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Coherent feed-forward loops exist extensively in realistic biological regulatory systems,

and are common signalingmotifs. Here, we study the characteristics and the propagation

mechanism of the output noise in a coherent feed-forward transcriptional regulatory loop

that can be divided into a main road and branch. Using the linear noise approximation, we

derive analytical formulae for the total noise of the full loop, the noise of the branch, and

the noise of the main road, which are verified by the Gillespie algorithm. Importantly, we

find that (i) compared with the branch motif or the main road motif, the full motif can

effectively attenuate the output noise level; (ii) there is a transition point of system state

such that the noise of the main road is dominated when the underlying system is below

this point, whereas the noise of the branch is dominated when the system is beyond

the point. The entire analysis reveals the mechanism of how the noise is generated and

propagated in a simple yet representative signaling module.

Keywords: coherent feed-forward loop, noise propagation, noise decomposition, linear noise approximation,

expression noise

PACS numbers: 87.18.Tt, 87.16.dj, 87.17.Aa

INTRODUCTION

The biological world is filled with interaction of deterministic laws and randomness (Monod, 1972).
Fluctuation and noise have penetrated into every level of biology, from themost essential molecular,
sub-cellular processes to the kinetics of tissues, organs, organisms, and populations (Tsimring,
2014). In a biochemical reaction system, it is known that the external noise and the internal noise
are both unavoidable (Harada et al., 1999; Hasty et al., 2000; Swain et al., 2002). The internal noise
(referred to expression noise here) originates from random fluctuations of stochastic chemical
reaction events (McAdams and Arkin, 1997; Arkin et al., 1998; Barkai and Leibler, 2000; Rao
et al., 2002) in finite-size biochemical systems, which can lead to cell-to-cell variability. Increasing
evidence suggests that this expression noise has significant impacts on many cellular processes.

A prominent feature of gene transcription regulatory networks is the presence of a large number
of motifs, i.e., patterns of interconnection. These motifs include the auto-regulation loop, feedback
loop, feed-forward loop and so on. An important task in the post-genome era is to understand
how these different regulation mechanisms of expression noise affect the functioning of cells and
how they contribute to cell-to-cell variability. Our ultimate purpose is to understand how the
characteristics of noise in the complex networks can be derived from the properties of modules
that are used to compose these networks.
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It has been recognized that feedback loops play significant
roles in a variety of biological processes, such as calcium signaling
(Berridge, 2001; Lewis, 2001), p53 regulation (Harris and Levine,
2005), galactose regulation (Acar et al., 2005), cell cycle (Morgan,
2006; Yang et al., 2013; Liu et al., 2015), and cell fate decision
in budding yeast (Li et al., 2014, 2015). Some studies suggested
that negative feedbacks typically attenuated noise and positive
feedbacks tended to amplify noise (Becskei and Serrano, 2000;
Austin et al., 2006; Alon, 2007); however, there were other studies
revealing that positive feedbacks could attenuate noises and
there were no strong correlations between the sign of feedbacks
(negative or positive) and the noise attenuation properties
(Hooshangi and Weiss, 2006; Hornung and Barkai, 2008).

It is well-known that the feed-forward loop is also a typical
of biological motif. The feed-forward loop, a pattern of three
genes, consists of two input transcription factors, one of which
regulates the other, conjointly regulating a target gene. Each
of the interactions of three genes in the feed-forward loop
can be activation or inhibition so that the feed-forward loop
has eight possible structural types. Among them, the coherent
feed-forward loop appears with the highest frequency in the
organism (Mangan and Alon, 2003).The structures, functions, as
well as noise characteristics of feed-forward loop have received
increasing attention over the last decade (Mangan and Alon,
2003; Mangan et al., 2003, 2006; Ghosh et al., 2005; Dekel et al.,
2005; Kalir et al., 2005; Prill et al., 2005; Wall et al., 2005; Alon,
2006, 2007; Kaplan et al., 2008; Kim et al., 2008; Goentoro et al.,
2009; Guo and Li, 2009; Macía et al., 2009; Kittisopikul and Suel,
2010; Sontag, 2010).

