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Accurate identification of Perinatal Hypoxia from visual inspection of Fetal Heart Rate

(FHR) has been shown to have limitations. An automated signal processing method for

this purpose needs to deal with time series of different lengths, recording interruptions,

and poor quality signal conditions. We propose a newmethod, robust to those issues, for

automated detection of perinatal hypoxia by analyzing the FHR during labor. Our system

consists of several stages: (a) time series segmentation; (b) feature extraction from FHR

signals, including raw time series, moments, and usual heart rate variability indices; (c)

similarity calculation with Normalized Compression Distance, which is the key element for

dealing with FHR time series; and (d) a simple classification algorithm for providing the

hypoxia detection. We analyzed the proposed system using a database with 32 fetal

records (15 controls). Time and frequency domain and moment features had similar

performance identifying fetuses with hypoxia. The final system, using the third central

moment of the FHR, yielded 92% sensitivity and 85% specificity at 3 h before delivery.

Best predictions were obtained in time intervals more distant from delivery, i.e., 4–3 h and

3–2 h.

Keywords: fetal heart rate, perinatal hypoxia, normalized compression distance, heart rate variability, information

theory

1. INTRODUCTION

Perinatal hypoxia is a fetus and newborn child disease resulting from the lack of tissues oxygenation.
Although it can occur in earlier gestation phases, childbirth and immediate neonatal hours are the
fundamental risk periods. The perinatal hypoxia severity spectrum ranges from very mild cases
(only requiring neonatal resuscitation with environmental oxygen), more serious cases requiring
intubation and acidosis correction with bicarbonate (reanimation types V and VI) and critical cases
that can cause perinatal death or serious damage, such as brain or adrenal hemorrhage, necrotizing
enterocolitis, delayed neurological development, mental disability, seizures (West syndrome) or
cerebral palsy (Leuthner and Das, 2004; Morales et al., 2011). Diagnosis is performed at the time of
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birth by evaluating the cardio-respiratory depression and muscle
tone. The severity of the hypoxia is commonly quantified using
the Apgar Score (Apgar, 1953; Casey et al., 2001), with a
score lower than 7 at 5 min after delivery being considered as
pathological, which is usually confirmed with gas analysis of the
umbilical cord.

Continuous electronic fetal monitoring, also known as
Cardiotocography (CTG), was developed around 1960 (Hon,
1958; Hammacher et al., 1968) and consists in the simultaneous
evaluation of the Fetal Heart Rate (FHR) and the uterine activity.
After CTG generalization, two relevant signs of suspicious fetal
hypoxia were recognized, namely, the late deceleration of the
FHR in relation to uterine contractions, and the FHR variability
decrease (Low et al., 1999). Although visual interpretation
of CTG has an acceptable sensitivity for risk of hypoxia
detection (especially in pathological traces), the specificity is
still low (especially for suspicious traces), and requires the
confirmation with invasive pH determination of the fetus’
scalp blood, which is technically cumbersome and not always
feasible (Tasnim et al., 2009). When considering the risk of
hypoxia, gynecologists prescribe intervention (cesarean, forceps,
and vacuum extraction) more often than necessary (Tasnim
et al., 2009), thus increasing sensitivity at the expense of
specificity. In addition, visual assessment of bradycardias and
late deceleration is simple, whereas visual assessment of the
loss of variability is not and even varies depending on the
observer, representation type (computer display or paper), or
cardiotocographmodel (Bernardes et al., 1997; Ayres-de Campos
et al., 1999; Santo and Ayres-de Campos, 2012).

Automated signal processing methods for supporting the
gynecologists in the early hypoxia detection need to be working
on hard to process time series, with different time durations,
recording interruptions for seconds or even minutes, and
poor quality signal conditions. Aiming to overcome these
limitations, we present a method for automated detection
of perinatal hypoxia from FHR time series registered during
labor, which is specifically designed to be robust in those
conditions. Our method consists of several stages: (a) a
first stage for time series segmentation; (b) followed by
the design and analysis of a feature extraction subsystem,
based on the use of the raw FHR time series, its statistical
moments, and usual heart rate variability (HRV) indices; (c)
the Normalized Compression Distance (NCD), (Li et al., 2004),
which is closely related to the Kolmogorov Complexity and
mutual information (Cover and Thomas, 2006), is subsequently
used for dissimilarity estimations between time series with
different lengths and recording interruptions; (d) finally, a
classification algorithm is used to provide the estimated hypoxia
detection output. The method design alternatives have been
benchmarked on a database with 32 fetal recordings (15
controls).

The structure of the paper is as follows. Section 2 describes the
alternative elements of the detection system. Section 3 describes
the FHR dataset and Section 4 then experimentally demonstrates
the capability of NCD both for classification of raw signals and
for extending the capabilities of conventional analysis in a real
FHR dataset. Finally, Section 5 discusses the main advantages of

the proposed methodology over other alternatives and presents
our conclusions.

