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In this mini-review, we briefly summarize the current knowledge about the effects of

fatty acids (FAs) on connexin-based channels, as well as discuss the limited information

about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular

functions, some of which are explained by changes in the activity of channels constituted

by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the

functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that

oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble

into dodecamers to form gap junction channels (GJCs). While GJCs communicate the

cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small

molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form

channels at the plasma membrane that enable the interchange of molecules between

the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by

several post-translational modifications. However, the mechanism of action of FAs on

these channels has not been described in detail. It has been shown however that FAs

frequently decrease GJC-mediated cell-cell communication. The opposite effect also has

been described for HC or Panx-dependent intercellular communication, where, the acute

FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs

have been associated with post-translational modifications (e.g., phosphorylation), and

seem to be directly related to chemical properties of FAs (e.g., length of carbon chain

and/or degree of saturation), but this possible link remains poorly understood.
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INTRODUCTION

Fatty Acids: General Characteristics
Fatty acids (FAs) are carboxylic acids classified into three groups based on the length of their
aliphatic carbon tails (Layden et al., 2013). These include: (i) short (<6 carbons), (ii); medium
(6–12 carbons); and (iii) long (>12 carbons) aliphatic chains (Talukdar et al., 2011; Layden et al.,
2013). In addition, FAs are also classified by the number of double bonds present in their aliphatic
chain: saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or polyunsaturated fatty
acids (PUFAs) (Poudyal and Brown, 2015). In turn, PUFAs can be classified into omega-3 (ω-3)
and omega-6 (ω-6), based on the location of the last double bond (Schmitz and Ecker, 2008).
Despite their structural similarities, ω-3 FAs generally cause biological responses opposing to ω-6
FAs (Senkal et al., 2007). Although traditionally the interest in FAs and their effect on human
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health has been mainly related to cardiovascular diseases, it is
now well accepted that FAs influence other diseases, including
metabolic disorders such as type 2 diabetes and diseases with a
significant inflammatory response (Calder, 2015).

In addition to serving as energy sources, FAs also impact
the following: cell membrane properties, localization and activity
of channels, receptors and transporters, and activation of
intracellular signaling pathways through membrane receptors
(Kim and Clapham, 1989; Schmitz and Ecker, 2008; Ichimura
et al., 2009; Langelier et al., 2010; Calder, 2015). In this
context, oleic acid (OA) and linoleic acid (LA) regulate the
amount of GLUT4, decreasing both protein and mRNA levels
in a concentration-dependent manner in skeletal muscle cells
(Poletto et al., 2015).They also regulate their own metabolism,
when for example palmitic acid (PA) and stearic acid (SA)
stimulate intracellular lipid accumulation (Xiao et al., 2012).
Additionally, FAs modulate connexin (Cx) and pannexin (Panx)
functions, which play critical roles in cellular communication and
the functional integrity of various organs and tissues (Sáez et al.,
2005; Bedner et al., 2012). Therefore, FAs have profound effects
on a myriad of cell functions, some of which could be related to
the modulation of cell-cell communication mediated by Cxs and
Panxs.

Connexins and Pannexins
Cxs are encoded by 20 genes in mice and 21 genes in humans
(Söhl andWillecke, 2004; Bedner et al., 2012). In the endoplasmic
reticulum (ER) and Golgi/Trans Golgi they assemble into
hexamers, known as hemichannels (HCs) (Sáez et al., 2005;
D’Hondt et al., 2009). Another possible configuration occurs
when Cxs assemble into dodecamers formed by the serial docking
of twoHCs to form a gap junction channel (GJC), which connects
the cytoplasm of contacting cells (Söhl andWillecke, 2004; Hervé
and Derangeon, 2013). The role of GJCs in several cell functions
depends on cell type, the Cx type expressed and the physiologic
state of cells (e.g., quiescent or proliferating cells) (Jiang and Gu,
2005; Rackauskas et al., 2010; Bedner et al., 2012).

HCs form poorly selective channels (Chandrasekhar and Bera,
2012) that participate in paracrine and autocrine signaling, since
they are pathways for releasing signaling molecules such as: ATP,
PGE2 and glutamate (Sáez et al., 2005). GJCs on the other hand
enable the interchange of metabolites and second messengers
between contacting cells. Hence, both GJCs and HCs are
fundamental for several relevant functions under physiological
and pathophysiological conditions (for further details see Sáez
et al., 2003; Chandrasekhar and Bera, 2012; Retamal et al., 2015).