Few studies, however, focused attentions on the effect of
feed-forward on expression noise in biochemical systems. The
current study has ever studied the mechanisms of feed-forward
regulation in cell fate decisions in budding yeast (Li et al.,
2015). As is shown in (Mangan and Alon, 2003), the authors
have found that the coherent feed-forward loop rejects transient
input pulses and responds only to persistent stimuli. The feed-
forward loop attains their steady states if the stimuli act over a
sufficiently long time interval. In the paper (Ghosh et al., 2005),
the noise characteristics of coherent and incoherent feed-forward
loop in the steady state have been studied using the Langevin
formalism as well as a numerical simulation. However, it is still
unclear how expression noise is associated with the feed-forward
structure. Furthermore, a challenging task is to trace the sources
of expression noise and elucidate their roles in the feed-forward-
mediated pathway. In addition, how noise is propagated in the
feed-forward loop has not been fully solved.

To address the above questions, fluctuation and noise
propagation in the coherent feed-forward transcriptional
regulatory loop are investigated in this paper. Our motivation
is to clarify the potential relationships between network
structure, noise characteristics, and biological function. The
main contribution of our study is that we decompose the
expression noise of each element in the coherent feed-forward
loop into different noise sources (denoted as fine structure here).
We believe that our study presents a possible understanding
for why has the biological system evolved into a coherent
feed-forward regulatory mechanism. This paper is organized

as follows. In Section Mathematical modeling and analytical
noise, the mathematical models of coherent feed-forward loop,
including its main road and branch subsystems, are presented
first. Then the related theoretical methods are introduced to
calculate variances and normalized variations of each expression
production in these motifs. Further, in Section Results, we
analyse the fluctuation and noise propagation in the coherent
feed-forward loop and its subsystems. Finally, the conclusions
and discussions are given in Section Conclusion.

MATHEMATICAL MODELING AND
ANALYTICAL NOISE

A coherent feed-forward loop is composed of three components:
Two transcription factors X and Y, where the former regulates
the latter, and a target gene Z, where X and Y both bind the
regulatory region of Z and jointly modulate the transcription rate
(Figure 1A). In order to fully investigate noise characteristics in
the coherent feed-forward loop, two subsystems, the main road
(Figure 1B) and branch (Figure 1C), are chosen for comparison.
Themain road is a two-step cascade, through which transcription
factor X regulates the expression of transcription factor Y
and Y regulates Z. The branch is a one-step cascade, namely
transcription factor X regulate target gene Z directly, which acts
as a regulatory pathway. Therefore, we will explore how the
intrinsic noise is propagated in the coherent feed-forward loop,
also including the one-step cascade (i.e., branch) and the two-
step cascade (i.e., main road). Below, X means the upstream
factor, Y represents the intermediate component, and Z is the
downstream element. In our research, the analytical formulas
of noise are derived by using the linear noise approximation
(Kampen, 2007). The numerical results with Gillespie method
(Gillespie, 1977) are used to compare with the analytic
results.

Deterministic Model and Steady State
Based on the biochemical reaction rules, the mathematical
models of these corresponding gene regulation motifs are built
by virtue of ordinary differential equations. Two conditions are
considered, respectively.

(A) Treating the level of X as an adjustable parameter.

FIGURE 1 | Signal transmission in different gene motifs, including (A)

coherent feed-forward loop, (B) main road, i.e., two-step cascade, and (C)

branch, i.e., one-step cascade.
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First, the expression process of X is neglected and the
concentration of X is regarded as the control parameter.
Hence, the model of coherent feed-forward loop has only
two variables. The deterministic dynamics can be described
by the following equations:

dy

dt
= αyω1

x

K + x
− δyy, (1)

dz

dt
= αz

ω2x+ y

K + ω2x+ y
− δzz, (2)

where x, y, and z are the concentration variables for X,Y, and
Z, αy and αz are the maximum level of activated protein
production for Y and Z, which are set to ten, respectively.
K is the corresponding Hill constant, which is set to unity.
The dilution and degradation rate of Y and Z are δy and δz ,
which are set to unity, respectively. The model of the branch
is defined by ω1 = 0, ω2 = 1, the main road by ω1 = 1 and
ω2 = 0, and the coherent feed-forward loop by ω1 = 1 and
ω2 =1.