2. METHODS

The proposed system consists of several stages, namely: time
series segmentation and feature extraction from FHR signals;
similarity calculation with NCD; and the choice of a suitable
classification algorithm for the final purpose of hypoxia
detection. The theoretical basis and design criteria for these stages
are described below.

2.1. Time Series Segmentation and Feature
Extraction
2.1.1. Time Series Segmentation
We decided to analyze the FHR signal in 1-h windows, in order
to determine the accuracy that can be attained at 3, 2, and
1 h intervals before delivery. This will show whether hypoxia
signs can be detected at such time milestones, thus allowing
decisions to be made as quickly as possible on stressed fetuses.
We also considered the signal segment from 4 to 1 h before
delivery, with the aim of simulating a real situation in which the
remaining labor time is unkown. Finally, we also analyzed the
FHR signals by dividing them into a set of short sliding windows
(5 min segments), which is common practice in heart rate signals
analysis (Signorini et al., 2003).

2.1.2. Feature Extraction
Feature extraction techniques aim to gather specific parameters
from a signal that can be easier to analyze than the signal samples
themselves. The use of raw data is theoretically supported by
data processing inequality,according to which, signal processing
cannot increase the information content (Cover and Thomas,
2006). However, information loss caused by feature extraction
is preferable to raw data analysis, as it simplifies subsequent
classification or estimation. In this work, we consider several
types of features. Firstly, the HRV parameters that are commonly
used for analyzing heart signals in different applications (Task
Force, 1996), and they require their own preprocessing stage.
Secondly, statistical moments that can be considered as generally
used parameters for characterizing signals in general. Although
statistical moments discard the temporal structure of a time
signal, they are known to be robust to signal loss and easy to
compute.

2.1.3. FHR Features from HRV Conventional Analysis
FHR conventional analysis is often performed using time domain
and frequency domain indices computed in 5 min segments.
For linear HRV analysis, a preprocessing algorithm is applied
to the raw signal to deal with noise and artifacts related to the
fetal and maternal movements. Beats lower than 60 beats per
minute (bpm) and beat-to-beat differences higher than 25 bpm
are identified by the preprocessing algorithm as noise or artifacts.
Beats labeled by the acquisition machine as lost (see Section 3)
are also identified as artifacts (Signorini et al., 2003; Gonçalves
et al., 2006). Every beat labeled as an artifact is then removed
and replaced using linear interpolation. Segments withmore than
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five consecutive beats identified as artifacts or with more than
5% of artifacts are discarded for the analysis. FHR recordings are
exported from commercial cardiotocographs as a digital signal
sampled at 4 Hz, so FHR signals are subsequently downsampled
from 4 to 2 Hz (following Gonçalves et al., 2006), keeping only
the odd samples.

Let s[n], for n = 1, . . . ,N, be the set of values of FHR signal,
also denoted by s in vector form. The following time domain
indices (Magenes et al., 2000) can be computed:

FHR = s̄ = 1

N

N
∑

n= 1

s[n] (1)

stdFHR =

√

√

√

√

1

N − 1

N
∑

n= 1

(s[n]− s̄)2 (2)

LTI = IQR
({

√

s2[n]+ s2[n+ 1], 1 ≤ n ≤ N − 1
})

(3)

STV = 1

24M

24M
∑

n= 1

|sm[n+ 1]− sm[n]| (4)

where IQR denotes the inter-quartile range,M the number of the
minutes in the segment under analysis, sm[n] the value of the
signal s[n] taken each 2.5 s (i.e., once every five samples) and std
means standard deviation.

Frequency domain indices are computed by using
nonparametric spectral estimation based on the Welch
periodogram, with a Hanning window, on 256 samples
segments, and with 50% overlapping (Bernardes et al., 2008).
The mean and linear trend are subtracted before calculating
the periodogram. Frequency domain indices to assess FHR
variability are computing as the total power in different
frequency bands, which are (Signorini et al., 2003): Very Low
Frequency, PVLF , in the band (0, 0.03) Hz; Low Frequency, PLF ,
in the (0.03, 0.15) Hz; Movement Frequency, PMF , in the band
(0.15, 0.5) Hz; and High Frequency, PHF , in the band (0.5, 1) Hz.
LF and HF bands defined here are associated with the fetal
autonomic nervous system (ANS) regulation (Task Force, 1996).
MF band, which corresponds to the HF band of classical HRV
analysis, is related to fetal movements and maternal breathing of
FHR signals (Gonçalves et al., 2006). Total power (PT) and the
ratio PLF/(PMF + PHF), which quantify the balance of the ANS,
are also computed as frequency domain indices.

