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Palatogenesis requires a precise spatiotemporal regulation of gene expression, which

is controlled by an intricate network of transcription factors and their corresponding

DNA motifs. Even minor perturbations of this network may cause cleft palate, the most

common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of

small regulatory non-coding RNAs, have elicited strong interest as key regulators of

embryological development, and as etiological factors in disease. MiRNAs function as

post-transcriptional repressors of gene expression and are therefore able to fine-tune

gene regulatory networks. Several miRNAs are already identified to be involved in

congenital diseases. Recent evidence from research in zebrafish and mice indicates

that miRNAs are key factors in both normal palatogenesis and cleft palate formation.

Here, we provide an overview of recently identified molecular mechanisms underlying

palatogenesis involving specific miRNAs, and discuss how dysregulation of these

miRNAs may result in cleft palate.
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INTRODUCTION

Cleft palate represents the most common craniofacial birth defect, occurring on its own, in
combination with a cleft lip or as part of a genetic syndrome (Mossey and Modell, 2012). It
represents a significant healthcare burden requiring multidisciplinary treatment starting shortly
after birth up to adulthood. Although many syndromic and non-syndromic familial forms of
cleft palate have been described, approximately 70% of all cases are isolated non-syndromic
entities without clear Mendelian inheritance patterns (Dixon et al., 2011). These non-syndromic
forms have a complex etiology caused by both genomic and environmental factors and their
interactions. Through candidate gene and genome-wide association studies (GWASs), a number
of protein-coding susceptibility genes for cleft palate have been identified (Mangold et al., 2011).
Unfortunately, the protein-coding genes identified thus far only account for a small fraction of the
total genetic risk associated with cleft palate (Khandelwal et al., 2013). Moreover, when analyzing
GWAS data, more than 80% of disease-associated genetic loci are found outside protein-coding
genes (Manolio et al., 2009), indicating an important role for the non-coding genome in the etiology
of cleft palate.
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The formation of the secondary palate requires a tightly
regulated sequence of events spanning weeks 6 to 12 of human
gestation and E11 to E16 in mice (Figure 1). Perturbations
in any of these events can lead to an impaired fusion of the
bilateral palatal shelves (PS) and hence to cleft palate (Bush
and Jiang, 2012). The first step consists of cranial neural crest
cells migrating to the maxillary process of the first pharyngeal
arch where reciprocal signaling with the oral ectoderm drives
outgrowth of the PS (Bush and Jiang, 2012). Outgrowth is
followed by elevation and fusion of both shelves with eventual
disintegration of the midline epithelial seam (Meng et al., 2009).
Specific signaling pathways and gene expression patterns control
each step of palatal fusion and are extensively reviewed elsewhere
(Meng et al., 2009; Bush and Jiang, 2012). As these events are
tightly regulated, it is understandable that many transcriptional
regulators have been identified as key etiological factors in cleft
palate (Beaty et al., 2016). Recent studies by the ENCODE
consortium indicate that certain non-coding regions of the
genome, chromosomal arrangements and nuclear domains are
also key regulators of gene expression (Consortium et al., 2012).
As such, alterations in the non-coding genome—including non-
coding RNAs, and particularly miRNAs (Pauli et al., 2011)—
are able to change gene expression during embryogenesis. In
the present review, we provide an overview of the emerging
concepts on the roles of miRNAs during palatogenesis and cleft
palate.

MiRNAs as Regulators of Embryonic
Development and Disease
MiRNAs are small, 19–23 nucleotide non-coding RNAs that
function as post-transcriptional repressors of gene expression,
either through messenger RNA (mRNA) degradation or
translational repression (Bartel, 2009). The biogenesis and
action of miRNAs is depicted in Figure 2. Translational
repression is mediated by pairing of the 5′ region (seed
region) of the miRNA to the 3′-untranslated region (UTR) of
the mRNA within RNA-induced silencing complexes (RISCs).
Important characteristics of miRNA-mediated repression are
redundancy (one mRNA is targeted by many miRNAs) and
multiplicity (one miRNA targets many mRNAs; Herschkowitz
and Fu, 2011). This facilitates concurrent regulation of mRNAs
that function in similar cellular processes and suggests that
miRNAs have evolved into functionally related groups. The
first miRNA was discovered in 1993, i.e., Lin-4 in C. elegans,
a miRNA that regulates larval patterning during development
(Lee et al., 1993). Regulatory roles for RNAs had been
postulated previously but were regarded as exceptions to the
rule that transcription factors were the main regulators of
gene expression (Britten and Davidson, 1969). At present,
miRNAs have been implicated in a wide range of developmental
processes including epithelial-mesenchymal transition (EMT),
cell migration, differentiation, proliferation, and apoptosis
(Mathieu and Ruohola-Baker, 2013). Hence, miRNAs are key
regulators of embryogenesis (Pauli et al., 2011). As a reflection
of these wide-ranging regulatory roles, the online miRNA
database (miRBase 21; http://www.mirbase.org) contains more