For equations (1) and (2), there exists an attracting fixed

point
(

αyω1
x

δy(K+x)
,αz

ω2x+y
δz(K+ω2x+y)

)

. The corresponding

phase portrait of this coherent feed-forward loop is
illustrated in Figure 2A when the concentration of X is
five. It shows that the system converges to a final steady
state when the system starts from different initial states, i.e.,
the attractor of the system. Furthermore, from the phase
plane, it is observed that each trajectory from different
initial states is nearly close to a straight line, only a small
number of trajectories are a little curved. In the case of other
parameters, the phase diagram is qualitatively invariant.

(B) Treating the level of X as a variable.
Then, we consider the birth and death processes of X.
Therefore, the model of coherent feed-forward loop has
three variables whose dynamics can be described by the
following equations:

dx

dt
= αx − δxx, (3)

dy

dt
=

αyω1x

K + x
− δyy, (4)

dz

dt
=

αz

(

ω2x+ y
)

(

K + ω2x+ y
) − δzz. (5)

Similarly, the branch is defined by ω1 = 0, ω2 = 1, the
main road by ω1 = 1 and ω2 = 0, and the coherent feed-
forward loop by ω1 = 1and ω2 =1. We will consider αx as
a control parameter under this condition. αy = αz = 10,
δx = δy = δz = 1.

Equations (3–5) have an attracting fixed point
(

αx
δx
,αyω1

x
δy(K+x)

,αz
ω2x+y

δz(K+ω2x+y)

)

. Phase portrait of this

coherent feed-forward loop is also presented in Figure 2B when
the production rate αx is five. The three-dimensional phase
diagram (Figure 2B) is similar to the previous two dimensional
phase diagram (Figure 2A). Starting some different initial states,
after almost straight trajectories, then the system finally reaches
a stable state. For other parameters values, the phase diagram
remains unchanged from the qualitative perspective.

Stochastic Model and Derivation for the
Analytical Formula of Noise
(A) Treating the level of X as an adjustable parameter.

Under small molecular numbers, the stochastic noise can be
described exactly with the master equations. A theoretical
derivation about the noise expression is given below, starting
from the master equations. The numbers of the expression
productions can be expressed as Ni, i ∈

{

x, y, z
}

. Relatively,
The numbers of the expression productions of Y and Z can
be expressed as Ny = Ωy, Nz = Ωz, where Ω is defined as
the size of system. Throughout the paper, Ω is set to 100.To
characterize the noise, the linear noise approximation is
adopted as below.

FIGURE 2 | Phase portrait of the coherent feed-forward loop. (A) Treating the concentration of X as an adjustable parameter.(B) Treating the concentration of X

as a variable.
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The joint probability distribution P(Ny, Nz , t) of coupled
ordinary differential equations Eqs. (1) and (2) obey the following
master equation (Jia and Li, 1997; Kampen, 2007; Brett and Galla,
2013):

dP

dt
=





αyω1

(

E−1
y − 1

)
Ωx
K+x +

(

E+1
y − 1

)

δyNy

+ αz
(ω2Ωx+Ny)

K+ω2x+
Ny
Ω

(

E−1
z − 1

)

+
(

E+1
z − 1

)

δzNz



 P,(6)

where the symbol E represents a step operator, which is defined
as E+1

i f (Ni) = f (Ni + 1) ,E−1
i f (Ni) = f (Ni − 1) .The master

equation cannot be solved exactly, so a systematic approximation
method has been developed here. By using van Kampen’s Ω -
expansion method, the numbers of Y and Z is approximated

by setting Ny = Ωy + Ω½ξy(t) , Nz = Ωz + Ω½ξz(t) .The
joint probability distribution is written by P (N1,N2, . . . ,NR, t) =
Ω−R/2Π(ξ1, ξ2, . . . , ξR, t) .Collecting the terms of Ω1/2 in the
expansion of Equation (6) reproduces the concentration form of
the macroscopic rate equation and the terms of Ω0 get a linear
Fokker-Planck equation,

∂Π

∂t
= −

∑

i, j
Aij∂i

(

ξjΠ
)

+
1

2

∑

i, j
Bij∂ijΠ . (7)

A is the stationary Jacobianmatrix of the deterministic equations.
B is the stationary diffusion matrix.

