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The takeout family genes encode relatively small proteins that are related to olfaction and

are regulated by juvenile hormone (JH). The takeout genesmodulate various physiological

processes, such as behavioral plasticity in the migratory locust Locusta migraloria and

feeding and courtship behaviors in Drosophila. Therefore, to understand the regulatory

mechanism of these physiological processes, it is important to study the expressions

of the takeout genes that are regulated by JH signaling. We used quantitative real-time

PCR (qRTPCR) to study the role of JH signaling in the regulation of the takeout family

genes in the brown planthopper Nilaparvata lugens (N. lugens) through the application

of Juvenile hormone III (JHIII) and the down-regulation of key genes in the JH signaling

pathway. The topical application of JHIII induced the expressions of most of the takeout

family genes, and their expressions decreased 2 and 3 days after the JHIII application.

Down-regulating the brown planthopper JH receptor NlMethoprene-tolerant (NlMet) and

its interacting partners, NlTaiman (NlTai) and Nlß-Ftz-F1 (Nlß-Ftz), through RNAi, exhibited

distinct effects on the expressions of the takeout family genes. The down-regulation

of NlMet and NlKrüppel-homolog 1 (NlKr-h1) increased the expressions of the takeout

family genes, while the down-regulation of the Met interacting partners NlTai and Nlß-Ftz

decreased the expressions of most of the takeout family genes. This work advanced our

understanding of the molecular function and the regulatory mechanism of JH signaling.

Keywords: brown planthopper, juvenile hormone, Met, Taiman, ß-Ftz-F1, takeout

INTRODUCTION

The takeout family genes encode relatively small proteins that are related to olfaction (Dauwalder
et al., 2002; Saito et al., 2006; Hagai et al., 2007). Since the first characterization of the takeout
gene in Drosophila melanogaster (Fujikawa et al., 2006), homologs of takeout have been identified
from a broad range of insect species, including Phormia regina (Fujikawa et al., 2006), Manduca
sexta (Du et al., 2003), Bombyx mori (Saito et al., 2006), Apis mellifera (Hagai et al., 2007),
Reticulitermes flavipes (Dauwalder et al., 2002), and Locusta migraloria (Guo et al., 2011). The
migratory locust Locusta migraloria takeout modulates behavioral plasticity (Guo et al., 2011), i.e.,
the switch between attraction and repulsion during the phase transition (Guo et al., 2011). The
takeout gene was found to be regulated by the circadian rhythm and affects feeding behavior (So
et al., 2000; Meunier et al., 2007), locomotion (Meunier et al., 2007), and male courtship behavior
(Dauwalder et al., 2002) in D. melanogaster. Takeout is also involved in the trail-following behavior
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of the termite Reticulitermes flavipes (Dauwalder et al., 2002).
The expressions of the takeout genes are usually male biased
(Hagai et al., 2007; Vanaphan et al., 2012) and are regulated by
age and nutrition (Du et al., 2003; Hagai et al., 2007). A circadian
transcription factor PAR domain protein 1 (Pdp1ε) mediated
the regulation of takeout by the circadian rhythm (Dauwalder
et al., 2002). The expression of takeout is usually regulated by
a crucial hormone in insects, Juvenile hormone (JH; Du et al.,
2003; Hagai et al., 2007). However, the regulatory mechanism of
takeout expression by JH remained unclear.

