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Membrane fusion is a key process in all living organisms that contributes to a variety

of biological processes including viral infection, cell fertilization, as well as intracellular

transport, and neurotransmitter release. In particular, the various membrane-enclosed

compartments in eukaryotic cells need to exchange their contents and communicate

across membranes. Efficient and controllable fusion of biological membranes is known

to be driven by cooperative action of SNARE proteins, which constitute the central

components of the eukaryotic fusion machinery responsible for fusion of synaptic

vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE

(synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble

into a core trans-SNARE complex. This complex plays a versatile role at various stages

of exocytosis ranging from the priming to fusion pore formation and expansion, finally

resulting in the release or exchange of the vesicle content. This review summarizes

current knowledge on the intricate molecular mechanisms underlying exocytosis

triggered and catalyzed by SNARE proteins. Particular attention is given to the function

of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in

fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-

driven membrane fusion are briefly outlined.

Keywords: SNARE, membrane fusion, synaptobrevin, syntaxin, SNAP-25, protein-lipid interactions, fusion

regulation

INTRODUCTION

Biological membranes separate the cell interior from its environment and allow for the
compartmentalization within the cell. They are involved in a variety of cellular events, e.g., cell
signaling, exocytosis, and ion conductance. Membrane fusion is the process by which two initially
separated lipid bilayers merge to form a single unity. It is a universal biological process in life, that
is involved in many cellular events, e.g., in viral infection, fertilization, and intracellular trafficking.
Fusion is essential for the communication between cells and between different intracellular
compartments (Jahn et al., 2003; Chernomordik and Kozlov, 2005). Spontaneous membrane fusion
in living orgamisms is opposed by repulsive forces between the approaching bilayers. These forces
result from electrostatic repulsion of equally charged membrane surfaces and from hydration
repulsion. Moreover, the lateral tension of the bilayer interface has to be overcome (Chernomordik
et al., 1987; Kozlovsky et al., 2002). The energy required to overcome the energy barrier for the
fusion of biological membranes is provided by specialized fusion proteins, e.g., in exocytosis the

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00005&domain=pdf&date_stamp=2017-01-20
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:rainer.boeckmann@fau.de
https://doi.org/10.3389/fphys.2017.00005
http://journal.frontiersin.org/article/10.3389/fphys.2017.00005/abstract
http://loop.frontiersin.org/people/395886/overview
http://loop.frontiersin.org/people/388965/overview
http://loop.frontiersin.org/people/228459/overview


Han et al. SNAREs in Membrane Fusion

energy results from the assembly of SNARE proteins into a
“rod-like” α-helical bundle, termed trans-SNARE complex (see
Figure 1) (Jahn et al., 2003; Rizo et al., 2006; Jahn and Fasshauer,
2012).

Exocytosis is a complex process consisting of a several
distinct stages. During “docking,” the synaptic vesicle and the
plasma membrane are brought into contact (see Figure 2A). The
following “priming” step renders the vesicle fusion-competent.
Membrane fusion is then initiated by calcium-triggering and
consists itself of several steps shown in Figures 2B–E. Although
the role of SNARE complex formation in mediating exocytosis
is widely accepted, the molecular mechanisms underlying the
action of SNAREs at individual stages of exocytosis are still
debated. Some experimental studies even suggested the necessity
of SNARE only at docking and priming stages with a SNARE-
independent fusion step (Tahara et al., 1998; Ungermann et al.,
1998). On the other hand, a number of recent experiments shed
light on the direct involvement of SNARE proteins in membrane
fusion, and the formation and stabilization of various fusion
intermediates were attributed to conformational changes and the
dynamics of SNARE molecules.

Although the macroscopic features of exocytosis can be
discerned by monitoring the content release or lipid mixing, the
dynamic microscopic intermediate structures during membrane
fusion are difficult or impossible to determine by experiment.
However, structural and dynamic information at atomistic
resolution can alternatively be obtained via molecular dynamics
simulations.

This review resumes latest findings from both experiments
and simulations concerning SNARE-driven fusion and exocytosis
in systems ranging frommodelmembranes to a nativemembrane
environment by both in vivo, in vitro, and in silico investigations.
Special attention is paid to the SNARE transmembrane anchors
and their interactions with the host membrane. Additionally, the
known regulatory mechanism by auxiliary proteins are briefly
reviewed.

1. SNARES IN THE INTRACELLULAR
EXOCYTOSIS

The SNARE proteins constitute a large protein superfamily
comprising more than 60 members in both mammalian and
yeast cells. They have an evolutionarily conserved coiled-coil

FIGURE 1 | Topology of the SNARE complex consisting of synaptobrevin (in blue), syntaxin-1A (in red), and two SNAP-25 (sn1 and sn2, both in green)

proteins (PDB:1SFC, Sutton et al., 1998).

stretch containing 60–70 amino acids termed as SNARE
motif (Fasshauer et al., 1998; Kloepper et al., 2007). The SNARE
motifs in synaptobrevin and syntaxin are connected to peptidic
transmembrane domains (TMDs) at the C-terminus via a short
linker region. These two SNARE proteins are embedded into
their respective membranes via anchoring of the TMDs. The
third interaction partner, SNAP-25, consists of two SNARE
motifs that are connected by a linker and attached to the plasma
membrane by multiple palmitoyl tails.