Thus,

A =

[

−δy 0
αzK

(K+ω2x+y)
2 −δz

]

, (8)

B =

[ αyω1x

(K+x)
+δyy 0

0
αz(ω2x+y)
(K+ω2x+y)

+δzz

]

. (9)

The linear noise approximation is summarized by (Elf and
Ehrenberg, 2003; Thomas et al., 2012)

AC + CAT + ΩB = 0, (10)

where matrix C contains both the variances Cyy, Czz ,which
characterizes the fluctuation in Y and Z. Substituting Equations
(8) and (9) into Equation (10), we obtain

Cyy = −
ΩByy

2Ayy
, (11)

Cyz = −
CyyAzy

Ayy + Azz
= Czy, (12)

Czz = −
BzzΩ

2Azz
+

Azy

Azz

CyyAzy

Ayy + Azz
, (13)

To quantify the noise propagation around the steady state,
Equation (10) is normalized as

MV + VTMT + D = 0, (14)

with Vik = Vki =
Cik

< Ni >< Nk >
, Mik = Aik

< Nk >

< Ni >
,

Dik = Ω
Bik

< Ni >< Nk >
.

To measure how the balance between production and
elimination of Ni is affected by Nk (Paulsson, 2004, 2005;
Pedraza and van Oudenaarden, 2005; Hornung and Barkai, 2008;
Jia et al., 2009; Pei et al., 2015), Ni and Nk represent the numbers
of the expression productions, respectively. i, k ∈

{

x, y, z
}

. The

logarithmic gain is defined by Hik =
∂ ln

(

J−i /J+i
)

∂ ln(Nk)
, where J+i is the

pure production rate and J−i is the pure elimination rate of the
expression production. Hik represents a common method of the
sensitivity of a response to changes in parameter Nk, also known
as logarithmic gain (Savageau, 1977), sensitivity amplification
(Goldbeter and Koshland, 1982; Heinrich and Schuster, 1996), or
susceptibility (Scott et al., 2006). Considering the constant death
rates and the constant transition rates, we can get the logarithmic
gains as follows

H =

[

Hyy Hyz

Hzy Hzz

]

=

[

1 0
−yK

(K+ω2x+y)(ω2x+y)
1

]

. (15)

Under the steady state (i.e., J−i = J+i = Ji ), the average lifetime
τi is determined by the total rate of elimination, τy = y/J−y =

1/δy, τz = y/J−z = 1/δz respectively. Thus, the drift matrix A is

represented by Aik = −
<Ni>
<Nk>

Hik
τi
.

Then its normalized formationM is rewritten as

Mik = Aik
< Nk >

< Ni >
= −

Hik

τi
. (16)

In order to study noise propagation, we substitute Equation
(15) into Equation (16), and then solve Equation (14) for the
normalized variations Vyy, and Vzz . Hence we have

Vyy =
1

〈y〉Hyy
, (17)

Vzz =
1

〈z〉Hzz
+

Hzy

Hzz

Hzy

Hzz

Hzz
τz

Vyy
(
Hyy

τy
+

Hzz
τz

) . (18)

It is seen that the upstream X has no contribution to the total
noise in downstream Z, while the intermediate Y transmits a
part of expression noise to Z, as shown in Figure 3A. Noise from
neighbor is called the one-step propagation noise.

FIGURE 3 | Noise transmission in coherent feed-forward loop. (A)

Treating the concentration of X as an adjustable parameter. (B) Treating the

concentration of X as a variable.
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Equations (1) and (2) can be translated into the following set
of birth-death processes:

∅

ky
→ y, (19)

∅
kz
→ z, (20)

y
δy
→∅, (21)

z
δz
→∅, (22)

where Equations (19) and (20) describe the production of Y
and Z,respectively. In Equations (19), ky = αyω1

x
K+x , and in

Equations (20), kz = αz
ω2x+y

K+ω2x+y . The degradations of Y and Z

are described by Equations (21) and (22), respectively. Stochastic
simulation of chemical reactions is performed using the Gillespie
algorithm (Gillespie, 1977).

