profile
is linked to structurally unidentifiable parameters, it may be
impossible to separate the distribution to this compartment and
the drug effect. Unidentifiability issues may also cause technical
problems, as the parameter estimation step may take a very long
time, or fail (crash), if a structurally unidentifiable model is used
(depending on what form of optimization routine is used).

We have investigated the structural identifiability of
16 fundamental pharmacodynamic models and identified
parameterizations that are structurally identifiable both for
fixed effects- and mixed-effects- versions of the models, as
summarized in Table 2. For all of the investigated models, the
total amount of receptor in the system was fixed (to e.g., 1 or
100%) in order to achieve structural identifiability. This implies
that some parameters for the “signal transduction” are relative.
For example, the units of a proportional signal transduction are
effect units per fraction bound/inhibited receptor if Rtot is fixed
to 1. This analysis shows that given sufficient data quality, it is,
in theory, possible to distinguish between different sources of
delay from the data. Thus, it is possible to differentiate delays
that are compound-specific (e.g., distribution, drug-receptor
binding kinetics) from delays that are system-specific (e.g.,
turnover of receptors) to compare compounds and simulate
untested systems. The investigated models have been used
successfully and repeatedly in practice (Ploeger et al., 2009;
Peletier and Gabrielsson, 2012), and our results confirm the
general assumption of structural identifiability. This provides
confidence in the theoretical soundness of using these models.

Next, we estimated parameters of the unidentifiable and
reparameterized versions of Model 5 (Tables 1, 2) in to
investigate the possible consequences of estimating unidentifiable
models (Figure 5). Three separate runs of parameter estimation
were performed. Parameters in the unidentifiable version of
the model were estimated in two different runs using different
initial estimates. For the third parameter estimation run, the
model was reparameterized following insights from the structural
identifiability analysis.

Investigating the estimated parameters shows that standard
errors of unidentifiable parameters differ significantly between
the two estimation runs, and are larger than the standard error
of the product of the parameters. For one of the estimation
runs the magnitude of the standard errors (37.6 and 33.7%)
did not clearly indicate a structural identifiability problem. In
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FIGURE 4 | PK and JT interval data (markers) and model predictions (lines) for humans treated with placebo and 3 selected doses of AZD1305. (A)

Model predictions by the unidentifiable JT model. (B) Model predictions by the identifiable JT model. (C) Individual PK model parameters predicting the PK in each

subject were used to drive the PD response. Individual subjects are separated by color.

FIGURE 5 | (A) Results of the structural identifiability analysis of Model 5. (B) Optimization results following estimation of unidentifiable and identifiable versions of

Model 5 using example data.

the second estimation run the standard errors (163 and 154%)
did indicate a structural identifiability problem. However, for
both estimation runs the estimated correlations between Rtot

and ke were −0.9 and −0.99 respectively, indicating a potential
structural identifiability problem in both cases. Alternatively,
analysing the models using the profile likelihood approach (Raue
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et al., 2009) would also potentially indicate a problem with
structural and practical identifiability. Although estimation of
an unidentifiable model in theory should lead to infinitely large
uncertainty for the structurally unidentifiable parameters due to
a flat likelihood function in the directions representing those
parameters, this did not happen in practice. The reason why
this did not happen can be explained by measurement and
numerical noise. In real-world problems, the likelihood function
is never completely flat which introduces false local minima
where the optimization routine may become “stuck” depending
on the initial guesses used for the model parameters and the
optimization algorithm itself. This example shows the potential
danger of using practical identifiability analysis as a tool to
deduce structural identifiability. For the first set of initial guesses
for the parameters, the reported RSE-values are unreasonably
high indicating a structural identifiability issue. However, the
RSE-values reported using a different set of initial guesses for
the model parameters do not indicate that there is any structural
identifiability problem. The results of these estimations were used
to draw some general conclusions. These are as follows:

• Different initial guesses of the model parameters may lead to
different estimates of structurally unidentifiable parameters.

• Large standard errors may indicate that a parameter is
structurally (or practically) unidentifiable but unidentifiable
parameters may also appear well-determined.

• Reparameterizing the structurally unidentifiable model to
become identifiable leads to similar residuals (and likelihood)
and improved parameter precision of the new parameter(s).

• Identifiable parameters can still be well-determined when
other parameters are unidentifiable.

Similar findings regardingmasking of structural unidentifiability,
i.e., estimation of seemingly reasonable RSE-values of structurally
unidentifiable parameters, has been reported in the conference
contribution (Aoki et al., 2015) and in the follow-up paper
(Aoki et al., 2014). These findings were reported using
NONMEM, rather thanMonolix, which indicates that estimation
of misleading RSE-values under structural unidentifiability
conditions is not a software specific issue but instead a
general numerical computational instability issue. In these two
publications, a numerical approach called preconditioning is
suggested. In short, this approach involves reparametrization
of the model in such a way so that the subsequent numerical
computations of the RSE-values reportedly becomes more
stable and thus more reliable under structurally unidentifiable
conditions.

It is important to remember that having a structurally
identifiable model is only a prerequisite for successful parameter
estimation. In other words, that parameters are identifiable with
ideal data (continuous, noise-free data from an infinite number
of subjects in the mixed effects model case) does not guarantee
that they will be practically identifiable with a finite number of
noisy data points from a finite number of subjects.

The effects of practical identifiability were investigated in
a simulation study, where the quality of the data was varied
from good to worse, but the structural model was known to
be identifiable (Model 13). Conclusions from this example are
that:

• A structurally identifiable model does not guarantee reliable
parameter estimates.

• Data must contain information over relevant time scales for
the investigated system.

• Noise levels, sampling density and the number of subjects
(mixed-effects models) are all important in order to be able
to estimate parameters with reasonably high precision.

When the data do not contain information on the time scale of
the rate parameters in the system, the model should be reduced to
only account for effects over the relevant time scales. This applies
even when all parameters are structurally identifiable.

CONCLUSIONS

Parameter identifiability should be investigated to ensure
both structural and practical identifiability. Our work
confirms the structural identifiability of a set of fundamental
pharmacodynamic models, and provides examples of estimation
results with unidentifiable models. The investigated models
have been proven to have a sound theoretical basis in terms of
structural identifiability and thus are reliable in this respect. This
in turn increases the reliability of using such models in clinical
pharmacology and therapeutics.
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