JH is secreted by the corpora allata (CA) and belongs to a type
of sesquiterpenoid and regulates development, reproduction,
polyphenism (a special case of phenotypic plasticity), and
behaviors, such as feeding and mating (Jindra et al., 2013).
The signal transduction pathway of JH is initiated by the
release of the JH ligand, followed by binding to the intracellular
receptor Methoprene-tolerant (Met; Bernardo and Dubrovsky,
2012; Jindra et al., 2013) through an interaction betweenMet and
Taiman (Tai), which is an EcR coactivator (Zhu et al., 2006; Li
et al., 2011, 2014), possibly also through an interaction between
Met and ß-Ftz-F1 (Zhu et al., 2006; Yoo et al., 2011; Bernardo
and Dubrovsky, 2012), leading to transcriptional changes of
downstream genes and the regulation of developmental and
physiological processes (Truman and Riddiford, 2002; Belles
et al., 2005; Flatt et al., 2005). JH induced the transcription of Kr-
h1 through the binding of the Met-Tai complex to the E-Box at
the 5′ of the Kr-h1 gene in the mosquito Aedes aegypti (Zhu et al.,
2010; Li et al., 2011, 2014). Works in Tribolium also indicated
that the function of Kr-h1 is dependent on the JH receptor Met
(Minakuchi et al., 2009). Consistently, we previously showed that
the brown planthopper Kr-h1 is induced by JH or its mimics (Jin
et al., 2014).

The brown planthopper,Nilaparvata lugens (N. lugens), which
is one of the most important insect pests in rice production,
exhibits polyphenism, and has the long wing and short wing
forms. The long wing form is migratory, and the short wing
form is reproductive. Previous studies have shown that the wing
form of brown planthopper is regulated by JH and the density
and developmental stage of the rice plant (Kisimoto, 1956, 1965;
Iwanaga and Tojo, 1986; Ayoade et al., 1999; Bertuso et al.,
2002). More recently, it was found that the wing form of the

TABLE 1 | Primers for dsRNA synthesis.

Name Nucleotide sequence (5′–3′)

dsGFPT7F GGATCCTAATACGACTCACTATAGGAAGGGCGAGGAGCTGTTCACCG

dsGFPT7R GGATCCTAATACGACTCACTATAGGCAGCAGGACCATGTGATCGCGC

dsNlTaiF TAATACGACTCACTATAGGGAGACCACTTCATTCATTCAGGCTCGGC

dsNlTaiR TAATACGACTCACTATAGGGAGACCACCCACTCACACTACCACCACT

dsNlβ-FtzF TAATACGACTCACTATAGGGAGACCACCGACCAGATCTCGTTGCTGA

dsNlβ-FtzR TAATACGACTCACTATAGGGAGACCACGCAGCCACAAGTAGAATCCG

dsNlMetT7F TAATACGACTCACTATAGGGAGACCACCAACCAGCAGATGAACCTGA

dsNlMetT7R TAATACGACTCACTATAGGGAGACCACGCAAAGCCTCGTACTCTTGG

dsNlKrhT7F TAATACGACTCACTATAGGGAGACCACGTGGGGTTCAGTCCTGAGGA

dsNlKrhT7R TAATACGACTCACTATAGGGAGACCACCAGTCGAACACACACCGGAG

brown planthopper is regulated by two alternative receptors in
the insulin signaling pathway and the JNK signaling pathway
(Xu et al., 2015; Lin et al., 2016a,b). Interestingly, we found that
wounding also affects the wing form through the regulation of
the transcription factor Foxo (Lin et al., 2016c).

The regulation of target genes by JH signaling is bidirectional;
certain genes are activated by JH, and other genes are repressed
or not affected. The activation is mediated by the JH receptorMet
(Schwinghammer et al., 2011), and the repression is mediated
by Met through the recruitment of the Hairy/Goucho molecular
system (Hagai et al., 2007). However, the role of Met and
its interacting partners in regulating the expressions of the
takeout genes remained unknown, and the role of the takeout
genes in wing polyphenism remained unclear due to the lack
of knowledge of behavior plasticity. Moreover, the complete
identification of the N. lugens genome sequence (Xue et al.,
2014) and key biological characteristics, such as migration
and behavior plasticity, are important for pest control and
predictions of pest outbreaks, making N. lugens an appropriate
model for studying the role of gene families, such as the
takeout family genes. Here, we use quantitative real-time PCR
to study the role of JH signaling in the regulation of N.
lugens takeout genes by the topical application of JH or the
down-regulation of Met and its interacting partners through
RNAi.