1.1. SNARE Motif
The SNARE motifs were long believed to be largely unstructured
when the SNARE proteins are in monomeric forms. However,
recent NMR studies on the native SNARE proteins suggested an
intrinsic α-helical configuration within the SNARE motif region
even in a monomeric form (Ellena et al., 2009; Liang et al., 2013).
Its secondary structure is possibly modulated by membrane
properties such as curvature (Liang et al., 2014) and influenced by
the transmembrane domain (Han et al., 2016b). Upon exocytosis,
the assembly of SNARE motifs into homo- or hetero-oligomeric
bundles results in a helical configuration (Fasshauer et al.,
1997; Fiebig et al., 1999; Margittai et al., 2001). A sequential
assembly of SNARE motifs initiated at the N-terminal domain
toward the C-terminal domain leads to the formation of tight
helical bundles with extraordinary stability called the SNARE
complex (Poirier et al., 1998; Sutton et al., 1998) (see Figure 3).
The complex formation is accompanied by an energy release
which is used to bring the membranes into close proximity (Lu
et al., 2008; Hernandez et al., 2012). The trans-SNARE complex
consists of four helices that are aligned in a parallel fashion,
with synaptobrevin and syntaxin contributing one SNARE motif
each whereas SNAP-25 contributes two. Progressive folding
of the SNARE complex toward the transmembrane anchors
results in a conversion from trans- to cis-configuration in
which the SNARE proteins are fully folded and reside in
the same membrane (Stein et al., 2009) (see Figure 3). This
transition was proposed to be functional at the final stage of
membrane fusion by facilitating the formation and expansion
of the fusion pore. A corresponding mechanism could be
modeled in a coarse-grained (CG) simulation study (Risselada
et al., 2011). The zippering of the SNARE motif has been
well characterized by two sequential zipperings from the N-
terminus to the C-terminus of the SNARE motif, namely to the
direction of the transmembrane segments (Li et al., 2007, 2014;
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FIGURE 2 | Schematic representation of a membrane fusion process

following the stalk-intermediate pathway preceded by the docking

stage during exocytosis. (A) Initial interaction between synaptobrevin (red)

and syntaxin (violet) cytosolic domains. The energy released upon

trans-SNARE complex formation is used to bring the membranes into close

(Continued)

FIGURE 2 | Continued

proximity (overcoming the repulsive forces between the negatively charged

vesicles) and to partially dehydrate them. After SNARE complex formation the

vesicles are in a “docked” state. (B) Upon triggering, nascent hydrophobic

contacts between the approaching membranes are built between splaying

lipids. (C) A stalk is subsequently formed and the lipids in the outer leaflets

start to mix. (D) Stalk elongation leads to hemi-diaphragm (HD) formation and

elongation. (E) Inner leaflets of opposing membranes begin to mix

accompanied by pore formation. In the following, the pore expands until either

one large vesicle is formed out of two small ones, or until all lipids from a small

vesicle are fully incorporated into a planar target membrane.

Gao et al., 2012; Rizo, 2012; Min et al., 2013; Lou and Shin,
2016). This notion was confirmed by in vitro liposome fusion
experiments in which the fusion was remarkably accelerated for
a stabilized SNAP-25/syntaxin binary complex (Pobbati et al.,
2006). Studies on intermediates along the ordered assembly
pathway during the SNARE complex formation and on their
role at distinct stages of synaptic vesicle fusion is thought to
enable delineation of the specific roles of different regions of
the SNARE motif. Using the high force resolution of optical
tweezers, a single SNARE complex assembly could be linked
to different stages of synaptic vesicle fusion (Lu et al., 2008).
The spontaneous folding at the N-terminal region regulates
vesicle priming by juxtaposing the membranes. The priming
is followed by a fast zippering toward the C-terminal domain
and finally by the fusion pore formation and expansion (Gao
et al., 2012; Rizo, 2012). The zippering is controlled by regulatory
proteins such as synaptotagmin in fast Ca2+-triggered exocytosis
in neurotransmitter release. Possibly, the regulatory proteins
increase the local membrane curvature (Martens et al., 2007;
Hui et al., 2009; McMahon et al., 2010) and thereby destabilize
the membrane. The functional importance of different regions
of the SNARE motif was further indirectly confirmed by in
vitro/in vivo fusion experiments using either truncated SNAREs
or treatment by neurotoxin which prevents the initial zippering
of SNAREs at the N-terminus (Chen et al., 2001; Siddiqui et al.,
2007).

1.2. Linker Region
The linker region that connects the SNARE motif and the
transmembrane domain (TMD) was characterized to serve
as a force-transmission machinery, which forwards the stress
generated by the assembly of the cytosolic core complex
toward the membrane interface and thus triggers the membrane
fusion (Knecht and Grubmüller, 2003; Jahn and Scheller,
2006; Jahn and Fasshauer, 2012). The linker, in particular its
positively charged residues, is also required for lipid mixing
and the transition from hemifusion to full fusion (Hernandez
et al., 2012). Extension of the linker region by inserting extra
amino acids generally decreased the fusion efficiency. This
decrease showed a length-dependent fashion and implies a
tight coupling between the SNARE motif and the TMDs in
the fusion machinery (Van Komen et al., 2005; Deák et al.,
2006; Kesavan et al., 2007; Zhou et al., 2013). The stiffness
of the linker is supposed to be important in preventing stress
dissipation (Risselada et al., 2011). Moreover, the linkers of both
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FIGURE 3 | Structural model of the SNARE complex embedded in a POPC lipid bilayer. The cis-SNARE complex (PDB:3IPD) at the post-fusion stage

comprises two SNAP-25, one syntaxin, and one synaptobrevin protein. The latter two SNAREs consist of a cytoplasmic domain (SNARE motifs), a short linker

domain, and a transmembrane domain (TMD). The bilayer head groups are shown as spheres and hydrophobic tails as sticks. The SNARE complex in the pre-fusion

stage is shown in the top right panel. Here, the TMDs of synaptobrevin and syntaxin proteins are located in their respective host membranes.

synaptobrevin and syntaxin are fully helical in the post-fusion
cis-SNARE complex (Stein et al., 2009). A stiff and partially
structured linker was reported from a molecular dynamics
study on monomeric syntaxin (Knecht and Grubmüller, 2003).
However, a rigid linker might limit the reorientation of a
single SNARE molecule, thus imposing an impediment for
further approach of the contacting membranes in the pre-fusion
state (Risselada et al., 2011; Han et al., 2016b). Moreover, the
substitution of residues in the linker region with helix-breaking
residues (Gly/Pro) enhancing the flexibility had little influence on
the fusion efficiency (McNew et al., 1999; VanKomen et al., 2005).
A growing evidence exists that both linker rigidity and flexibility
are important in fusion, requiring a fine balance further regulated
by the TMD as well as by other proteins and lipids (Knecht
and Grubmüller, 2003; Han et al., 2016b). Thereby, an enhanced
orientational sampling of the SNARE motif with minimal
energy dissipation is enabled. For synaptobrevin, the secondary
structure and conformational flexibility of the juxtamembrane
region (JMR) were found to be directed by the sequence
dependent rigidity or flexibility of the TMD (Han et al., 2016b)
(see Figure 4). A cluster of charged residues in the JMR was
reported to be essential for fusion capability by bridging the