B. Treating the level of X as a variable.
The joint probability distribution P(Nx,Ny,Nz , t) of coupled
ordinary differential equations (Equations 3–5) obey the
following master equation:

dP

dt
=








ω1αyNx

K+Nx
Ω

(

E−1
y − 1

)

+ δy

(

E+1
y − 1

)

Ny

+
αz(ω2Nx+Ny)

(

K+
ω2Nx

Ω
+

Ny
Ω

)

(

E−1
z − 1

)

+ δz
(

E+1
z − 1

)

Nz

+ Ωαx

(

E−1
x − 1

)

+ δx
(

E+1
x − 1

)

Nx







P,

(23)

Thus,

A =







−δx 0 0
αyω1K

(K+x)2
−δy 0

αzω2K

(K+ω2x+y)
2

αzK

(K+ω2x+y)
2 −δz






, (24)

B =






αx + δxx 0 0

0
αyω1x

K+x + δyy 0

0 0
αz(ω2x+y)
K+ω2x+y + δzz




 . (25)

The linear noise approximation is summarized by AC +

CAT + ΩB = 0. We get

Cxx = −
ΩBxx

2Axx
, (26)

Cyx = −
CxxAyx

Axx + Ayy
= Cxy, (27)

Cyy = −
ΩByy

2Ayy
−

CxyAyx

Ayy
, (28)

Czx = −
AzxCxx + AzyCyx

Axx + Azz
= Cxz , (29)

Czy = −
AzxCxy + AzyCyy + CzxAyx

Ayy + Azz
= Cyz , (30)

Czz = −
ΩBzz + 2AzxCxz + 2AzyCyz

2Azz
. (31)

Taking into account the constants of both the self-
proliferation rates and the death rates, the logarithmic gain
Hik can be obtained

H =





Hxx Hxy Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz





=






1 0 0
−K
K+x 1 0

−
Kω2x

(K+ω2x+y)(ω2x+y)
−yK

(K+ω2x+y)(ω2x+y)
1




 . (32)

Under the steady state, the average lifetime τi is determined by
the total rate of elimination, τx = x/J−x = 1/δx, τy = y/J−y =

1/δy, τz = y/J−z = 1/δz respectively. In order to study noise
propagation, we substitute Equation (32) into Equation (16),
and then solve Equation (14) for the normalized variations
Vxx, Vyy, and Vzz here, and then we have

Vxx =
1

Hxx 〈x〉
︸ ︷︷ ︸

Intrinsic noise

, (33)

Vyy =
1

Hyy

〈

y
〉

︸ ︷︷ ︸

Intrinsic noise

+
HyxHyx

HyyHyy

Hyy

τy

Hxx
τx

+
Hyy

τy

Vxx,

︸ ︷︷ ︸

one-step propagation noise from X

(34)

Vzz =
1

Hzz 〈 z〉
︸ ︷︷ ︸

Intrinsic noise

+
HzxHzx

HzzHzz

Hzz
τz

Hxx
τx

+
Hzz
τz

Vxx

︸ ︷︷ ︸

one-step propagation noise from X

+
HzyHzy

HzzHzz

Hzz
τz

Hzz
τz

+
Hyy

τy

Vyy

︸ ︷︷ ︸

one-step propagation noise from Y

+ Vtwo-steps propagation noise from X , (35)

Vtwo-steps propagation
noise from X

=
Hzy

Hzz

Hzy

τz

Hzz
τz

+
Hyy

τy

Hyx

τy

Hzz
τz

+
Hxx
τx

Hyx

τy

Hxx
τx

+
Hyy

τy

Vxx

−
Hzx

Hzz

Hzy

τz
Hxx
τx

+
Hzz
τz

Hyx

τy

Hxx
τx

+
Hyy

τy

Vxx

−
Hzy

Hzz

Hyx

τy

Hzz
τz

+
Hyy

τy

Hzx
τz

Hzz
τz

+
Hxx
τx

Vxx

−
Hzy

Hzz

Hzx
τz

Hzz
τz

+
Hyy

τy

Hyx

τy

Hxx
τx

+
Hyy

τy

Vxx. (36)