MATERIALS AND METHODS

Insects
The brown planthopper (N. lugens) insectary population was
provided by Professor Zhu Zeng-Rong, Institute of Insect
Sciences, Zhejiang University. The insects were cultured with rice
seedling and raised at a temperature= 25◦C, relative humidity=
60%, and a photoperiod= 16 L:8 D.

Construction of Phylogenetic Trees and
WebLogo Conserved Amino Acid Analysis
A Phylogenetic tree, including 17 brown planthopper Takeout
proteins and 65 homologs of other species, was constructed,
and the sequences were downloaded from the GenBank
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database (http://www.ncbi.nlm.nih.gov/genbank/). The
phylogenetic tree was constructed by MEGA 6.0 software
using the Neighbor-Joining method and a bootstrap
value of 1000. The predicted amino acid sequences of 17
N. lugens Takeout proteins were aligned into WebLogo
(http://weblogo.berkeley.edu/logo.cgi) and were compared in
pairs using the default settings.

JHIII Treatment
The juvenile hormone III (JHIII, Sigma Aldrich, USA) was
dissolved in acetone at a concentration of 1 µg/µL, with acetone
as a control group, and a volume of 0.2µL was applied to the back
of each brown planthopper at the 5th nymph stage; the brown
planthoppers were collected 1 or 3 days after the treatment and
ground in TRIzol, and the total RNA was then extracted.

RNA Interference
TheDNA fragments used for the dsRNA synthesis were amplified
through PCR using NlMet, NlKr-h1, NlTai, and Nlβ-Ftz cloned
into PMD18-T separately as templates. The primers are listed
in Table 1. Double-stranded RNA of NlMet, NlKr-h1, NlTai, and
Nlβ-Ftz were synthesized using the RNA Production System-
T7 kit (RiboMAX Large Scale, Promega). dsGFP was used as a
control. The 5th instar nymphs of N. lugens were injected. The
Narishige Injection System (MN-151, Narishige) was used for the
dsRNA injection. One or three days after the injection, the insects
were collected for RNA extraction.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA was extracted using the TRIzol RNA extraction kit
(TaKaRa). Reverse transcription was carried out using the First
Strand cDNA Synthesis kit (Roche). The real-time quantitative
PCR kit SuperReal PreMix (SYBR Green, Tiagen, Beijing) was
used. All primers were synthesized by Sangon (Shanghai). All
primers are listed in Table 2. The reference genes were selected
based on previous reports (Yuan et al., 2014).

The RNA concentration was measured using NanoDrop 1000
(Thermo, USA). The primers were designed in the range of
90–110 bp for the qRT-PCR measurement of the NlTO genes.
Three replicates were used for the qRT-PCR reactions of each
sample. In total, a 20µL reaction was used for the qRT-PCR
reaction, including 10µL 2× SuperReal PreMix, 0.6µL upstream
and downstream primers (10µmol • L−1), 0.6µL 50× ROX
Reference Dye, 2µL cDNA template, and 6.2µL DEPC-treated
water. Using a two-step qRT-PCR amplification procedure, the
pre-denaturation was as follows: 95◦C 1min, 1 cycle; The qRT-
PCR reactions were as follows: 95◦C 3 s, 58◦C 30 s, 40 cycles.
All data were analyzed using the 2−11Ct method (Livak and
Schmittgen, 2001).

Statistics and Heatmap
SPSS 20.0 was used for the data analysis. For the analysis of the
qRT-PCR experiment, student’s t-test was used. A heatmap was
constructed using HemI1.03, and the fold changes of relative

TABLE 2 | Primers for Quantitative PCR.