vesicle and plasma membranes at the onset of fusion (Williams
et al., 2009). The interaction between this polybasic region and
the anionic membrane surface has been shown to promote the
interbilayer contact by disrupting the water ordering (Tarafdar
et al., 2015). Thus, an intrinsic molecular restrain in the linker
region likely affects the merging efficiency between opposing
membranes, leading to an apparently decreased priming during
exocytosis. Additionally, priming is as well regulated by the two
tandem tryptophan residues (W89W90) in the juxtamembrane
region by modifying the electrostatic potential at the membrane
surface (Borisovska et al., 2012). The importance of these
two residues in controlling the membrane-insertion depth of
sybII and its dynamics has been emphasized in a recent NMR
study (Al-Abdul-Wahid et al., 2012). The W89W90 pair at the
membrane interface appears to serve as a fusion clamp in Ca2+-
triggered fusion events (Fang et al., 2013).

1.3. SNARE Transmembrane Domain (TMD)
1.3.1. Length Requirements of TMD for Membrane

Fusion
The function of SNARE TMDs in membrane fusion has been
extensively investigated but is still under debate given the diverse
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FIGURE 4 | Spatial sampling of the juxtamembrane region (JMR) in

dependence of the primary TMD sequence of synaptobrevin. The left

column shows a contour density plot of the JMR configurational sampling

(center of mass positions) in the bilayer plane (x-y). The blue dot marks the

position of the TMD. The right column shows the side view of the sampled

conformational space of the juxtamembrane region (after fitting the TMD). In

the right panel sampling of three copies of the peptide (sequence as shown in

Table 1) is shown in different colors, namely in yellow, blue, and violet,

respectively. Samplings were recorded in the time interval from 500 to 1000 ns

of atomistic simulations (see Han et al., 2016b for details).

conclusions from both experimental and simulation studies. To
determine the possible roles of SNARE TMDs in membrane
fusion, the transmembrane domains of SNAREs have been
replaced by various lipid anchors, mutated, or partially truncated.
The transition from hemifusion to fusion was reported to be

blocked in SNARE-mediated proteoliposome fusion when the
C-terminal half of SNARE TMD was deleted (Xu et al., 2005).
Similarly, a series of truncated mutants reported for the sybII
TMDwas largely incompetent to support neurosecretion in PC12
cells (Fdez et al., 2010) and the lipid mixing was significantly
reduced and fusion completely diminished in SNARE-mimics
upon TMD shortening (Wehland et al., 2016), suggesting a
stringent length requirement for the transmembrane domain.

The notion is further supported by the fact that vacuolar
R-SNARE Nyv1p with a lipid anchor, that spans only a
single leaflet, resulted in little lipid mixing in liposome
fusion unless other physiologically accessory proteins were
engaged (Xu et al., 2011). Moreover, the replacement of the
SNARE transmembrane domain by a lipid anchor was shown
to inhibit the fusion of vacuoles (Rohde et al., 2003) or of
reconstituted proteoliposomes (Chang et al., 2016). In the
latter study three different fusion constructs, namely Ca2+-
triggered dense core vesicle exocytosis, spontaneous synaptic
vesicle exocytosis, and Ca2+-synaptotagmin-enhanced SNARE-
mediated liposome fusion, were tested. However, SNAREs with
longer prenyl anchors spanning both leaflets were shown to
be capable of driving lipid mixing to a similar extent as
native SNAREs (McNew et al., 2000). Also, the TMD was
recently reported to serve as a non-specific membrane-anchor
in driving the vacuolar fusion implying that a lipidic anchor
is sufficient for fusion (Pieren et al., 2015). In contrast, for
geranylgeranylated TMDs of yeast SNAREs an inhibitory effect
on exocytosis was observed. However, fusion could partially be
rescued by addition of inverted cone-shaped LPC to the inner
leaflet resulting in a positive curvature that promotes the fusion
pore formation. This finding indicates an active role of TMD
on the membrane topology (Grote et al., 2000). Additionally,
lipid-anchored SNARE proteins (syntaxin and synaptobrevin)
without TMDs were found to rescue the spontaneous synaptic
vesicle fusion as efficiently as the TMD-anchored SNAREs at
physiological conditions, albeit less efficiently for the Ca2+-
triggered exocytosis, questioning the functional role of SNARE
TMDs in exocytosis (Rizo and Xu, 2013; Zhou et al., 2013). A
direct evidence for the importance of the TMD for membrane
fusion comes from an in vitro reconstituted liposome fusion
study. Therein synthetic peptides mimicking the hydrophobic
cores of SNARE TMDs lacking the soluble domains were found
to support membrane fusion (Langosch et al., 2001; Hofmann
et al., 2006). In contrast, pure liposomes or liposomes harboring
oligo-leucines showed negligible fusion activity. These studies
hint to a critical sequence-dependent function of SNARE TMD
in membrane fusion by facilitating both the hemifusion and
complete fusion.

Taken together, under in vitro conditions the TMDhas to span
both layers to support the hemifusion to fusion transition. In vivo,
different molecular mechanisms may likely replace (some of) the
functions of the TMD anchors in membrane fusion.

1.3.2. Conformational Flexibility of TMD Relates to

the Fusion Capacity
It was proposed that the capability of the SNARE TMD
to promote exocytosis is intimately correlated with its
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TABLE 1 | Sequence alignment of the synaptobrevin wild type from Rattus

norvegicus and its TMD mutants used in Han et al. (2016a) and based on

experimental investigations of Dhara et al. (2016).

