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A commentary on

Reciprocal Modulation of IK1–INa Extends Excitability in Cardiac Ventricular Cells

by Varghese, A. (2016). Front. Physiol. 7:542. doi: 10.3389/fphys.2016.00542

We read with great interest the excellent paper by Varghese (2016) who describes an in silico
approach to study the consequences of reciprocal regulation of expression of the sodium current
(INa) and the inward rectifier potassium current (IK1) in the ventricle for cardiac excitability and
conduction. The in silico approach follows the experimental results obtained by Milstein et al.
(2012) who demonstrated functional co-regulation of the sodium and inward rectifier currents,
and their underlying channel proteins Nav1.5 and KIR2.1 respectively, and electrophysiological
consequences upon overexpression in rodent cardiomyocytes with respect to action potential
duration and re-entry based arrhythmia propensity. Varghese adapted the guinea pig ventricular
cardiomyocyte model, developed by Noble et al. (1998), that is extrapolated to simulations for
one dimensional cardiac fibers, in which the fiber is represented as a linear cable model. Varghese
changed either the conductance for INa and IK1 individually or in tandem, to assess their influence
on the excitability of mammalian ventricular cardiomyocytes. One of the most interesting findings
in this paper is the dominance of IK1 over INa in regulation of cardiac excitability, which yields
important questions about the significance of the inward rectifier in this process (Varghese, 2016).
This commentary will put these results in a broader context in order to provide a framework for
future research questions.

The experimental data of Milstein et al. (2012) point to the existence of a macromolecular
complex in which the SAP97 protein may have a major role in reciprocal regulation of expression
of Nav1.5 and KIR2.1 proteins, since both channels present binding motifs for SAP97. Milstein
and colleagues stress that the cell biological principles underlying reciprocal expression at the
sarcolemma are only partly resolved and propose a role for ion channel trafficking in the process.
Indeed, Nav1.5 promotes KIR2.1 protein to be presented at the cell surface, and it decreases
KIR2.1 internalization. Whether and to which extent KIR2.1 affects Nav1.5 protein trafficking still
needs to be resolved. Furthermore, a number of additional proteins are candidate in establishing
Nav1.5-KIR2.1 macromolecular complexes at the plasmamembrane as well as intracellularly (Willis
et al., 2015). Finally, the subcellular localization of KIR2.1 and Nav1.5, e.g., intercalated disc vs.
lateral membranes, may very well depend on the nature of the macromolecular complex. When
location specific complexes exist, we may predict that these respond differently to disease causing
factors and thereby change anisotropy. For now, the field has to elucidate the composition of
(additional) molecular complexes from native cell types and more importantly, gain knowledge
on Nav1.5 and KIR2.1 stoichiometry in such complexes and determine whether variations in
stoichiometry between complex types exist, and if so, decipher its significance.
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In contrast to Nav1.5, which is predominantly present in
the heart, KIR2.1 channels are expressed in many excitable
tissue types, like skeletal and smooth muscle, neuronal cells,
but also in non-excitable tissues (reviewed in De Boer et al.,
2010). This sets the stage for efforts to explore potential
reciprocal modulation of KIR2.1 and various sodium channel
subtypes in non-cardiac tissues, a hypothesis already put
forward in the field of epilepsy (Ambrosini et al., 2014).
Not only does KIR2.1 protein distribution differ between
tissue types, there is also variation within the heart. For
example, atria and Purkinje fibers express less KIR2.1 channels
than ventricles. This spatial variation also holds true for
development and disease. Transcriptional differences have been
seen in development and upregulation of KIR2.1 has been
associated with progression of atrial fibrillation (De Boer
et al., 2010). All these expressional differences likely play
a role in action potential formation and propagation, and
it may be clear that a complete set of in silico models,
representing different cardiac tissue types and developmental
stages may be required to fully appreciate the functional roles of
reciprocal modulation. Currently, both the guinea pig ventricular
cardiomyocyte model as the linear cable model do not inhabit
these dynamic features and by definition cannot provide clues on
anisotropy.

The findings by Varghese might be of importance to the
field of induced pluripotent stem cell-derived cardiomyocytes
(iPSC-CMs). iPSC-CMs are of interest for tissue engineering and

in vitro drug screening purposes, but their electrical immaturity
has to be considered carefully (Jonsson et al., 2012). Aside from
an ill-developed sarcoplasmic reticulum, their main drawback is
spontaneous beating activity due to a lack of IK1 (Jonsson et al.,
2012). Restoration of KIR2.1 and therefore IK1 might electrically
mature these iPSC-CMs. Since the absence of IK1 is closely linked
to very low transcription levels of the KIR2.1 producing gene
(KCNJ2) in this cell type, it appears obligatory to resolve KCNJ2
promoter regulation first and subsequently use gene specific
transcription factors or their upstream regulatory pathways to
increase KIR2.1 mRNA expression levels. Once KIR2.1 protein
expression level is elevated, the reciprocal modulation of sodium
and inward rectifier channels might provide additional means
to enhance KIR2.1 and thus IK1 in iPSC-CMs. The study by
Varghese shows that the interaction between sodium channel and
the inward rectifier yields functional implications that cannot be
ignored.
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