Gene Forward Reverse

RPS15 TAAAAATGGCAGACGAAGAGCCCAA TTCCACGGTTGAAACGTCTGCG

actQ TGGACTTCGAGCAGGAAATGG ACGTCGCACTTCATGATCGAG

NlTO1 CAATGGCTCATCATCACTCA GGGAATGGCTATTCTTCCAT

NlTO2 GCCAATGATGCAAAGGATAC ATGCAGTCTTCGAGTTTTGC

NlTO3 GCCGTCAATTACAAGGCTAA ATTTGCAGCTTGTTCAGGTC

NlTO4 CACCAGAGGGTTCTCAGCTA ACAATACGGGGCACATAGAA

NlTO5 GGTCAGCAGGCTATACCAAA TCTGGTGCCCTGGTTTACTA

NlTO6 TTCGAACCCCTCTACATTGA GTATTGCTTGGTCCATGAGC

NlTO7 GACTGTCCAAGTCCCATGTC TGTACATGCCCTTGATGTTG

NlTO8 AGCTATTCCTTCCCTGCATT AGTAGCATTGGCTTTCATGG

NlTO9 AACGGCCGAGCTTACTTCAA CACCTCCTTCCAGTTCTCGT

NlTO10 CACATCATGAAGAGTGCGCT CTCTCGGGCATGGTTTGATG

NlTO11 CCAATCCAAGGAGAGGGTGA GAGTCTTGCCGTTCTTCACC

NlTO12 CTGAATTTGACGCCGGGTAG GATGAGCCATTGATGAGGCA

NlTO13 TGGTGATTTGAGCGAGCCTA GGGTGAGCTTGCATTTTCCA

NlTO14 GTTCTGGGGCATAGACGACT TCATCGCATCTCCCAGTTGT

NlTO15 CGGACTCCAGGATGTTGACT TAGCATCCCCTTGTCCTGTG

NlTO16 TGGAACAGGGCCTAGTGATG CGCCATTGAAGAGATCTCCC

NlTO17 ATCGTTGGCCTTGAATCACG CCTTCGCCGAATATTGGCAA

NlMet GGTGGTAAACGGATTGGAAA CATCGTCAGCCAACTCGATA

NlKr-h1 TGATGAGGCACACGATGACT ATGGAAGGCCACATCAAGAG

NlTai ATGATCCCAACCACTTCAGC TTCCACTCACACTACCACCA

Nlβ-Ftz CCATGAGAACCCGTAATCCG CACACTCGAGTCCCTTGATG
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FIGURE 1 | Phylogenetic analysis of Takeout family proteins from

N. lugens and other species. AgTO1 (XM_311285), AgTO2 (XM_321081),

AgTO3 (XM_003435936), AgTO4 (XM_003435937), AgTO5 (XM_003435938),

AgTO6 (XM_321079), AgTO7 (XM_321075), AgTO8 (XM_313180), AgTO9

(XM_313181), AgTO10 (XM_001230706), AgTO11 (XM_309482),

(Continued)