Peptide Sequence

WT 74-ASQFETSAAKLKRKYWWKNLKMMIILGVICAIILIIIIVYFST-116

WWAA 74-ASQFETSAAKLKRKYAAKNLKMMIILGVICAIILIIIIVYFST-116

PolyL 74-ASQFETSAAKLKRKYWWKNLKMMLLLLLLLLLLLLLLLLYFST-116

PolyI 74-ASQFETSAAKLKRKYWWKNLKMMIIIIIIIIIIIIIIIIYFST-116

PolyV 74-ASQFETSAAKLKRKYWWKNLKMMVVVVVVVVVVVVVVVVYFST-116

conformational flexibility (Dhara et al., 2016). A measure
of the latter is given by its secondary structure content in
solution. The wild-type SNARE TMDs (compare Table 1 for
sybII TMD sequences) adopt a mixture of α-helical and β-sheet
structure in solution whereas a mutant with increased helicity
showed a decreased fusion activity (Langosch et al., 2001).
Dhara et al. (2016) reported a clear dependency between the
conformational flexibility and fusion activity for different
synaptobrevin TM mutants. Likewise, a mutation that increased
the stability of the TMD helix of VSV (vesicular stomatitis virus)
G-protein inhibited membrane fusion (Dennison et al., 2002).
The conformational flexibility of the TM helix was ascribed to
the presence of β-branched residues (Ile/Val), as evidenced by
the overexpression of these residues in SNARE TMD and also
in viral fusion proteins (Cleverley and Lenard, 1998; Langosch
et al., 2001, 2007). The fact that β-branched residues promote
the flexibility of TMD was further supported by an electron
spin resonance (EPR) spectroscopy study on the TMD of
yeast SNARE (Sso1p), which showed an enhanced motional
dynamics in the C-terminal end of TMD comprised of a stretch
of valine residues (Zhang and Shin, 2006). De-novo design of
a series of fusogenic peptides that contained a mixture of the
helix-promoting residues, leucine, and the β-sheet-promoting
residue, valine, showed a strong correlation between the relative
ratio of valine in the TM sequence and helix flexibility. The
latter can be further enhanced by the introduction of helix-
breaking residues Gly/Pro (Hofmann et al., 2004). The increased
conformational flexibility led to an enhanced activity of fusion
peptides corroborating the notion that structural flexibility is
crucial for TM peptides to be able to drive membrane fusion.

Although the TMD flexibility is endowed by structural
features with reversible helix/sheet conversion in solution, it is
unlikely that this transition occurs in the hydrophobic membrane
interior. The flexibility is rather reflected by a transient unfolding
of backbone hydrogen bonds (Langosch et al., 2001, 2007;
Langosch and Arkin, 2009; Han et al., 2016b). However, it
remains unclear how the flexible TMD mediates membrane
fusion. It has been suggested that the backbone dynamics may
disturb the structure of surrounding lipids and thus promote
the lipid mixing (Langosch et al., 2007; Langosch and Arkin,
2009). This model was later supported by hydrogen/deuterium
exchange analysis on the SNARE transmembrane helices in
solution and in the membrane. These experiments demonstrated
that the conformational dynamics of SNARE TMDs is correlated
with their ability to promote lipid mixing (Stelzer et al., 2008).

Alternatively, a flexible TMDmay stabilize the intermediate non-
lamellar structure in the late stage of fusion reaction or facilitate
the formation of a fusion pore, as proposed by Dennison et al.
(2002).

1.3.3. The Uncharged C-Terminus of SNARE TMD

Initiates Fusion Pore Formation
Despite the well documented functional importance of the
SNARE TMD in facilitating the formation of the stalk and
hemifusion states, the role of SNARE TMDs in promoting
complete fusion is still poorly understood. The transition from
the hemifusion state to full fusion is initiated with the formation
of a fusion pore accompanied by merging of inner leaflets from
both vesicle and target membranes, followed by pore expansion
and content release (Chernomordik and Kozlov, 2008; Jackson
and Chapman, 2008; Rizo and Rosenmund, 2008). The formation
of a fusion pore appears to be related to both the mechanical
stress upon SNARE complex assembly and the displacement of
the C-terminus of the transmembrane segment (Ngatchou et al.,
2010; Risselada and Grubmüller, 2012).

The critical role of the SNARE TMD in promoting the
transition from hemifusion to fusion has been demonstrated by
several studies. The formation of the fusion pore was suggested
to be initiated by the movement of the sybII TMD uncharged
C-terminus into the membrane interior, induced by the pulling
force resulting from SNARE complex zippering, as revealed by
coarse-grained simulations (Lindau et al., 2012) (see Figure 5).
Addition of charged residues to the C-terminus of SNARE TMD
inhibited exocytosis in chromaffin and PC 12 cells (Ngatchou
et al., 2010; Wehland et al., 2016), suggesting a mechanism
in which the movement of the C-terminus initiates the fusion
pore formation by rearranging the bilayer structure in distal
leaflets (Fang and Lindau, 2014).

2. SNARE-SNARE INTERACTIONS IN
EXOCYTOSIS

2.1. SNARE Organization in the Prefusion
State
Multimerization of SNARE complexes is essential in fast
regulated exocytosis in neuronal transmission (Montecucco
et al., 2005). A prerequisite for the functioning of SNARE
proteins in exocytosis is the proper targeting into specific regions
that define the sites for the fusion initiation (Lang et al.,
2001). An extraordinary density of SNAREs is present in both
synaptic vesicle and plasma membranes that is related to cluster
formation (Takamori et al., 2006; Sieber et al., 2007; Bar-On
et al., 2012). The t-SNARE syntaxin has been found to form
dynamic clusters (Rickman et al., 2010; Bar-On et al., 2012;
Ullrich et al., 2015) with increased cluster size and abundancy at
the presynaptic active zone (Ullrich et al., 2015). The clustering
of syntaxin is mediated by weak protein-protein interactions and
is highly dynamic (Ullrich et al., 2015). It can be disrupted by
the presence of as little as 1% of anionic PIP2 lipids (Murray
and Tamm, 2011). The organization of SNAREs into clusters may
be functional as reservoirs of SNARE molecules, allowing for
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FIGURE 5 | An alternative mechanism of fusion pore formation by the insertion of the TMDs into the membrane interior as suggested by Fang and

Lindau (2014).

rapid interactions with their cognate partners (Rickman et al.,
2010; Bar-On et al., 2012). Alternatively, the multimerization
of the SNARE complex was also reported to be mediated by
the interaction between the SNARE motifs of SNAP25 and
syntaxin via forming an ionic couple to link neighboring SNARE
complexes, thus leading to a radial organization (Megighian
et al., 2013). EPR and fluorescence studies showed that SNARE
proteins could self-assemble through the interaction between
TMDs, and the oligomeric structure could serve as a scaffolding
for the formation of the trans-SNARE complex which leads
to the formation of a supramolecular structure containing at
least three copies of SNARE complexes (Lu et al., 2008). In
addition, the accessory protein complexin has been found to be
functional in mediating SNARE oligomerization at the prefusion
stage (Tokumaru et al., 2001; Kümmel et al., 2011), possibly
via organizing the SNARE complexes in a zig-zag fashion.
Furthermore, the macromolecular structure resolved by electron
tomography at presynaptic active fusion sites in intracelluar
vesicle exocytosis has shed light on the organization of a supra-
complex, which was suggested to be comprised of clustered
SNAREs and other regulatory proteins like the Ca2+ sensor
synaptotagmin (Szule et al., 2015).