We can see that, accompanied by signal transduction in the
network, the noise is also transmitted along these pathways.
The upstream X has contributions to the total noise in Y
and Z via one-step (branch road) and two-step (main road)
propagation, respectively (see Figure 3B). Y also delivers a
part of noise to Z by one-step propagation. It is noted
that the analytic expression of total noise in Z seems to be
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complex. However, the third term Vtwo−steps propagation noise from X

on the right describes the two-step propagation noise from
X to Z.

RESULTS

Based on the theoretical formulas of variances and normalized
variations obtained above, we can make a further analysis about
how noise is transmitted in the coherent feed-forward loop. Some
interesting results are observed.

The Total Noise Level of Downstream
Component is Always the Smallest
In order to illustrate noise characteristic of different nodes in
these small gene networks, as observed in Equations (18)and(35),
we investigate the normalized variations of each element in a
variety of situations, which can present a global feature.

When the concentration of X is constant and regarded as
a control parameter, the normalized variations Vyy and Vzz

under different conditions are given in Figures 4A–C. It shows
that with the increasing of x, the normalized noise levels in
Y and Z both decrease. For the two-step cascade in the main

FIGURE 4 | Dependences of normalized variations of different genes on control parameters for different motifs. (A–C) Treating the concentration of X as

an adjustable parameter. (D–F) Treating the concentration of X as a variable. From top to bottom, the results for one-step cascade (branch), two-step cascade(main

road) and coherent feed-forward loop are shown, respectively. Lines are theoretical predictions with Equations (17, 18) and (33–36), and solid markers are from

simulations using the Gillespie method.
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road (Figure 4B), there is a critical value, below which the
normalized variation of the Y is larger than that of Z. Beyond
the critical point, the situation is slightly reversed, the noise
of downstream component becomes larger than that of the
upstream. However, for the coherent feed-forward loop, it can
be found that the critical value almost disappears (Figure 4C).
That is to say, no matter how much the value of x is,
the normalized variation of Z is always smaller than that of
Y. The result shows that, due to the addition of regulation
branch, the noise of the downstream element becomes the
smallest.

When we treat the production rate αx as a control parameter,
both X and Y have contributions to the total noise of Z. The
noise curves of X are calculated and supplied in Figures 4D–F.
The noise of X is the largest when αx is less than certain
threshold for all cases. When αx increases to a certain value, the
concentration of X increases, hence the intrinsic noise of X is
reduced. It is illustrated that, in the region below a certain critical
point, the total noise level of downstream component is the
smallest compared with other upstream components. Basically,
if the stochastic birth-death process of X is involved, the noise
levels are enhanced, but the critical points are only modified
slightly.

Noise Characteristics of Gene Z
Because the target gene Z is a downstream gene and can
be considered as the system’s output, we focus on the noise
characteristics of gene Z. A comparison between the normalized
variations Vzz for different motifs is plotted in Figure 5. It
is observed that the noise curve of coherent feed-forward
loop is the lowest especially when the control parameter αx

is small. Our theoretical findings reveal that the multi-step
process is beneficial for signal transmission from X to Z, i.e.,
the coherent feed-forward loop can attenuate effectively the
noise level of downstream gene. Therefore, living organisms
could utilize feed forward for better survival in fluctuating
environments.

For the one-step cascade, signal X can be propagated directly
to Z, however, the noise level is always larger than that of

the other motifs. In addition, the two noise curves of one-step
cascade and two-step cascade intersect at a certain point.