FIGURE 1 | Continued

AgTO12 (XM_307380), AmTO1 (GB48492-PA), AmTO2 (GB42798-PA),

AmTO3 (GB42796-PA), AmTO4 (GB42799-PA), AmTO5 (GB42800-PA),

AmTO6 (GB42704-PA), BmTO1 (XP_004927145), BmTO2 (NP_001036949),

BmTO3 (NP_001036945), BmTO4 (XP_004923014), BmTO5

(XP_004932669), BmTO6 (XP_012548133), DmTO1 (FBpp0078169), DmTO2

(FBpp0082691), DmTO3 (FBpp0307590), DmTO4 (FBpp0083445), DmTO5

(FBpp0311940), DmTO6 (FBpp0084027), DmTO7 (FBpp0084184), DmTO8

(FBpp0084185), DmTO9 (FBpp0308365), DmTO10 (FBpp0308366), DmTO11

(FBpp0084473), DmTO12 (FBpp0084474), DmTO13 (FBpp0290041),

DmTO14 (FBpp0083446), LmTO1 (GU722575), LmTO2 (CO856064), LmTO3

(CO825835), LmTO6 (KM503135), TcTO1 (XP_967109), TcTO2 (EFA05096),

TcTO3 (EFA05095), TcTO4 (XP_966559), TcTO5 (XP_974592), TcTO6

(XP_974610), TcTO7 (XP_966559), TcTO8 (XP_008190426), TcTO9

(EFA05633), TcTO10 (XP_970866), TcTO11 (XP_970866), TcTO12

(EFA05635), TcTO13 (KYB27715), TcTO14 (XP_973361), TcTO15 (EFA03576),

TcTO16 (EFA03557), TcTO17 (XP_015836023), TcTO18 (XP_972960), TcTO19

(XP_972997), TcTO20 (XP_001812695), TcTO21 (XP_015840904), TcTO22

(EEZ98654), TcTO23 (XP_974890). Ag, Anopheles gambia; Am, Apis mellifera;

Bm, Bombyx mori; Dm, Drosophila melanogaster; Lm, Locusta migraloria; Tc,

Tribolium castaneum.

expressions were logarithmically transformed. The clustering
method was a hierarchical average linkage, and the similarity
metric was the Pearson distance.

RESULTS

Cloning and Analysis of the Brown
Planthopper takeout Family Genes
We searched the brown planthopper N. lugens genome (Xue
et al., 2014) and InsectBase (Yin et al., 2016). We identified 17
takeout homologs. We then cloned, sequenced and named all
takeout homologs-takeout 1 (TO1) to takeout 17 (TO17). The
phylogenetic tree analysis showed that the brown planthopper
takeout genes are conserved across the species (Figure 1).
NlTO11 clustered with NlTO17, and both clustered with NlTO7
(Figure 1). These three Takeout homologs together clustered
with NlTO12 and TcTO22 (Figure 1). NlTO15 clustered with
NlTO5, and both clustered together with NlTO14 (Figure 1).
Four homologs, including NlTO3, NlTO4, NlTO6, and NlTO13,
are relatively distant, and each has close homologs from other
species (Figure 1).

We aligned the predicted Takeout protein sequences
and graphical presentation of the sequence conservation by
the overall height (Figure 2). The conserved amino acids
were distributed throughout the entire Takeout protein
sequence. A comparison of these Takeout proteins revealed
two highly conserved cysteine residues (C) at the N terminal,
four highly conserved glycine residues (G) and two highly
conserved proline residues (F, Figure 2) in the middle of the
protein.

Male Biased Expressions of Brown
Planthopper takeout Family Genes
To study whether the expressions of the takeout genes
in brown planthopper are male biased, we measured the
expressions of the takeout family genes using qRT-PCR and
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FIGURE 2 | WebLogo of the Takeout protein sequences. The data are the alignment of 17 Takeout proteins from N. lugens. The X-axis represents the amino acid

position. The Y-axis (bits) represents the relative proportion of the amino acids at one position. The height of the logo varied inversely with the variability at the position.

compared the expressions in males to those in females in
the two wing forms. The results showed that the expressions
of 16 of the 17 takeout genes are male biased (Figure 3),
which is consistent with previous studies by Dauwalder et al.
in D. melanogaster (Dauwalder et al., 2002). However, in
contrast, we found one takeout gene, NlTO16, that was more
highly expressed in females than in males (Figure 3), i.e.,
the fold change is 7.5 times in the long-wing form and 6
times in the short-wing form. The expression of NlTO16 in
the long wing and short wing forms was not significantly
different.

The Effect of JH on the Expressions of
takeout Family Genes
Our previous study showed that the expression of brown
planthopper NlKr-h1 is induced by JH or its mimics (Jin et al.,
2014). The expression of NlKr-h1 was significantly high (≈5
times) 1 day after the JH treatment (Jin et al., 2014). Therefore,
we measured the expressions of the takeout family genes 1 day
after the JHIII treatment (Figure 4). The result showed that 14
of the 17 takeout genes are up-regulated, and the expression of
13 takeout genes was significantly high 1 day after the JHIII
treatment (Figure 4B). However, the expression of 12 takeout
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FIGURE 3 | Expressions of the takeout family genes in four types of brown planthopper adults. LWF, long-wing female; LWM, long-wing male; SWF,

short-wing female; SWM, short-wing male. Student’s t-test was used, *P < 0.05, **P < 0.01, ***P < 0.001.