2.1.4. Features from Statistical Moments
Moments are simple descriptors of the shape of the distribution
of a random set of values (Fisher and Cornish, 1937). They have
been useful in many signal processing problems (Soliman and
Hsue, 1992; Shi, 2005), and they are robust to signal loss, as they
can be computed on the known signal samples, while ignoring

the unknown time periods. The kth-order raw moment and the
corresponding central moments are defined as:

Mk(s) = 1

N

N
∑

n= 1

s[n]k (5)

µk(s) = 1

N

N
∑

n=1

(s[n]−M1(s))
k. (6)

2.1.5. Feature Selection
Feature selection techniques search for the variable subset that
provides the maximum information, while trying to avoid
redundancy amongst them (Guyon and Elisseeff, 2003). This
provides three benefits for the resulting models: improved
generalization, better interpretability and shorter training and
execution times. Among these techniques, wrapper methods
build a model for each candidate set and select the model with
the best performance in a validation set. Forward selection (FS)
iteratively adds the non-included feature providing with the best
accuracy in the training set to the included feature subset. The
number of features is automatically selected in the training set as
the minimum number that reaches maximum accuracy. In order
to control overfitting, each candidate feature set can be evaluated
by 2-fold cross-validation of the training sample.

2.2. NCD and Similarity in Time Signals
A simple approach to classification is to assign to the test object
the label of the closest or most similar object in a training dataset.
The accuracy of this approach depends on the goodness of the
distance measure for representing differences and similarities
between the objects to be classified. The best measure would
match all the common patterns between the objects, at the same
time that it detects their differences. With a given object (in
our case, signal s), similarity learning (Pekalska and Duin, 2002)
uses as features the similarities ({d(s, ti)} for i = 1, . . . ,NT) to
a labeled training set {yi} of NT objects. A machine learning
classifier can then be readily trained by using these features.
Indeed, the classifier is trained assuming that each instace bxi
is the i-th row of the square NT × NT matrix of the similarities
d(ti, tj).

We choose a general similarity measure that is based on
the common information among the signals and which can
handle both linear and nonlinear relations between them. The
Kolmogorov Complexity K(s) of a signal s is the length of the
shortest binary program that produces s on an universal Turing
machine (Kolmogorov, 1965; Li et al., 2004). Note that K(s) can
be seen as the signal information (or the information required
to generate it); K(s|t) is the length of the shortest program to
produce s if t is given as an input; and K(s, t) is the length of
the shortest program that generates s, t, i.e., the concatenation
of s and t, and allows them to be separated. Up to an additive
constant independent of s, and t, it can be proven (Li et al., 2004)
that

K(t, s) = K(t)+ K(s|t) = K(s)+ K(t|s) . (7)
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The information distance between two signals is a similarity
measure (Bennett et al., 1998) that can be defined as

ID(t, s) = max{K(s|t),K(t|s)} , (8)

There are problems for practical use, namely, the Kolmogorov
Complexity is not computable and we need a distance suitable
for comparing signals of different sizes.

NCD is a similarity measure for signals (Li et al., 2004;
Cilibrasi and Vitanyi, 2005). For two given signals si, sj, the
NCD(si, sj) is defined as

NCD(si, sj) =
C(si, sj)−min{C(si),C(sj)}

max{C(si),C(sj)}
, (9)

where C(·) is the compression length in bits given by the selected
compressor and C(si) and C(si, sj) the number of bits needed to
compress si and the concatenation of si and sj, respectively. Note
that C provides a computable approximation to the Kolmogorov
Complexity. Three compressor types, namely zip, bzip2, and
lzma, were compared in this work. This normalized measure is
easy to interpret, in the sense that the lower its value, the more
similar the signals. In other words, they share more information
and fewer bits are required to compress both signals together. The
normalization term in the denominator of Equation (9) enables
the comparison of signals of different sizes. Also note that NCD
values range from zero to slightly above one.

To the extent that NCD is only an approximation to the
Kolmogorov Complexity, its performance can be improved by
simplifying the compressor work. In other words, we can apply
NCD to series of features, instead of applying it to the raw signals,
with the aim of extracting the patterns that NCD is not able to
resolve in the raw signals.

Similarity learning using NCD can handle more than one
sequence type. For example, if we want to build a classifier
with J series of time and frequency indices we have several
alternatives:

• Concatenate all the series and proceed as in the case of only
one series.

• Use one classifier per serie and vote for a predicted label.
• Combine each series similarity matrices into one, for example

just by adding them, which can be interpreted as a soft version
of the previous approach.

• Concatenate the similarity Matrices for each index to form an
NT × J · NT instance matrix.

2.3. Classification Engine
2.3.1. Classification Algorithms
On the one hand, the detailed physical model that generates the
FHR records is complex and mostly unknown. On the other
hand, we have some sets of available observations,however not
enough data to estimate the conditional densities of the classes
for diagnosis. We therefore propose using a non-parametric
machine learning approach for classification and accordingly we
take two approaches, namely, kNearest Neighbors (k-NN), which
is easy to combine with similarity measures, and Support Vector

Machines (SVM), a state-of-the-art and advantaged classifier in a
number of applications.