2.2. Interactions of SNARE TMDs Promote
the Hemifusion to Fusion Transition
In vitro fusion experiments of liposomes with reconstituted
SNARE proteins of varying densities provided a deeper insight
into the mechanism for the transition from hemifusion to fusion.
For low surface density of SNAREs in liposomes, the hemifusion
state was arrested, implying a cooperative action of SNARE
proteins in promoting the hemifusion to fusion transition (Lu
et al., 2005; Xu et al., 2005). The density of SNARE proteins is
considered to be the most important parameter in determining
not only the fusion kinetics but also the extent of liposome fusion
mediated by SNAREs (Ji et al., 2010).

Along the same line, the synthetic peptides harboring the
transmembrane segment of yeast vacuolar Q-SNARE Vam3p
were evaluated for their fusogenic potency in proteoliposome
systems. The propensity for the hemifusion transition to full
fusion represented by the inner leaflet mixing increased as the
surface density of the incorporated peptide increased (Hofmann
et al., 2006). In addition, introduction of mutations on the
interaction interface of the synthetic peptide significantly

inhibited the inner leaflet mixing in liposome fusion. This
defect was fully rescued to wild-type fusion efficiency when
the TMDs were covalently dimerized. The full-length protein
with the same mutations in the TMD also displayed a reduced
content mixing in yeast vacuolar fusion (Hofmann et al., 2006),
suggesting a potential function of TMD-TMD interactions in
promoting the transition from hemifusion to fusion. This notion
is further supported by the SNARE-induced proteoliposome
fusion regulated by cholesterol under physiological conditions.
The v-SNARE TMD forms an “open-scissor” dimer and its
conformational change to a parallel dimer was proposed to
be critical for fusion activity (Tong et al., 2009). Another
study demonstrated that homodimerization of R-SNARE sec22
is critical for efficient exocytosis; This protein appears to be
involved in the assembly of SNARE complex oligomers (Flanagan
et al., 2015).

The formation and expansion of the fusion pore is a critical
step for full fusion. The zippering of the TMDs of t- and v-
SNARE proteins facilitated lipid mixing and pore nucleation and
the presence of the heterodimer at the pore rim was suggested to
obstruct pore resealing (Wu et al., 2016).

2.3. Specific Dimerization of SNARE TMDs
As discussed above, the interactions between SNARE TMDs were
found to promote the hemifusion to fusion transition. TMD-
TMD interactions have previously been demonstrated to mediate
the homo- and heterodimerization of SNARE proteins (Laage
and Langosch, 1997; Margittai et al., 1999; Laage et al., 2000; Roy
et al., 2004; Kroch and Fleming, 2006; Roy et al., 2006; Han et al.,
2015). A conserved motif in the transmembrane segments was
identified for the specific interaction between SNARE proteins
(Laage and Langosch, 1997; Margittai et al., 1999; Laage et al.,
2000). The sybII TMDs could pack tightly to form a right-handed
dimer structure (Fleming and Engelman, 2001; Han et al.,
2015) (see Figure 6). In a different study, the binding affinity
between sybII TMDs was reported to be small and the role of
dimerization in membrane fusion was challenged (Bowen et al.,
2002). The association propensity of sybII actually depends on
experimental conditions (Roy et al., 2004). The TMDs of syntaxin
form stable homodimers with an association free energy of -
3.5 kcal mol−1, as determined by analytical ultracentrifugation.
A comparable association propensity for sybII TMD could be
obtained for peptides including a single mutation at position
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FIGURE 6 | Structural model of synaptobrevin’s most abundant TMD dimer embedded in a POPC bilayer (Han et al., 2015) as obtained from a

sequential multiscaling approach (Pluhackova and Böckmann, 2015).

FIGURE 7 | Structural models of sybII oligomers containing 3–8 copies of transmembrane domains (left to right). The sybII oligomer structures were

obtained either from self-assembly CG-MD simulations (trimer and tetramer) or from manual built (pentamer to octamer), see Han et al. (2016a).

99 (Leu/Met) (Kroch and Fleming, 2006). In addition, it was
proposed that alternative binding interfaces in the TMD of
syntaxin are responsible for homo- and heterodimerization.
The presence of alternative interfaces in the SNARE TMDs are
implicated by their oligomerization (Laage and Langosch, 1997;
Kroch and Fleming, 2006; Zhang and Shin, 2006; Han et al.,
2015) and by the conversion between homo- and heterodimers
of SNARE proteins. The latter is thought to be involved in the
final stage of membrane fusion, leading to cis-SNARE complex
formation (Stein et al., 2009). In line with these implications,
several dimerization interfaces were recently reported based on
sequential multiscaling MD simulations of the dimerization of
sybII TMD (Han et al., 2015). The alternative dimerization
interfaces were less populated than the main dimerization
interface and dynamic interconversions between the individual
interfaces were observed (Han et al., 2015). The importance of
those multiple interfaces for oligomerization was confirmed in a
follow-up work (Han et al., 2016a).