Noise Decomposition
As is mentioned above, the total noise can be decomposed into
a series of noise terms, and each noise term represents different
sources. As observed in Equation (18), when X is considered as
an adjustable constant, the total noise in Z consists of two noise
components, in which the first one is pure intrinsic noise in Z,
the second one is the fluctuation propagated from the neighbor Y
(i.e., one-step noise propagation). However, as seen in Equation
(35), if we treat X as a variable, then the total noise in Z contains
more noise sources, including pure intrinsic noise of Z, one-step
propagation noise from X (X regulates Z directly via feed forward
loop), one-step propagation noise from neighboring Y, and two-
step propagation noise from X (Xmodulates Z indirectly through
Y). In order to study noise propagation in the coherent feed-
forward loop, the total noise and different-step noise sources are
theoretically discussed in Equations (18) and (35).

Case (i): The concentration of X is an adjustable constant.
The inset in Figure 6A shows that the total noise and pure
intrinsic noise in Z both vary monotonously with increasing
x. The noise levels are slightly large at the beginning and
then decreases rapidly, which is agreed qualitatively with
the fact that molecular noise is negatively correlated with
molecular number. Furthermore, it is obvious that the total
noise is mainly caused by pure intrinsic noise of Z, and
only a small proportion of noise is originated from the one-
step propagation. In Figure 6A, the noise term from one-step
propagation is plotted. It can be found that with the increase
of the concentration of X, the transmitted noise is reduced and
finally disappears.
Case (ii): The concentration of X is a variable. The inset
in Figure 6B shows that the total noise in Z is also mainly
determined by its intrinsic noise. However, the fine structure of
noise components can be further observed by our theoretical
results. The three curves exhibit clearly the different-steps
noise propagation.

FIGURE 5 | Normalized variations of gene Z for different motifs. (A) Treating the concentration of X as an adjustable parameter. (B) Treating the concentration of

X as a variable. Lines are theoretical predictions with Equations (18), (35), and (36), and solid markers are from simulations using the Gillespie method.
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FIGURE 6 | Noise propagation in coherent feed-forward loop. (A) Treating the concentration of X as an adjustable parameter. (B) Treating the concentration of X

as a variable. Long point line represents the one-step propagation noise of Y, short dot line represents the one-step propagation noise of X. Solid line shows two-step

propagation noise of X. In the inset, solid line shows the total noise and short dot line represents pure intrinsic noise of Z.

Contributions of Upstream And
Intermediate Components to Downstream
Element’s Total Noise
In order to study the propagation feature of the intrinsic
expression noise along the direction of signaling transduction, we
add the one-step and two-step noise terms of X together. Then,
the contribution of noise propagation from X to Z is compared
with the contribution from Y to Z, as shown in Figure 7A. It is
observed that the noise contribution of the upstream factor X is
relatively smaller. With the increasing of the control parameter,
the noise contribution to Z from Y becomes close to that from X.
Roughly speaking, the noise transmitted from upstream is weaker
than the noise propagated from intermediate neighbor.

Characteristics of Noise Propagation via
Main Road and Branch in the Loop
We further consider how the expression noise of upstream
component X is transferred to downstream Z via the main road
and branch. The curves of noises propagated through main road
and branch are plotted in Figure 7B, respectively. It shows that
there is an intersection point for two noise curves, i.e., there
exists a critical point. When the control parameter is below
the critical value, the noise transmitted through the branch
is relatively smaller. On the other hand, when the system is
beyond the critical value, the noise transmitted via main road
is comparatively smaller. It might be caused by the fact that
for signaling systems, the regulation of branch occupies the
strategic position in the early stage, however, the main road
plays a major role in the late stage. Coherent feed-forward loop
meets the requirements of different periods. Therefore, our result
provides a potential club to explain the reason a large number of
coherent feed-forward transcriptional regulatory motifs exists in
the cell.

CONCLUSION

A population of genetically identical cells exposing to the same
extracellular environment may exhibit considerable noise in

the mRNA or protein level. This cell-to-cell noise is generated
largely due to the limited number of reacting molecules
such as gene copies, mRNA, or proteins. Understanding the
dynamics of noise propagation in gene regulation systems is an
important question on noise analysis in biophysics and system
biology.