In a binary classification problem, we are given a collection
of labeled samples {xi, yi} i = 1, . . . ,NT , where xi ∈ R

D

and yi ∈ {−1, 1}. The k-NN algorithm (Duda et al., 2000)
selects the label for one test sample as the mode of the labels
of the k training instances that are nearest to it (its k nearest
neighbors). In the case of a tie, the decision can be taken at
random or with the label of the closest neighbor. The distance
between samples is defined by a similarity measure, which is
usually the Euclidean distance, however in our case, it will be
given by NCD instead. The asymptotic error of this simple
classifier is bounded by twice the Bayes error, which is the
minimum attainable error (Cover and Hart, 1967). In general,
NCD similarity is not symmetric, and NCD(si, sj) 6= NCD(sj, si).
Therefore, to obtain the similarity between si and sj, we studied
two types of similarity: type min using the minimum similarity,
min{NCD(si, sj), NCD(sj, si)}, and type mean using the mean,
0.5(NCD(si, sj)+NCD(sj, si)).

SVM are powerful learningmachines that can be easily trained
and have been successfully used inmany applications (Cortes and
Vapnik, 1995; Schölkopf and Smola, 2001). The trained classifier
for binary classification is the solution of the following convex
optimization problem:

min
w,b,ξi

1

2
||w||2 + C

∑

i

ξi (10)

subject to:

yi(w
⊤φ(xi)+ b) ≥ 1− ξi (11)

ξi ≥ 0 (12)

where w is the classifier solution and can be written as a
combination of the training samples, i.e., w =

∑

i βiφ(xi). The
objective function has two terms, the former a regularization
term that penalizes rough solutions and the latter a term that
penalizes classification errors, both being balanced by parameter
C. Positive slack variable ξi accounts for the margin error of
sample i, which enables solutions in non-separable problems; (·)⊤
is the transpose operator; φ() is a function projecting xi into a
possibly higher dimensional space where the linear classification
is completed, which allows for non-linear classification functions
in the original space R

D; and b is a bias term. The prediction for a
new sample x∗ is y∗ = sign(w⊤φ(x∗)+ b) = sign(

∑

i k(x
∗, xi)+

b), where k(xi, xj) is a kernel that computes φ(xi)⊤φ(xj) without
explicitly evaluating φ(·). Here, we consider two kernel functions,
namely, the linear kernel k(xi, xj) = x⊤i xj, and the radial basis

function kernel k(xi, xj) = exp
(

− ||xi − xj||2
2σ 2

)

, where σ defines

the kernel width. Finally, Equation (11) shows that SVMs enforce
a margin for classification, i.e., the label times the output of the
classifier should be greater that 1, allowing for margin errors by
incurring a penalty. Not all the margin errors are classification
errors, but only those with ξi ≥ 1.
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2.3.2. Performance Evaluation
In some applications where the labeled instances are scarce,
a common approach is to estimate the performance of the
classification in unseen test cases by cross-validation (Duda et al.,
2000). In this paper, the accuracy of the different alternatives has
been estimated by using leave-one-out (LOO) cross-validation.
We choose the almost unbiased LOO accuracy estimation, even
at the cost of its high variance, because we have a low number of
examples in our dataset.

The complete procedure can be summarized as follows:

for all i do
XT = X\xi
YT = Y\yi
Feature selection: FS = g(XT ,YT)
Classifier training: f = h(XT ,YT , FS)
Prediction: ŷi = f (xi, FS)

end for

Performance evaluation: p = L(Y, Ŷ)

where X = {xi}, Y = {yi}, Ŷ = {ŷi}, i = 1, . . . ,NT ; “\” means set
subtraction (i.e.,X\xi = {x1, x2, . . . , xi−1, xi+1, . . . , xNT }), g, h are
feature selection and classifier training algorithms, respectively;
FS are the selected features; and L is the 0–1 loss function.

Figure 1 shows a complete final schema of the proposed
system. A new FHR recording to be evaluated is first segmented;
then characteristic features are extracted, the raw FHR recording
is a possible option indicated as an arrow from raw recordings
to NCD stage directly; and finally, NDC is used to the recording
to be evaluated compare with a gold standard database of FHR.
Note that FHR from the database should pass trough the same
preprocessing stages. Dissimilarity matrix, which is the output
of the NCD stage, represents the input features for the classifier
engine, which, in turn, prodives with an estimation of the hypoxia
risk.

2.4. Experimental Setup
In order to select the best combination of the elements in the
system proposed in Figure 1, and to evaluate the performance of
the final system, we propose the following experimental setup:

• We started by evaluating the classification performance in
FHR raw signals, without any preprocessing, using only the
NCD similarity criterion and a nearest neighbor classifier. This
experiment evaluated the performance of NCD and set the
baseline accuracy that could be attained (Section 4.1).

• We then considered as features for hypoxia classification
the aforementioned time and frequency indices that are
commonly used in HRV analysis, aiming to evaluate whether
they showed any improvement over NCD raw analysis
(Section 4.2.1).

• Subsequently, we analyzed the performance obtained by using
as features the general purpose statistical moments applied to
the raw signals, without using NCD (Section 4.2.2).