genes was significantly high 1 h after the JHIII treatment
(Figure 4A), and the fold changes are lower than those following
a 1 day treatment. The expressions of NlTO9, 10, 13, 14, and
17 increased more than 6-fold 1 day after the JHIII treatment.
Only three genes, NlTO 3, 6, and 7, are down-regulated after the
JHIII treatment and decreased by <6 times 1 day after the JHIII
treatment (Figure 4B). This finding is consistent with previous
studies in the honey bee A. mellifera (Hagai et al., 2007) and the
tobacco hornwormManduca sexta (Du et al., 2003) in which the
expression of the takeout gene is regulated by JH. However, when
we measured the expressions of the takeout genes 2 and 3 days
after the JHIII treatment, the expressions of 9/15 of the 17 genes
were significantly reduced (Figures 4C,D).

The Expressions of the takeout Family
Genes in Met and Interacting Proteins
Down-Regulated Brown Planthoppers
To further understand the regulatory role of JH signaling in
the expressions of the takeout family genes, we used RNAi
to down-regulate the expressions of the JH receptor or its
interacting proteins and then measured the fold changes of the
takeout family genes 1 and 3 days after the dsRNA injection.

The expressions of half of the takeout family genes are not
changed significantly 1 day after the NlMet dsRNA and NlKr-
h1 dsRNA injections. One day after the NlMet dsRNA injection,
the expressions of 10 NlTO genes are not changed significantly.
The fold changes of five genes are <2, and the fold changes of
the remaining genes are <4 (Figure 5, Table 3). However, 1 day

after the NlKr-h1 dsRNA injection, the expressions of 7 NlTO
genes are not changed significantly. The fold changes of the eight

genes are <2, and fold changes of the remaining genes are <4

(Figure 5, Table 3). Three days after the dsRNA injection, the

majority of the takeout genes are up-regulated, and only four

and two takeout genes are down-regulated 1 and 3 days after
the injection, respectively (Figure 5, Table 3). In addition, only

a few genes showed no significant changes (NlTO12 for NlMet
and NlTO8, 12, and 16 for NlKr-h1 dsRNA; Figure 5, Table 3).

In summary, the takeout family genes showed relatively stable
expressions 1 day after theNlMet andNlKr-h1 dsRNA injections,
while after 3 days, the expressions of the majority of the takeout
family genes changed significantly (Figure 5, Table 3).

However, after the injections of NlTai and Nlβ-Ftz dsRNA,
the expressions of the takeout family genes are mainly down-
regulated, and the majority of them are significantly different
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FIGURE 4 | The effect of juvenile hormone III (JHIII) on the expressions of the takeout family genes. The measurements of the takeout family genes were

carried out 1 h (A), 1 day (B), 2 days (C), and 3 days (D) after the JHIII treatment. The expressions of the takeout genes TO1-TO17 after the JHIII treatment were

compared with the control nymphs that were treated with acetone. Student’s t-test was used, *P < 0.05, **P < 0.01, ***P < 0.001.

from the control, which was injected with dsGFP (Figure 5,
Table 3). The expressions of the takeout genes, except for
NlTO9, are all down-regulated and significantly different after
the NlTai dsRNA injection (Figure 5, Table 3). One day after
the injection, five genes are up-regulated, two genes are not
significantly changed, and the remaining genes are down-
regulated significantly (Figure 5, Table 3). All genes were down-
regulated 3 days after the Nlβ-Ftz dsRNA injection (Figure 5,
Table 3). These results indicated that NlTai and Nlβ-Ftz are
probably more important for maintaining or inducing the
expressions of the takeout family genes, and NlMet and NlKr-
h1 are more important for down-regulating the takeout family
genes.