Panxs as Cxs present four transmembrane domains, two
extracellular loops, one intracellular loop, and both N- and C-
termini facing the cytosol. Both human and mouse genomes
contain the following three Panx-encoding genes: Panx1, Panx2,
and Panx3 (Baranova et al., 2004). Panx1 and Panx3 are
composed of 6 subunits, whereas Panx2 is composed of 8
subunits (Ambrosi et al., 2010; Boassa et al., 2015). All Panxs
form channels at the plasma membrane, but Panx3 also forms
channels at the ER, where it seems to control calcium flux in
this organelle (Ishikawa et al., 2011). As mentioned previously,
Cxs and Panxs share a similar topology at the plasma membrane,

and share certain functional properties. Thus, under normal
conditions, both Cx HCs and Panx channels have very low open
probabilities (Quist et al., 2000; Contreras et al., 2003), which can
be increased (Chandrasekhar and Bera, 2012), for example, by
raising the intracellular Ca2+ concentration (Locovei et al., 2006;
De Vuyst et al., 2009). Another similarity between Cx HCs and
Panx1 channels is that they are also permeable to ions and small
signaling molecules (Panchin, 2005; Locovei et al., 2006).

REGULATION OF GAP JUNCTION
CHANNELS BY FATTY ACIDS

Cxs are regulated by post-translational modifications, such
as phosphorylation and S-nitrosylation (Retamal et al., 2006;
Johnstone et al., 2012; D’Hondt et al., 2013). The regulation
by FAs or their conjugated version however has received little
attention. The first reports showed that OA (18:1), arachidonic
acid (AA, 20:4) and docosahexaenoic acid (DHA, 22:6) are
powerful inhibitors of GJCs in the heart, vascular smooth muscle
cells, and liver epithelial cell lines (Hirschi et al., 1993; Hii
et al., 1995).This inhibition effect was reversed upon washing
the cells with a FA-free solution (Hirschi et al., 1993; Hii
et al., 1995), suggesting that this response might be mediated
either by direct FA interaction with the GJC or by activation
of a membrane receptor. Additionally, the effect of OA was
concentration-dependent, with a greater inhibitory effect at
low OA concentrations (Hirschi et al., 1993). In cells derived
from rat lacrimal glands, an inhibitory effect of PUFAs or
SFAs over GJCs was also reported (Giaume et al., 1989). Thus,
AA, LA (18:2) or lauric acid (12:0) induces GJC closure, an
effect that is not prevented by inhibitors of AA metabolism
(Giaume et al., 1989), excluding cyclooxygenase products as
possible mediators (Schmilinsky-Fluri et al., 1997). Moreover,
AA decreases junctional conductance in neonatal rat heart cells
(Fluri et al., 1990). This effect is specific to the degree of AA
saturation, because arachidic acid (a structural saturated analog
of AA) showed no effect on GJC conductance (Fluri et al., 1990).
AA-induced cell-cell uncoupling was also shown to be reversible
and could be mediated by direct action on Cx proteins (Fluri
et al., 1990). Alternatively, AA or other PUFAs, due to their
amphipathic character, could interfere with GJC conductance by
disturbing the lipid-protein interface (Schmilinsky-Fluri et al.,
1997). The possibility that the FA-induced GJC-inhibition could
be a consequence of changes in distribution or expression of Cxs
has not been tested.

Another characteristic of FAs that could be significant in the
regulation of GJCs is the length of their carbon chains. Research
has proven that FAs of different lengths have unique chemical
properties (Layden et al., 2013). In fact, perfluorinated FAs
(PFFAs), which are FA analogs (Kudo et al., 2011), were shown
to inhibit GJCs in a concentration-dependent manner in a liver
epithelial cell line due to their aliphatic chains ranging from 7 to
10 carbons. PFFAs, on the other hand, with 2–5 or 16–18 carbon
chain lengths had no effect on GJCs (Upham et al., 1998, 2009).
Additionally, the inhibition by PFFAs was observed after 5 min of
incubation, and involved an ERK-dependent pathway (Upham
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et al., 2009). Moreover, the short-term inhibition induced by
PFFAs in GJCs was lost after washing the cells, which suggests the
involvement of an extracellular component. In this case, Upham
et al. (2009) also reported on prevention with the presence of
different protein kinase inhibitors. It is thus possible that PFFAs
activate membrane receptors, which in turn activate signaling
proteins such as protein kinases (Upham et al., 2009). It should
also be considered that PFFAs with a carbon chain between
6 and 9 carbons increase the liver FA profile after 5 days
of treatment, with specific increases in palmitoleic acid (PO,
16:1), OA (18:1) and eicosatrienoic acid (20:3) content (Kudo
et al., 2011). Consequently, treatment under different exposure
times may also induce different effects (e.g., acute vs. chronic
treatments).