In this paper, we studied how the expression noise is
propagated through a coherent feed-forward loop. First
we established a toy yet representative model of gene
regulation with feed-forward. Then the theoretical formulas
for noise propagation were derived by using the linear
noise approximation of master equation and logarithmic
gain. We have analytically shown that the total noise is a
simple sum of different noise sources including the intrinsic
noise and the transmitted noise from other elements in
the loop. Therefore, signal transmission is accompanied by
noise propagation. In principle, the sub-processes in signal
transduction may also contribute to the total noise. By analyzing
this decomposition of expression noise, we have further
obtained some interesting results about noise characteristics and
propagation.

(i) Compared with other upstream components, the noise
level of downstream component is smaller in the coherent
feed-forward loop due to the addition of branch. The
multi-channel process in the coherent feed-forward loop is
advantageous to the propagation of signals, which means
that the expression noise level of downstream gene can be
reduced due to feed forward loop. Our finding may present a
clue to understand why the fate decision system in budding
yeast would evolve into a coherent feed forward structure (Li
et al., 2015).

(ii) The main noise source in the total noise for downstream
component is intrinsic noise. The noise propagated from
upstream factor is weaker than the noise transmitted
from intermediate component when the system is below
this critical point. By comparing the different noise
contributions of upstream factors, a transition point in
the coherent feed-forward loop is observed. When the
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FIGURE 7 | Normalized variation in Z with increasing the control parameter for different propagation pathway. (A) Solid line shows the noise level including

the first-step and two-step noise propagation pathways from X to Z. Short dot line represents the first-step noise propagation pathway from Y to Z. (B) Short dot line

represents the one-step noise propagation pathway from X to Z. The solid line shows two-step noise propagation pathway from X to Z.

system is below this transition point, the noise of the
main road is relatively higher while the noise of branch
is higher when the system is beyond this point. The two-
phase mechanism could be advantageous to the signal
propagation.

Phosphotransferase system (PTS) is a signaling network in
bacteria, responsible for sensing and using a certain nutrient.
In the PTS, enzyme I (EI) is first autophosphorylated and then
transfers the phosphoryl group to enzyme IIA-Glucose (EIIAGlc)
via enzyme histidine phosphorcarrier (HPr). As an alternative
pathway, we found that, EIIAGlc can be phosphorylated
directly by EI in the absence of HPr. Therefore, the PTS is
similar to the above feed-forward system. Recently, using the
paramagnetic NMR spectroscopy and mathematical model, we
have investigated the mechanism of phosphoryl transfer between
the EI and EIIAGlc and demonstrated the physical basis for
their ultraweak interaction (Xing et al., 2014). Interestingly, by
a further dynamical analysis, a critical point is also found in
the PTS system with feed-forward loop. When the concentration
of HPr is smaller than a critical value, the main road plays
a major role on transfer phosphate, however the transfer of
phosphoryl group through the branch is dominated when
the system is beyond the point. We hope that the potential
relationship between the two transition points in the feed-
forward system and the PTS system can be clarified in our next
work.

Our research has clarified the potential relationships
between feed-forward structure, noise characteristics, and signal
transduction. By comparing the properties of three different
motifs, we easily find that the feed-forward motif is a best design
for signal transduction because it excels in the noise-reduction
function. So far, it is the first time to clarify noise characteristics
and propagation mechanism in a coherent feed-forward loop
by analytical method. The ability to dissect theoretically noise
propagation through complex biological networks enables the

researchers to understand the role of noise in function and
evolution. Our work provides a preliminary result for noise
decomposition in gene regulation circuits. However, there still
exist some deficiencies in our theoretical work. (i) Because the
coherent feed-forward loop has the highest abundance in nature,
we have only analyzed this form of coherent feed-forward loop.
It is worthy to study the noise transmission in other feed-forward
loops. (ii) Due to lack of experimental data, it is difficult to
build a quantitative coherent feed-forward loop model. Only a
coarse model of coherent feed-forward loop is used to explore
the qualitative behaviors. For example, in the reaction process,
the Hill coefficient is equal to 1 without taking into account
the case of N greater than 1. (iii) We only select one set of
parameter values to make a simple analysis. We can see the
fine structure of total noise for each component, but the noise
level is very small, especially the first-step propagation noise via
branch.
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