DISCUSSION

Our analysis showed that the brown planthopper takeout family
genes are conserved across species (Figure 1). However, the
functions of these proteins in N. lugens are unknown. It is well-
documented that JH is involved in the wing polyphenism of
the brown planthopper (Iwanaga and Tojo, 1986; Bertuso et al.,
2002). The role of Locusta migraloria takeout in the behavioral
phase change is reminiscent of the role of takeout in N. lugens
because the brown planthopper is polyphenism. Due to the
limited knowledge regarding the behavioral phase change in the
brown planthopper, determining whether Takeout proteins play
a role in this process remains to be explored in the future.

Our experiments showed that the brown planthopper takeout
family genes are induced 1 h or 1 day after the topical application
of JHIII (Figures 4A,B), while the expression levels of most of the
takeout genes are reduced 2 and 3 days after the JHIII treatment
(Figures 4C,D). When we down-regulated the expressions of
the JH receptor NlMet and its downstream target NlKr-h1, as
well as the NlMet interacting proteins NlTai and Nlβ-Ftz, the
expression patterns of the takeout family genes are distinct.
When NlMet and NlKr-h1 are down-regulated, i.e., 1 day after
the dsRNA injection, the expressions of the majority of the
takeout genes are either not significantly changed or only have
slightly changed (Figure 5, Table 3). While after 3 days, the
expressions of most of the takeout family genes are increased
significantly (Figure 5, Table 3). Overall, the effects of the down-
regulation of NlKr-h1 on the expressions of the takeout family
genes are similar to those of the down-regulation of NlMet.
However, the down-regulation of the NlMet interacting proteins
NlTai and Nlβ-Ftz through RNAi led to a down-regulation of
most of the takeout family genes 1 and 3 days after the dsRNA
injection. This finding indicates distinct roles of NlMet and
its interacting proteins in regulating the takeout family genes.
NlMet and its interacting proteins NlTai and Nlβ-Ftz might act
through different mechanisms in regulating the expressions of
the takeout family genes. As mentioned above, JH could either
up-regulate or down-regulate gene expression. In this study, we
found that in addition to the crucial role of the JH receptor Met,
its interacting proteins NlTai and Nlβ-Ftz also play important
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FIGURE 5 | The expressions of the takeout family genes in NlMet, NlKr-h1, NlTai, and β-Ftz down-regulated brown planthopper. The measurements of

the takeout family genes were carried out 1 and 3 days after the dsRNA injection. The expressions of the takeout genes TO1–TO17 after the NlMet, NlKr-h1, NlTai, or

β-Ftz dsRNA injections were compared with the control, which was injected with GFP dsRNA. Heatmap was used for the visualization of the expression changes.

NlMet-1, NlKr-h1-1, NlTai-1, and β-Ftz-1 indicate 1 day after the dsRNA injection, and NlMet-3, NlKr-h1-3, NlTai-3, and β-Ftz-3 indicate 3 days after the dsRNA

injection.

roles in regulating the expressions of the takeout family genes.
However, the roles of NlTai and Nlβ-Ftz are distinct from those
of NlMet in regulating the expressions of the takeout genes. This
result is consistent with the direct activation of target genes by
Met and the repression of target genes with the cooperation of
the Hairy/Grouche molecular system (Hagai et al., 2007).

The interaction of Met and Tai in the mosquito Aedes aegypti
is dependent on JH (Li et al., 2011, 2014). Here, we show that Met
and its interacting proteins play distinct roles in regulating the
expressions of the takeout family genes. Although the expressions
of most of the takeout family genes significantly increased 3
days after the down-regulation of NlMet and its downstream
transcription factor NlKr-h1, there is only a slight effect 1 day
after the dsRNA injection, i.e., the expressions of most of the
takeout family genes are not significantly changed or only slightly
changed.