Inhibition of GJCs induced after 1 h treatment with LA was
reversible in a rat liver epithelial cell line (Hayashi et al., 1997),
and was probably mediated by an intracellular signaling pathway
(such as PKA). In contrast, cell response to long-term treatments
with LA (e.g., 6 days) was not recovered after washing out the
extracellular solution. This may suggest that regulation could
involve post-translational modifications at least for Cx43, as
suggested by Hayashi et al. (1997). PUFAs also regulated GJC
activity in a transfected cell line. For example, AA inhibited GJCs
in Cx36 transfected HeLa cells, and GJC activity was restored
after washout (Marandykina et al., 2013).

On the other hand, different FAs might act as activators, since
they increase both GJC and HC activity. For example, in human
endothelial cells, a reduction of Cx43 GJC coupling induced
by hypoxia/reoxygenation was observed, but this effect was not
detected in cells pretreated (for 2 days) with 10 µM EPA (20:5),
a ω-3 PUFAs (Zhang et al., 1999, 2002). Accordingly, in rat
astrocytes supplemented for 10 days with DHA, an increase in
gap junctional communication was recorded (Champeil-Potokar
et al., 2006). Also, the ω-6 gamma-linolenic acid (GLA, 18:3)
increased Cx43 GJC activity in human vascular endothelial cells
(Jiang et al., 1997).

Although it is not easy to characterize the effect of PUFAs on
GJC activity, the effect of AA has been consistently associated
to the same response: inhibition of GJC activity (Giaume et al.,
1989; Fluri et al., 1990; Hii et al., 1995; Marandykina et al., 2013).
But curiously, this type of response is absent in Xenopus oocytes,
where AA does not affect GJCs formed by Cx46 (Retamal et al.,
2011). This suggests that the signaling pathway associated to
the AA response is missing in Xenopus oocytes. This situation
could be a consequence of (1) different lipid compositions of
the cell membrane (e.g., levels and/or distribution of cholesterol)
or (2) absence of either specific extra- or intracellular signaling
molecules (e.g., membrane receptors or protein kinases).

CONNEXIN MODIFICATIONS INDUCED BY
FATTY ACIDS

PUFAs are known to induce changes in the expression,
distribution, and post-translational modifications of Cx proteins,
which have been found to be correlated with changes in
GJC activity. In particular, GLA decreases Cx43 tyrosine
phosphorylation in human vascular endothelial cells (Jiang

et al., 1997), while OA enhances the phosphorylate state at
Cx43-S368 in rat cardiomyocytes (Huang et al., 2004). This
post-translational modification has been associated with the
disassembly and/or closure of Cx43-GJCs (Huang et al., 2004;
Solan and Lampe, 2014). Accordingly, DHA alone or with EPA
increases Cx43 phosphorylation in rat astrocytes and vascular
endothelial cells (Champeil-Potokar et al., 2006; Dlugosova et al.,
2009; Radosinska et al., 2013). The participation of different
protein kinases, such as PKA, PKC-epsilon, PI3K, AKT, Src,
or MEK1/2, has been observed in this type of Cx regulation
(Popp et al., 2002; De Vuyst et al., 2007; Figueroa et al., 2013;
Radosinska et al., 2013). All these in vitro data corroborate
what happens in vivo. Thus, under physiological conditions, the
content of astrocytic Cx43 has been directly associated with DHA
concentration in rat brain (Maximin et al., 2015).