2.4. SNARE Oligomerization in Fast
Exocytosis
Despite the functional importance of protein-protein
interactions in SNARE-mediated membrane fusion and the
knowledge about the structure of the TMD oligomers, it
still remains elusive how the transition from hemifusion
to fusion is accomplished. It is well established that a
single SNARE complex constitutes a minimal machinery in
reconstituted proteoliposome studies, albeit with relatively
slow kinetics (Weber et al., 1998; van den Bogaart et al.,
2010). Fast exocytosis, that occurs at millisecond timescale
during neurotransmitter release, requires cooperative action of
several SNARE complexes (Montecucco et al., 2005; van den
Bogaart and Jahn, 2011; Shi et al., 2012). A small number of
SNARE complexes might significantly reduce the fusion rate,
as demonstrated by a single vesicle fusion assay (Karatekin
et al., 2010). Recent coarse-grained simulations have shed light
on the cooperative effects of multiple SNARE complexes in
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membrane fusion. The process was remarkably accelerated
when several SNARE complexes were incorporated, albeit one
SNARE complex was found sufficient to drive fusion (Risselada
et al., 2011). The required number of SNARE complexes for
efficient fusion is also influenced by the lipid composition as
bilayers containing fusion-promoting lipids such as PE/PS
fuse as efficiently even with a reduced number of SNARE
complexes (Domanska et al., 2010). The required number of
SNARE complexes for vesicle fusion varies and depends on
the physiological conditions such as the vesicle type or the
timing demand (Montecucco et al., 2005; van den Bogaart and
Jahn, 2011; Hernandez et al., 2014): Two SNARE complexes are
necessary for fast synaptic transmission in cultured hippocampal
neurons (Sinha et al., 2011), while at least three neuronal SNARE
complexes are required for fast fusion exocytosis in chromaffin
and PC12 cells (Hua and Scheller, 2001; Mohrmann et al., 2010).
A theoretical model based on atomic force microscopy (AFM)
measurements on the interaction force between SNARE proteins
proposed that at least four SNARE complexes are required for
fusion (Yersin et al., 2003). Using a single vesicle fusion assay,
the number of SNARE complexes to trigger fusion at millisecond
time scale was estimated to be eight (Domanska et al., 2009).
An even higher number of 15 SNARE complexes was proposed
for exocytosis using botulinum neurotoxins which specifically
inactivate SNAREs (Montecucco et al., 2005).

In the post-fusion state, SNARE complexes were suggested to
be arranged in a rosette-shaped multimeric bundle (Montecucco
et al., 2005) or to form star-shaped oligomers (Rickman et al.,
2005). It has also been suggested that SNARE complexes could
be organized in a circular fashion leading to a pore-like structure
when the isolated full-length SNARE proteins are reconstituted
into liposomes. The size of this SNARE supercomplex depends
on the vesicle diameter as detected by atomic force microscopy
(AFM) and electron microscopy (Cho et al., 2005, 2011). It
has been speculated that the rim of the hemifusion diaphragm
is lined by the proteinaceous TMDs from several SNARE
proteins which form ring-like oligomers (Chernomordik and
Kozlov, 2003). An indirect evidence comes from a study in
which mutation along one face of the syntaxin transmembrane
helix altered the transmitter flux in PC12 cells and also the
fusion pore conductance (Han et al., 2004). Consequently,
a proteinaceous fusion pore model comprising at least 5-8
syntaxin TMDs was proposed. Similarly, substitution of residues
close to the N-terminus of sybII TMD by bulky tryptophan
residues or by charged residues also modified the fusion pore
flux and conductance, implying a possible complementary pore
model constituted by three or four sybII dimers (Chang et al.,
2015). These ring-like arrangements were, however, shown to
be incompatible with the tight vesicle docking observed in a
reconstituted membrane fusion system (Hernandez et al., 2012).

The oligomerization mechanism and the shape of the sybII
TMD oligomers (see Figure 7) was presented in a recent MD
simulation study which shed light on the stepwise self-assembly
of sybII TMDs into oligomers (Han et al., 2016a). The oligomers
were discovered to be either compact or linear, the former
being more stable. The form of the oligomers contradicts the
pore-hypothesis based on the mutagenesis data of Chang et al.
(2015). Namely, the residues that were suggested to point to

the lumen of the proteinaceous pore are positioned on the
outside of the oligomer providing a binding interface for other
sybII TMDs (Han et al., 2016a). Moreover, the tryptophanes
in positions 89 and 90 were found to endow synaptobrevin
oligomers with increased dynamics and reduced compactness.
Thereby, the oligomers likely provide an enlarged accessibility to
its cognate partner upon SNARE complex formation.

3. IMPORTANCE OF PROTEIN-LIPID
INTERACTIONS FOR MEMBRANE FUSION

The large structural rearrangements of membranes during fusion
are typically driven by fusion peptides and further modulated in
particular by the lipid composition (Aeffner et al., 2012). Upon
first contact of the approaching membranes their surfaces have
to get dehydrated and the lateral tension of the bilayer interface
has to be overcome (Chernomordik et al., 1987; Kozlovsky
et al., 2002). The membrane composition influences the pathway
preference and the fusion rate while the fusion proteins
reduce the energy barrier for the fusion process via specific
protein-protein and protein-lipid interactions (Chernomordik
and Kozlov, 2003; Jahn et al., 2003). The fusion propensity of
lipid bilayers depends on their lipid composition and mainly
on the intrinsic lipid geometry (Chernomordik and Kozlov,
2003).While the hemifusion is inhibited by inverted cone-shaped
LPCs and promoted by cone-shaped PEs, the pore formation is
facilitated by LPCs and inhibited by PEs positioned in the distal
leaflet of fusing membranes (Chernomordik and Kozlov, 2008).

A wealth of evidence from simulations has demonstrated that
the critical step at the onset of fusion are hydrophobic contacts
between the approaching membranes, formed e.g., by protruding
lipids (see Figure 8). The initial lipid splaying is followed by the
formation of a lipid tail stalk (Kinnunen, 1992; Holopainen et al.,
1999; Marrink and Mark, 2003; Stevens et al., 2003; Kasson et al.,
2010; Smirnova et al., 2010).