• We also performed feature selection on each group of variables
(time and frequency HRV indices and statistical moments),
in order to identify the best features and to see whether

feature selection could improve classification performance
(Section 4.2.3).

• The experiments continued by evaluating whether the NCD
could empower the HRV parameters and statistical moments
by obtaining at similarity of feature sequences (Sections 4.3.1
and 4.3.2). In these experiments, features were computed on
sliding windows, taking into account the fact that physiological
time series are not stationary.

The experiments were carried out in four time intervals, namely:
the complete segment from 4 to 1 h before delivery, and for each
single hour (4 ↔ 1,4 ↔ 3,3 ↔ 2, and 2 ↔ 1).

3. DATA DESCRIPTION

FHR records1 were acquired with a Philips cardiotocograph for
a total of 32 recordings, 15 controls and 17 cases. A case was
declared when: (1) the PH of the umbilical artery was ≤ 7.05;
or (2) the APGAR score was ≤ 7 at 5 min after delivery and a
reanimation type III or greater was required. The institutional
Medical Ethics Review Board, ComitéÉtico de InvestigaciÃşn
Clínica (CEIC) of the Hospital Universitario FundaciÃşn de
AlcorcÃşn, approved the use of this data. Patient records/data
were anonymized and de-identified prior to analysis.

Records, see Figure 2 for an example, show considerable
variability both at start/ending times and pauses as labor duration
vary. In addition, the cardiotocograph may be disconnected at
any time for a number of reasons. Also, the signal is sometimes
lost as the fetus and mother move. The cardiotocograph provides
three signal qualities (lost, medium and high), indicating the
quality of every sample in the recording. We decided to consider
the window of 4 to 1 h before birth for our analysis, even though
not all patients have a signal throughout such window, e.g., nine
patients began being monitored after 4 h to delivery (8 cases)
or the cardiotocograph was removed before 1 h to delivery (one
case).When a patient has no signal in the entire interval analyzed,
she was excluded.

4. RESULTS

4.1. Raw Data Analysis Using NCD
In this experiment, we analyzed three types of FHR signals:
(a) including only high quality signals (H); (b) also including
medium quality signals (HM); (c) also including medium quality
and lost (represented with a zero) signals (HML).

By using NCD, a dissimilarity matrix was created with all
pairwise dissimilarities between signals, using both controls and
cases. We used the software provided by NCD authors (Cilibrasi
et al., 2008) to compute the NCD. The accuracy was estimated by
using LOO cross-validation with a nearest neighbor classifier.

Best results are summarized in Table 1, where we see that a
high quality signal and the interval from 4 to 3 h before delivery
are the best for prediction accuracy (0.73). In addition, for the
same time interval, we observed that the prediction using HML
signal is better than using only high and medium qualities, which
shows that taking into account lost signals that may occur when

1Data is available from the website: http://sites.google.com/site/hufahypoxia.
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FIGURE 1 | Final system proposed in the paper. A target FHR time series is, first, segmented; then features are extracted; and finally compared with a database

of FHR using NCD. Feature selection could be performed after NCD stage. Optionally, raw FHR signals can be the input of the NCD stage without preprocessing

(dotted lines). The output of the NCD are feature inputs for the classifier engine, which in turn produces a hypoxia risk.

FIGURE 2 | FHR for (A) a hypoxic and (B) a control patient. Signal qualities are 9.9% lost, 19.2% medium and 70.9% high for (A); and 1.8% lost, 9.8% medium and

88.3% high for (B). Signal qualities high, medium and lost are respectively represented by the markers: “·,” “x,” and “o.”

the fetus moves, might increase prediction accuracy. The best
prediction accuracy for the complete interval (4 to 1 h prior
to delivery) was obtained again considering only a high quality
signal, but it did not rise above 0.66.

4.2. HRV and Statistical Moments Indices
Using Machine Learnig
In this subsection, we evaluated the performance of a system
using HRV and statistical moments indices as inputs of
a classifier, without using NCD. This experiment aimed to
evaluate whether the proposed approach using NCD showed any
improvement over a classical approach.

4.2.1. Time and Frequency HRV Indices
We computed the described HRV indices for the considered
time intervals. We used all signal qualities, however in this
experiment, interpolation was performed on the beats classified
as artifacts, as described in Section 2.1. We then standardized
(zero-mean, unit-variance) each descriptor and combined all of
them into a vector. We benchmarked the following classifiers:

nearest neighbor (NN), k nearest neighbors (k-NN) and SVM
with linear (SVC) and radial basis function (RBF-SVC) kernels.

Table 2 shows the results of LOO cross-validation. The best
performance (0.74 accuracy) using time domainHRV indices was
obtained in the 3 ↔ 2 interval by a RBF-SVC classifier. The best
results (0.74 accuracy) using frequency domainHRV indices were
obtained in the 3↔ 2 interval by k-NN. The combination of the
Time and Frequency indices (table not shown) gave a maximum
accuracy of 0.70 in the 3 ↔ 2 interval with all classifiers but 1-
NN. The best results obtained by these methods provided almost
no gain over raw analysis using NCD.