Regulation of Cxs by other mechanisms has also been
reported. In rat models of hypertensive and hypertriglyceremic
diseases, treatment with DHA + EPA (between 3 weeks and
2 moths) restores the expression levels and distribution of
Cx43 at the cell membrane (Fischer et al., 2008; Mitasíková
et al., 2008; Dlugosova et al., 2009; Bacova et al., 2010). In rat
neural stem cells, Cx43 increases only in lipid rafts (with no
changes in total Cx43) after 3 days of treatment with DHA,
suggesting that this effect was only due to a redistribution of
Cx43 at the cell membrane (Langelier et al., 2010). This Cx43
response within lipid rafts is not so unexpected, because these
membrane domains (which are cholesterol-rich) are associated
with trafficking of membrane proteins (McIntosh et al., 2003;
Sánchez et al., 2010), including some Cx types (e.g., Cx32, Cx36,
Cx43, and Cx46), which are preferentially located inside the
lipid rafts. Interestingly, other Cxs (e.g., Cx26 and Cx50) are
preferentially found outside these membrane domains (Schubert
et al., 2002; Defamie and Mesnil, 2012). Cholesterol levels
seem to play an important role in the regulation of Cx43,
as seen in a cell line derived from rat cardiomyocytes (H9c2
cells). This is because cholesterol enrichment reduced dye
transfer through Cx43 GJCs, due to activation of a PKC-
dependent signaling pathway that induces Cx43 phosphorylation
at S368 (Palatinus et al., 2011; Zou et al., 2014). A second
residue may also be involved, because phosphorylation on
S365 inhibits phosphorylation of the amino acid residue S368
(Solan and Lampe, 2014). Moreover, the assembly of GJCs
and their activity are regulated by the lipid composition of
the cell membrane (Defamie and Mesnil, 2012). Interestingly,
differences in lipid composition of the plasma membrane could
explain the different cell- or Cx-dependent responses. For
instance, in two different human hepatoma cell lines (HepG2
and SMMC-7721) the increase in GJC activity induced by
retinoic acid is associated to an increase in the amount of
Cx43 (HepG2 cells) or Cx32 (SMMC-7721 cells) (Yang et al.,
2014).

HEMICHANNEL ACTIVITY AND FATTY
ACIDS

The effects of FAs on Cx HC activity were only described in
the last decade. Electrophysiological experiments have shown
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that pro-inflammatory PUFAs induce a biphasic effect in Cx46
HCs expressed in Xenopus oocytes. Thus, LA increases Cx46
HC currents at a low concentration (0.1 µM), and decreases
HC currents at a high concentration (100 µM). The maximum
inhibitory effect was completed in 2 min, and the inhibition
was reversible after washout (Retamal et al., 2011). This
biphasic response was also suggested for Cx43, because 11,12-
epoxyeicosatrienoic acid, which is a metabolic derivative of AA
(Spector et al., 2004), transiently increased cell coupling followed
by a sustained uncoupling in human endothelial cells (Popp et al.,
2002).

LA was also shown to increase HC activity in HeLa cells
transfected with Cx26, Cx32, Cx43, or Cx45 within a few
minutes of esposure (Figueroa et al., 2013). LA also increased
Cx43 HC activity in a cell line derived from human gastric
epithelial cells (Puebla et al., 2016). In this case, the effect was
mediated by the activation of GPR40 (a membrane receptor) and
intracellular AKT-dependent signaling pathway (Puebla et al.,
2016). The GPR40 receptor belongs to a group of G-protein-
coupled receptors (GPCRs) that include 5 other membrane
receptors, which are also activated by FAs (Talukdar et al., 2011).

These receptors are proposed to play critical roles in various
physiological and pathophysiological conditions (Miyauchi et al.,
2010; Talukdar et al., 2011).

To date, the information on Panx regulation by FAs is limited.
It has been shown that Panx1 and Panx3 are regulated by
certain FAs. In human and rat liver cell lines, acute treatment
with SFAs such as PA (16:0) and SA (18:0) increases Panx1
channel activity. This response contributes to ATP release, which
finally induces apoptosis (Xiao et al., 2012). Apparently, the
regulation of Panx1 channel activity by FAs would depend on
the degree of unsaturation of the FA in question. For example,
the monounsaturated versions of PA and SA [i.e., PO (16:1) and
OA (18:1)] do not affect Panx1 channel activity. Conversely, a
PUFA as AA (20:4) reduces the macroscopic membrane current
of Panx1 channels expressed in Xenopus oocytes, and reduces
the release of ATP (Xiao et al., 2012; Samuels et al., 2013).
With regard to Panx3, treatment of L6 myotubes with palmitate,
but not palmitolate, was observed to promote the release of
a macrophage chemoattracting agent likely to be ATP-released
through Panx3 channels, since it was abrogated after silencing
Panx3 (Pillon et al., 2014).