The lipid protrusion probability and partial dehydration of the
outer membrane leaflet were shown to be enhanced in presence
of a shortened synaptobrevin construct containing the TMD,
the linker, and the juxtamembrane domain carrying positively
charged residues (Han et al., 2016b). These results hint to an
additional role of SNARE peptides in destabilizing its immediate
lipid environment. Also the α-helical SNARE TM anchors were
shown to be associated with bilayer destabilization (Risselada
et al., 2011) and lipid mixing, discussed in the context of their
oblique orientation in membranes. An increased number of
lipid acyl chain protrusion events was recently also observed
in curved membranes (Rabe et al., 2016; Tahir et al., 2016).
Additionally, SNARE complexes were reported to induce local
membrane protrusions in the target membrane (Bharat et al.,
2014). The characteristics of curved membranes are of inherent
interest for membrane fusion as both synaptic vesicles or virions
(viral particles) are highly curved and since fusion intermediates
involve a huge curvature. In general, the fusion rate increases
with a decreasing vesicle radius (Bharat et al., 2014). Multiple
reasons regarding how highly curved membranes facilitate the
fusion process have been suggested, including smaller surface
tension of larger vesicles, the relief of lipid stress in highly curved
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FIGURE 8 | Lipid tail protrusion in a curved POPC membrane evoked by a sybII TMD peptide. Lipids are shown as gray sticks with phosphates highlighted as

yellow spheres. The peptide is shown as a rainbow-colored cartoon and sticks. The protruding lipid is highlighted as thick sticks with carbons colored blue and

oxygens red.

regions upon transition to the hemifused state (McMahon et al.,
2010; Kawamoto et al., 2015), and a closer contact of fusing
membranes due to membrane buckling (McMahon et al., 2010).

Both, synaptic vesicles and plasma membranes, contain
negatively charged lipids in their outer and inner layers,
respectively. In the prefusion state, negatively charged lipids
cause electrostatic repulsion between the membranes thus
preventing spontaneous fusion. This allows an exact timing of
membrane fusion by addition of bivalent (typically calcium)
ions. These do not only shield the lipids’ negative charges
but may also bridge the opposing membranes by binding two
negatively charged lipids to one bivalent ion (Böckmann and
Grubmüller, 2004; Pannuzzo et al., 2014). Investigations of the
interactions between anionic PIP2 lipids and syntaxin were
found to drastically depend on Ca2+. In presence of Ca2+,
PIP2 lipids were shown to condense syntaxins together into
large agglomerates (van den Bogaart et al., 2011), whereby Ca2+

bridges multiple syntaxin/PIP complexes (Milovanovic et al.,
2016). In absence of Ca2+ the presence of as little as 1% PIP2
(or more than 20% PS lipids) was shown to cause disaggregation
of cholesterol-dependent syntaxin clusters (Murray and Tamm,
2009). PIP2 is also known to enhance the response speed
of synaptotagmin to Ca2+ (Bai et al., 2004) which is due
to PIP2-mediated interactions either between syntaxin and
synaptotagmin (Honigmann et al., 2013) or between SNAREpin
and synaptotagmin (Kim et al., 2012). PS lipids were shown to
mediate the interaction between complexin and the membrane in
the docking state (Diao et al., 2013). Another negatively charged
lipid that was found to modulate the action of SNAREs is the

fusogenic phosphatidic acid (PA). If the binding of PA to a
specific lipid-binding domain on syntaxin-1A is disrupted the
evoked secretion is progressively reduced (Lam et al., 2008).

Moreover, cholesterol was discovered to play multiple
roles during membrane fusion (Yang et al., 2016), and the
exocytosis is largely decreased upon depletion of cholesterol.
Cholesterol alters the lifetime of membrane fusion intermediates,
it changes the membrane curvature and bending modulus, and
additionally directly interacts with fusion proteins resulting in
their altered distribution and modified membrane penetration
depth. SNAREs were found to be either concentrated in
cholesterol-dependent clusters that define docking and fusion
sites for exocytosis (Lang et al., 2001; Murray and Tamm,
2009, 2011) or to be associated with the lipid raft domain
(rich in cholesterol and saturated lipids) in alveolar type II
cells (Chintagari et al., 2006). In giant unilamellar vesicles
(GUVs), on the other hand, SNARE proteins showed preference
for the disordered phase (rich in unsaturated lipids and depleted
of cholesterol) (Bacia et al., 2004). Also the conformation of
the synaptobrevin dimer was shown to depend on the presence
of membrane cholesterol (Tong et al., 2009). A mechanistic
explanation common to all those observations could be the
segregation of the SNAREs by hydrophobic mismatch into
domains of optimal membrane thickness (Milovanovic et al.,
2015).

There is growing evidence that not only membrane-attached
SNARE proteins interact with lipids and thus stimulate fusion,
but that also exocytosis regulatory proteins attach to lipid
bilayers. The amphiphatic C-terminal helix of complexin
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has been shown to bind to membranes and thus affect lipid
mixing (Seiler et al., 2009). The vesicle-docking ability of
complexin was moreover shown to depend on the presence
of PS lipids in the membrane (Diao et al., 2013). Also the
membrane binding of synaptotagmin is expected to be
important for exocytosis (Lynch et al., 2008). Moreover,
upon interaction with the membrane α-synuclein can
either inhibit vesicle fusion (DeWitt and Rhoades, 2013)
or after assembly into oligomers promote SNARE complex
formation (Burré et al., 2014). The full association of homotypic
fusion and protein sorting (HOPS) complex and Sec19p
with proteoliposomes in the fusion of yeast vacuoles requires
the presence of PA in the membrane (Mima and Wickner,
2009). In the same work, both PA and PE were shown
to be essential for fusion as well as for SNARE complex
assembly.

In conclusion, lipids regulate all steps of neuronal
exocytosis (Ammar et al., 2013). Different lipids influence
vesicle priming, the establishment of the nascent contact, the
transition to hemifusion and further to the full fusion state, as
well as the fusion pore opening.

4. REGULATORY PROTEINS IN
SNARE-MEDIATED EXOCYTOSIS

Apart from the SNARE complex that is characterized as the
energy machinery in intracellular exocytosis, a set of regulatory
proteins such as Munc18-1 (SM), synaptotagmin, and complexin
in eukaryotic cells have been demonstrated to be essential for
exocytosis as well. These regulatory proteins enable the exocytosis
to be precisely regulated in living cells in space and time upon
signal arrival, especially for Ca2+-triggered neurotransmitter
release. Moreover, compartment-specific multisubunit tethering
complexes (MTCs) regulate SNARE complex assembly and
exocytosis and are responsible for trafficking to proper target
compartments (Dubuke and Munson, 2016).