4.2.2. Statistical Moments
In order to compute the moments on the records including
high and medium signal qualities, we firstly scaled the FHR
signal dividing it by the maximum value of each moment for all
patients. We then calculated raw and central moments of orders
n = {1, 2, . . . , 10} for each patient. Finally, the transformation
x → k

√
x were applied to the moments, where k is the order of

the moment, and standardized (zero-mean and unit-variance).
The results of classifying the records with these moments are also
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TABLE 1 | NCD and nearest neighbor classifier best results for raw signals.

Quality T/C Interval Acc. Sen. Spe. Compressor Sym.

H 13/13 4 ↔ 3 0.73 0.69 0.77 zip Min

H 13/14 3 ↔ 2 0.63 0.57 0.69 bzip2 Min

H 15/16 2 ↔ 1 0.58 0.75 0.40 lzma Mean

H 15/17 4 ↔ 1 0.66 0.82 0.47 zip Min

HM 13/13 4 ↔ 3 0.58 0.62 0.54 zip Min

HM 13/14 3 ↔ 2 0.56 0.79 0.31 bzip2 Min

HM 15/16 2 ↔ 1 0.55 1.0 0.07 lzma Mean

HM 15/17 4 ↔ 1 0.56 0.59 0.53 lzma Min

HML 13/13 4 ↔ 3 0.66 0.77 0.54 zip Min

HML 13/14 3 ↔ 2 0.56 0.14 1.0 lzma Min

HML 15/17 2 ↔ 1 0.53 0.76 0.27 lzma Min

HML 15/17 4 ↔ 1 0.59 0.59 0.60 zip Min

“Quality” shows the types of signal included in the analysis (High, Medium, Low). “Interval”
expresses the signal interval in hours to delivery. “T/C” shows the number of conTrols
and Cases, respectively. “Acc.,” “Sen.,” and “Spe.” stand for accuracy, sensitivity and
specificity, respectively; and “Sym.” shows the method used to make the dissimilarity
matrix symmetric.
The bold value is best performance (accuracy) result.

TABLE 2 | HRV time and frequency indices and statistical moments

accuracy for the considered time intervals.

Interval Features 1-NN k-NN SVC RBF-SVC

4 ↔ 3 Time 0.69 0.69 0.35 0.5

3 ↔ 2 0.70 0.67 0.74 0.74

2 ↔ 1 0.59 0.5 0.47 0.47

4 ↔ 1 0.47 0.5 0.5 0.37

4 ↔ 3 Frequency 0.54 0.65 0.62 0.46

3 ↔ 2 0.56 0.74 0.67 0.70

2 ↔ 1 0.58 0.58 0.42 0.23

4 ↔ 1 0.5 0.5 0.53 0.44

4 ↔3 Moments 0.69 0.62 0.46 0.58

3 ↔2 0.22 0.63 0.59 0.52

2 ↔1 0.23 0.065 0.48 0.29

4 ↔1 0.5 0.44 0.69 0.59

SVC and RBF-SVC stand for linear and radial basis kernel Support Vector Classifier,
respectively.
The bold values are best performance (accuracy) result.

shown in Table 2, where a 0.69 accuracy was obtained in the 4 to
3 h and 4 to 1 h before delivery intervals. Again, no real gain was
obtained by this set of features over the raw analysis using NCD.

4.2.3. Feature Selection
Finally, we proposed a system in which all the available indices
(HRV and moments) are used as feature inputs of the classifier
engine. Due to sample size, and to avoid overfitting, we proposed
to use feature selection, which sometimes simplifies, and even
improves, the learning task. In this section, we applied forward
selection (FS) to HRV (time and frequency) indices and to
statistical moments. The results of applying FS to the time HRV
indices were in general no better than those obtained without

TABLE 3 | Accuracy results using feature selection with HRV time and

frequency indices and statistical moments for the considered time

intervals, without using NCD.

Interval Features 1-NN k-NN SVC RBF-SVC

4 ↔ 3 Time 0.54 0.54 0.27 0.35

3 ↔ 2 0.48 0.67 0.63 0.59

2 ↔ 1 0.72 0.72 0.44 0.69

4 ↔ 1 0.34 0.34 0.56 0.38

4 ↔ 3 Frequency 0.62 0.62 0.077 0.65

3 ↔ 2 0.52 0.59 0.74 0.67

2 ↔ 1 0.65 0.48 0.19 0.55

4 ↔ 1 0.75 0.75 0.34 0.41

4 ↔ 3 Moments 0.73 0.73 0.19 0.69

3 ↔ 2 0.26 0.3 0.41 0.3

2 ↔ 1 0.42 0.39 0.42 0.42

4 ↔ 1 0.41 0.34 0.44 0.41

The bold values are best performance (accuracy) result.

feature selection (see Table 3). The maximum overall accuracy
was to 0.72, which was found in the interval of 2 to 1 h prior
to delivery. The FS algorithm consistently selected stdFHR as the
unique feature for classification in this case.