FIGURE 1 | Possible mechanism of connexin responses associated with acute exposure to fatty acids (FAs). FAs induce connexin (Cx) responses by

interacting with membrane receptors, such as members of the G-protein coupled receptors (GPCRs), for example, GPR40 (free fatty acid receptor 1, FFAR1) or

GPR120 (FFAR4), which are activated by medium- and long-chain FAs (Ichimura et al., 2014). The activation of these FFARs could involve an intracellular signaling

pathway associated with different protein kinases (e.g., PKC, MAPK or AKT). Then, the activated kinase could induce at least two different effects: (1) modification of

the open probability of Cx hemichannels (HCs) and/or gap junction channels (GJC), and/or (2) modification of Cx abundance in the cellular membrane (as HCs or

GJCs) by changing the relative amount and distribution of intracellular Cx. In this model, the intracellular signaling associated with FFAR activation is lost after a wash

out with a FA-free solution. A direct interaction between FAs and Cxs cannot be ruled out (?).
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CONCLUSION

Since the effects of brief treatments with different FAs on
GJC activity are reversible upon washout, it is likely that FAs
act through membrane receptors and intracellular signaling
pathways. There is evidence in support of the participation
of membrane receptors in the short-term effect on Cx-based
channels (both GJCs and HCs). In some cases, the FA-mediated
effect requires the participation of protein kinases that could
be activated downstream of different GPCRs (Osmond et al.,
2012; Suire et al., 2012; Liang et al., 2015), such as FA receptors
(Itoh et al., 2003; Hirasawa et al., 2005). In agreement with
such evidence, several protein kinases have been identified to
modify Cxs (Solan and Lampe, 2014; Pogoda et al., 2016).
However, a direct interaction between FAs and Cxs cannot be
ruled out (Figure 1). For long-term FA treatments, the effects
are not reversible upon washout, and, therefore, a second
mechanism may be involved, including regulation at the level of
protein synthesis and/or protein redistribution in a cholesterol-
dependent way (Gibbons, 2003). Other possible mechanisms that
have scarcely been explored include regulation at the level of
mRNA stability, mRNA synthesis (transcriptional regulation) or

epigenetic regulation (Kiec-Wilk et al., 2011; Salat-Canela et al.,
2015). Related to the latter, an increase inmethylation of the Cx43
gene induced by AA in endothelial progenitor cells have been
described (Kiec-Wilk et al., 2011) (Figure 2).

Cx regulation is critical for several cell functions and a
large number of diseases can be attributed to changes in
expression, function and/or properties of these proteins (Hills
et al., 2015), it may be possible to suggest that the effect of
FAs upon Cx-based channels can have an important impact
in translational research. Thus, the uses of FAs that suppress
HC activity in diseases where Cx HC activity is upregulated
(e.g., ischemia reperfusion) could have important treatment
benefits. Additionally, certain FAs could provide significant
advantages in diabetic nephropathy, for instance, where they
may restore the loss of GJC-mediated cell-cell communication
within the nephron (Hills et al., 2015). Other examples where
FAs may be used in addition to current therapies, and in
which Cxs play important roles are lens cataracts (Beyer and
Berthoud, 2014) and cancer, where Cxs have different (and
controversial) types of participation (Aasen et al., 2016). Another
advantage in the use of FAs for certain diseases is that many
of them are harmless to humans. Alternatively, it may also be

FIGURE 2 | Possible mechanism of connexin responses associated with chronic exposure to fatty acids (FAs). Chronic FA exposure could induce a

long-term effect (second mechanism), because the FFARs could be inactivated due to long FA exposure (e.g., internalized or down-regulated). FA effects on the

activity of Cx-based channels (as HCs or GJCs) probably involve different pathways, such as (1) regulation of Cx distribution at the cellular membrane by a

cholesterol-dependent mechanism, either by direct action from the extracellular space (1A) or after activation of intracellular signaling pathways (1B). (2) Signaling

pathways could modify Cx protein abundance due to changes in protein degradation rate (2A) or synthesis rate (2B). (3) Another option less studied is the regulation of

mRNA stability or transcriptional activity of Cx genes (e.g., epigenetic regulation).
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possible to develop modified FAs with higher specificities for Cx
docking.
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