Munc18-1 was found to bind directly to syntaxin in closed-
configuration, thus regulating the availability of syntaxin for
SNARE complex assembly (Hata et al., 1993; Dulubova et al.,
1999; Gerber et al., 2008; Dawidowski and Cafiso, 2016). This
interaction was found to be stabilized by the Habc domain of
syntaxin (Zhou et al., 2012). Moreover, after a conformational
change in domain 3a of Munc18-1 the interactions of helix12
with v-SNARE drive the SNAREpin assembly (Parisotto et al.,
2014) and vesicle priming (Munch et al., 2016). The N-terminal
domain of syntaxin-1 is regulated by Munc18-1 in its two
different conformational states, which impose spatially distinct
regulatory mechanisms, either compensating or inhibiting the
active state in syntaxin trafficking (Park et al., 2016). It is
intriguing that Munc18-1 is also intimately related to the
transport of syntaxin to target compartments (Rowe et al.,
2001).

Complexin is considered to be a specific ligand that binds
to the central core domain of the SNARE complex and acts as
a force clamp that controls the transfer of the force generated
by SNARE complex assembly to the fusing membranes (Pabst

et al., 2000; Chen et al., 2002; Maximov et al., 2009; Trimbuch
and Rosenmund, 2016). Complexin was recently reported to aid
the spatial organization of the SNARE complex in the pre-fusion
stage (Kümmel et al., 2011) and to inrease the pool of arrested
docked synaptic vesicles thus synchronizing fusion (Malsam
et al., 2012). To do so, complexin’s C-terminus binds to the
membrane containing PS lipids, while the core domain of
complexin-1 attaches to the SNARE complex (Diao et al., 2013).
The fusion-inhibition effect of complexin was recently assigned
to the positioning of the complexin accessory helix between the
vesicle and plasma membranes rather than as earlier supposed
in between SNARE proteins (Trimbuch et al., 2014). Moreover,
complexin has to undergo a conformational change from an open
to a close conformation so that another player, synaptotagmin,
can trigger fusion upon Ca2+ stimuli (Krishnakumar et al.,
2011).

For synaptotagmin, diverse functions in regulating the
SNARE-mediated exocytosis have been demonstrated. The
crystal structures of Ca2+- and Mg2+-bound complexes of
the neuronal SNARE complex and synaptotagmin-1 (see
Figure 9) revealed several interaction interfaces, among those
the strongly conserved and Ca2+-independent interface. The
latter was suggested to form before Ca2+ triggering, to shift
upon the triggering and to promote the interactions of
synaptotagmin-1 with the plasma membrane (Zhou et al., 2015).
In Ca2+-independent manner synaptotagmin-1 mediates vesicle
docking (Malsam et al., 2012). Moreover, synaptotagmin is
a Ca2+ sensor that consists of two C2 domains (C2A and
C2B) connected by a flexible loop. These two domains were
proposed to bind and insert into the membrane upon Ca2+

influx, creating a local curvature that significantly decreases
the energy barrier for fusion pore formation (Martens et al.,
2007; Hui et al., 2009; McMahon et al., 2010; Paddock et al.,
2011; Krishnakumar et al., 2013). On the other side, the
binding of synaptotagmin to the SNARE complex is thought
to release the force clamp by displacing complexin, thus
facilitating the force transfer to the apposing membranes
in a Ca2+-dependent manner (Tang et al., 2006). Indeed,
synaptotagmin acts mainly via interactions with bothmembranes
and also with the SNARE complex. This synergistic effect
facilitates the fusion pore formation and expansion upon Ca2+

binding (Lynch et al., 2008). In addition, synaptotagmin has
been found to form ring-like oligomers (Wang et al., 2014),
which are reminiscent of the oligomeric organization of the
SNARE complex. Possibly, a concerted action of multiple
SNARE complexes with bound synaptotagmin triggers the Ca2+-
dependent fusion reaction in ultrafast speed, due to additive local
membrane bending induced by synaptotagmin (McMahon et al.,
2010).

For more information on SNARE assembly and disassembly
aided by regulatory and tethering proteins see Baker and
Hughson (2016) and Ryu et al. (2016). Despite the considerable
progress in understanding the intracellular fusion events which
involve a variety of proteins apart from the core SNARE
complex, a unified picture describing the regulatory network
at different levels in SNARE-mediated vesicle fusion is still
missing.
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FIGURE 9 | Structure of the Ca2+-bound synaptotagmin 1-SNARE complex (Zhou et al., 2015). SNAP25 shown in green, synaptobrevin in blue, syntaxin-1A

in red, one copy of synaptotagmin-1 in violet and one in yellow.

CONCLUSIONS

Membrane fusion, controlled and driven by a complexmachinery
of fusion and regulatory proteins, is an essential process in all
living organisms. The individual proteins differ among various
organisms, and even among their cells and organelles and they
also depend on transported substances. Although these different
proteins vary subtly in the way how they catalyze fusion, their
pivotal roles stay the same.

Among all processes in which membrane fusion plays
a pivotal role, exocytosis is studied most intensely and
a wealth of information has been accumulated about the
delicate mechanisms that regulate this process in a timely and
coordinated fashion. In particular, the role of many proteins in
the fusion step was addressed. Recently, research on exocytosis
focused in particular on the role of membrane lipid composition,
of specific protein-lipid interactions, and on the importance
of suprastructures and membrane architecture. Also, multiple
regulatory mechanisms by auxiliary proteins were elucidated.

Nevertheless, our understanding of fusion at the molecular
scale is still limited. However, the combination of experimental
techniques with MD simulations exhibits a promising avenue
to uncover the subtle interplay between fusion proteins and

membranes at atomistic resolution. Future studies will aim to
further close the gap in spatial and temporal resolution between
experiments such as electron tomography and simulation.
Additionally, approaches allowing to characterize fusion pore
properties using defined membrane compositions e.g., in
a microfluidic setup (Vargas et al., 2014) will push our
understanding of the intricate balance of protein-lipid interaction
in fusion.
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