The results for FS on the frequency HRV indices were slightly
better than without feature selection. FS slightly improved the
results in all time intervals (see Table 3). The best result (0.75
accuracy) was attained for the interval from 4 to 1 h to delivery.
The FS algorithm consistently selected PLF/(PMF + PHF) as the
single classification feature in this case.

The results of FS on the statistical moments improved the
maximum accuracy obtained in Table 2with a moderate increase
(from 0.69 to 0.73). Most selected features, for the interval of 4 to
3 h to delivery, were µ4,µ8, and µ9.

4.3. HRV and Statistical Moments Indices
Using NCD and a Classifier
Previous results (see Sections 4.1 and 4.2) showed that using
NCD on raw FHR recordings yielded to similar accuracy results
as using HRV and moments plus a classifier. In this section,
we assessed whether computing the NCD on sequences of HRV
and moments indices, plus a classifier, could improve the final
performace. This scheme corresponda with the complete system
that we proposed as a contribution of this work.

4.3.1. Time and Frequency Indices in Sliding

Windows
Therefore, we considered the calculation of new signals from
obtaining FHR indices in each time interval and evaluated the
performance of obtaining the similarities of these signals for all
patients with NCD and by classifying the result with nearest-
neighbor. This classifier was used due to its simplicity and good
results showed in the previous Section.

For each time interval, we used the NCD to analyze the time
and frequency indices in 5-min sliding windows, where a window
was only considered if its data did not have too many artifacts
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TABLE 4 | NCD and nearest neighbor classifier best results for HRV time

and frequency indices and statistical moments, evaluated individually, in

5-min sliding-windows signals.

Interval Features Acc. Sen. Spe. Feature Comp. Sym.

4 ↔ 3 Time 0.62 0.69 0.54 sdFHR bzip2 Min

3 ↔ 2 0.70 0.86 0.54 LTI lzma Min

2 ↔ 1 0.66 0.65 0.67 FHR bzip2 Min

4 ↔ 1 0.69 0.76 0.6 FHR bzip2 Min

4 ↔ 3 Frequency 0.77 0.77 0.77
PLF

PMF+PHF bzip2 Min

3 ↔ 2 0.59 0.64 0.54 PVLF bzip2 Min

2 ↔ 1 0.69 0.65 0.73 PHF bzip2 Min

4 ↔ 1 0.69 0.88 0.47 PLF lzma Mean

4 ↔ 3 Moments 0.88 0.92 0.85 µ3 lzma Min

3 ↔ 2 0.70 0.64 0.77 µ2 bzip2 Min

2 ↔ 1 0.77 0.81 0.73 M4 zip Mean

4 ↔ 1 0.81 0.82 0.80 M4 lzma Mean

The bold values are best performance (accuracy) result.

(see Section 2.1). For each parameter, a sequence was constructed
for each patient by concatenating the parameter value for each
sliding window of the FHR signal. An NCD matrix for each
parameter was later constructed by obtaining the similarities
between all pairs of patient sequences and the accuracy of a
nearest neighbor classifier was estimated by leave-one-out cross-
validation.

Table 4 shows the best individual accuracies of the HRV time
indices in each analysis interval. The best result (0.70 accuracy,
0.86 sensitivity, and 0.54 specificity) was again in the 3 ↔ 2
interval by using the LTI index. We combined the four time
indices by voting, and the best result gave an accuracy of 0.66 with
sensitivity of 0.76 and specificity of 0.53 in the 4↔ 1 interval.

Table 4 also shows the best individual accuracies of the
HRV frequency indices. The best result (0.77 accuracy, 0.77
specificity, and 0.77 specificity) was in the 4 ↔ 3 interval by
using PLF/(PMF + PHF). Different indices seemed to be the most
informative in each interval.

4.3.2. Moments in Sliding Windows
In this experiment, we used high and medium signal qualities
and 5 min sliding windows. For each window, we computed
raw and central moments of orders n ∈ {1, 2, . . . , 10}. Then,
for each moment of order n, the results of all windows were
concatenated to obtain the new signal si,n that provided a
description of the patient i. Later, this signal was transformed
as s̄i,n = n

√
si,n/An where An is the maximum value of

the signal {s̄i,n}NT
i= 1. The NCD pairwise distances were then

obtained for pairs (s̄i,n, s̄j,n) and accuracies were estimated
using leave-one-out cross-validation with a nearest neighbor
classifier.

The results are summarized in Table 4. The best predictive
interval was the 4 to 3 h to delivery. The best accuracy for
individual moments gave an accuracy of 0.88, a sensitivity of
0.92 and a specificity of 0.85. In addition, we noted the good

performance of the 4 to 1 h to delivery interval, which can be
applied to any record of our database, with 0.81 accuracy, 0.82
sensitivity and 0.80 specificity.