In the mosquito Aedes aegypti, JH activated the phospholipase
C (PLC) pathway and protein kinase C (PKC) and immediately
increased the levels of inositol 1,4,5-trisphosphate (IP3),
diacylglycerol (DAG), and intracellular calcium, thereby
activating calcium/calmodulin-dependent protein kinase II
(CaMKII; Liu et al., 2015; Ojani et al., 2016). Met protein is
phosphorylated upon JH binding (Liu et al., 2015). The increased
expressions of the takeout genes by the down-regulation of
NlMet and NlKr-h1 indicates a possibly distinct mechanism

in the regulation of the takeout genes by Met and its
interacting partners or regulation at different levels, i.e., at
the transcriptional, translational or post-translational levels.
It is possible that the initial regulation of JH signaling upon
ligand binding was affected by the phosphorylation of the
Met protein, which leads to the initial unresponsiveness of
the takeout family genes even though Met transcription was
down-regulated, i.e., down-regulatingNlMet resulted in a change
in the phosphorylation of the Met proteins and its down-stream
signaling components. Based on our previous study on Kr-h1,
the genes downstream of JH action are prone to be induced 1 day
after the JH application (Jin et al., 2014). In this study, we found
that the takeout genes are induced 1 h and 1 day after the JHIII
application and are reduced 2 and 3 days after the treatment.
This result indicates a possible feedback mechanism in regulating
the expressions of the takeout genes after the induction by JHIII.
Additionally, Met and its interacting proteins may act at different
developmental stages; in this study, we only tested the expression
changes of the takeout family genes in brown planthoppers
treated at the 5th instar nymph stage. In the future, studies that
measure the gene expression levels in other stages and different
tissues are to be carried out.

The takeout family genes are regulated by JH signaling
in N. lugens. Although previous studies have shown that
takeout is involved in feeding and migration, this work
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TABLE 3 | Expression changes of the takeout genes by juvenile hormone III (JHIII) treatment and RNAi.

Gene JHIII-1 dsNlMet-1 dsNlKrh-1 dsNlTai-1 dsNlβ-Ftz-1 dsNlMet-3 dsNlKrh-3 dsNlTai-3 dsNlβ-Ftz-3

NlTO1 888 8 8 99999 n.s. 88888 88888 99999 9999

NlTO2 888 n.s. n.s. 999 8888 8 8 99999 99999

NlTO3 99 n.s. 8 999 88 88 9 99999 99

NlTO4 88 n.s. n.s. 99 88888 9 8 99999 99999

NlTO5 8 99 8 99999 88888 9 8 99999 99999

NlTO6 9 9 88 99999 99999 999 99 99999 99

NlTO7 999 99 88 99999 99999 88888 88 99999 99999

NlTO8 888 9 9 99999 99999 8 n.s. 99999 99999

NlTO9 8888 9 n.s. 99 99999 88888 88888 88 999

NlTO10 88888 n.s. 9 9 999 88 88 9 99

NlTO11 888 8 n.s. 999 99999 88 8 99 99

NlTO12 888 n.s. 8 9 n.s. n.s. n.s. 99999 9

NlTO13 88888 n.s. 8 99 999 888 8888 99 99

NlTO14 8888 n.s. n.s. 99999 99999 88 88 99999 99999

NlTO15 n.s. n.s. 8 99 88 888 888 9999 99999

NlTO16 88 n.s. n.s. 99 99 8 n.s. 9999 n.s.

NlTO17 88888 n.s. n.s. 99999 99999 88888 88888 99999 99999

Down-regulated:9; Up-regulated:8;9/8:1∼2-fold;99/88:2∼4-fold;999/888:4∼6-fold;9999/8888:6∼8-fold;99999/88888:>8-fold.

advanced our understanding of the molecular function and
the regulatory mechanism of JH signaling. Furthermore, this
work could help in the development of potential small
molecules or the identification of target genes for regulating
the expressions of the takeout genes behaviors of N. lugens,
such as feeding and migration, which could be an efficient
and environment friendly approach for the control of this
pest in the future. The functions of the takeout family
genes, including its role in polymorphism, remain unclear.
Additional experiments are required for the understanding of
the mechanisms regulating the takeout family genes by JH
signaling.
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