5. DISCUSSION AND CONCLUSIONS

Several indices have been proposed to analyze FHR. The most
common indices are based on time domain and frequency
domain methods (Signorini et al., 2003; van Laar et al., 2009).
Time domain methods aim to assess the long and short term
variability of the FHR, whereas frequency domain methods aim
to characterize the oscillatory contributions on the FHR. Other
approaches applied nonlinear techniques to characterize FHR
complexity (Richman andMoorman, 2000; Baumert et al., 2004).
In many cases, these indices are reduced to a single number
obtained in the entire time series or to a collection of numbers
obtained in 5-min window slides, which are again reduced to a
few numbers such as mean or standard deviation. However, this
approach has limitations in clinical practice where recordings
have different time duration, interruptions and loose quality
conditions.

We have proposed NCD as a similarity measure for FHR
registers because it is able to exploit both linear and non-linear
relations between records and is robust against the limitations
of real recordings. We computed NCD on raw FHR records, as
well as on feature sequences given by time and frequency indices
and signal moments estimated on FHR signals. In summary,
we have proposed a robust method for automated detection
of perinatal hypoxia from FHR time series registered during
labor.We obtained better performance from the moments than
from the raw records, which shows that the compressor is not
able to extract all the relations in the data and that preprocessing
may help. The database we used has 32 subjects, so we use best
practices to evaluate our approach using Cross-Validation for not
overestimating our results.

The main advantages of using NCD for comparing FHR
signals are simplicity and generality. Other commonly used
information-theoretical measures, such as Approximate
entropy (Pincus, 1991) or Sample entropy (Richman and
Moorman, 2000), have free parameters that have to be tuned,
namely, the embedding dimension and tolerance, which is
a continuous parameter; but there is no parameter to tune
in our approach. In addition, there is no problem with the
common signal loss, which represents a problem for frequency-
related methods, as they need signal interpolation, which is
not always possible. The similarity can always be computed
independently on how the signal loss is addressed (interpolation,
concatenation, . . . ).

It is remarkable that using sliding windows and NCD, both
frequency indices and moments obtain the best accuracies
in the 4 ↔ 3 h interval, whereas time indices obtain the
best results in the 3 ↔ 2 h interval. Our comparisons show
that the commonly used Time and Frequency indices can be
complemented by the moments, which are always applicable
and do not suffer from signal loss. In addition, fetus movement
may provide valuable information, as we noted when analyzing
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raw signals (Table 1) and when we observed the performance of
the PLF/(PMF + PHF) index, which depends on fetus movement
(Table 4). Finally, we also performed forward selection with
the sequences of indices by adding similarity matrices, and
we obtained similar results, 0.88 accuracy, in the 4 ↔ 1 h
interval, which compares entire records during labor. Results
showed that lzma combined with statistical moment µ3 and 1-
NN as a classifier engine was the best combinations, however,
bzip2 showed a good performance in almost every combination.
A detailed discussion about the selection of the compressor
is done in Cebrián et al. (2005). Results of Table 4 showed
that physiological conditions that lead to perinatal hypoxia are
better detected at the begining of the labor. Ratio of power
in different bands, as quantified by PLF/(PMF + PHF), assesses
the SNA balance, therefore an alteration of this balance seemed
and indicator of possible perinatal hypoxia. Moreover, since µ3

assess the asymmetry of the FHR distribution, it seemed that an
alteration of this asymmetry could be and indicator for perinatal
hypoxia. Symmetric distributions would identify fetuses with
same number of times of HR samples higher and lower than the
mean.

Practical implementation of this approach as a plugin to
available CTG systems is straightforward. We recommend
performing a careful selection and labeling of FHR records.
The number of cases in the knowledge database and processing
capabilities must then be balanced. For instance, the analysis of a
new FHR record everyminute against a large knowledge database
(1,000 patients) is easily done on a normal PC using gzip as a
compressor.

Decision making during labor is a difficult task for
gynecologists. It should always be intended to be as less invasive
as possible however, of course, ensuring fetal well-being and
acting as soon as possible in the case of suspicion of fetal hypoxia.
Our main contribution shows how the NCD analysis of the
readily available FHR traces may help gynecologists to make the
correct decisions. We reach 88% accuracy, which is a remarkable
result if we take into account that we are actually identifying

stressed fetuses 3 h before delivery that were not detected by the
gynecologist until a later stage. This general methodology is also
applicable to other time series classification problems and is both
simple to understand and simple to apply.

The results obtained in this study should be confirmed on a
large study, since one possible limitation is the number of subject
in the database. So, further research, with more patients, should
be performed to open up the application of this type of FHR
analysis of the fetus condition to the industry.

The main conclusion of the work is that similarity learning,
using NCD, allowed to compare sequences with different length
and different quality, and it also was able to exploit the
nonlinear relationship among sequences (raw FHR signals or
indices). The proposed final system outperforms the classical
approach using FHR indices plus machine learning, and
it can be used as a framework to build robust hypoxia
detectors.
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