than 24,000 gene loci encoding more than 30,000 miRNAs
in 193 species (Kozomara and Griffiths-Jones, 2014). Of
these, ∼2,000 miRNAs have been identified in the human
genome.

Recent evidence suggests an involvement of a set of specific
miRNAs in the pathogenesis of certain congenital disorders with
a chromosomal abnormality or monogenic cause (Kawahara,
2014).This occurs through germline alterations affecting either
miRNA target recognition or expression level (Figure 3). The
number of congenital disorders caused by a single defective
miRNA are likely limited due to their redundancy (Meola
et al., 2009). In C. elegans, only 10% of individual miRNA
knockouts leads to a clear developmental defect (Miska et al.,
2007). An alteration in the function of one miRNA may be
(partially) compensated by other miRNAs, and hence not lead
to a disease phenotype. However, altered expression profiles
of several miRNAs have been identified in many complex,
multifactorial diseases, for example cardiovascular diseases (van
Rooij and Olson, 2007). As shown in Figure 3, changes in
many similarly expressed miRNAs acting synergistically on
disease-associated mRNAs may therefore contribute to common
congenital diseases within a multifactorial model (Chavali et al.,
2013).

Global Role of miRNAs in Palatogenesis
An initial approach to determine the role of miRNAs in
vertebrate development has been to genetically delete Dicer
and Dgcr8 in mice. As these two proteins are required
for the maturation of most miRNAs, their deletion will
deplete most functional miRNAs (Graves and Zeng, 2012).
Homozygous zygotic deletion of either gene in mice leads
to severe growth retardation and embryonic lethality shortly
after implantation (Bernstein et al., 2003; Wang et al., 2007).
Additional studies showed that miRNAs have fundamentally
different developmental roles depending on the tissue (Spruce
et al., 2010). Conditional knockout (cKO) studies in mice of
miRNAs in the cranial neural crest (cNC)-derived mesenchyme
or oral ectoderm, have shown that miRNAs are essential for
palatogenesis in mice (Figure 4).

Conditional deletion of Dicer controlled by Pax2-Cre or
Wnt1-Cre leads to perinatal death with severe craniofacial
malformations in mice (Sheehy et al., 2010; Zehir et al., 2010;
Nie et al., 2011; Barritt et al., 2012). Pax2 and Wnt1 expression
is specific for cNC-derived mesenchyme from embryonic day
(E) 7.5 and 8.5, respectively. However, Wnt1 is expressed in
all cNC-derived tissues, while Pax2 expression is limited to
the first pharyngeal arch and the anterior skull. Therefore, a
complete bilateral cleft palate develops in Wnt1-Cre; Dicerf /f

mice while primary palate development is not affected in the
Pax2-Cre; Dicerf /f mice. In both knockouts, a secondary palatal
cleft develops due to absent vertical growth of the palatal
shelves (PS). The epithelium overlying the hard palate has no
significant histological changes, while that covering the soft
palate is much thicker compared to controls (Otsuka-Tanaka
et al., 2013).

The Wnt1-Cre; Dicerf /f mice exhibited normal proliferation,
migration and differentiation of cNC-derived mesenchyme but
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FIGURE 1 | Palatogenesis. Illustration of the developing secondary palate (highlighted in green) through frontal sections of a mouse embryo with the timing of the

relevant stages below. MxP, maxillary process; MdP, mandibular process; NS, nasal septum; T, tongue; highlighted in green: palatal shelves.

a large increase in apoptotic activity with lower levels of FGF8
and DLX2. Both are regulators of cNC-derived mesenchyme
survival (Macatee et al., 2003; Dai et al., 2013). This may occur
through miR-452, which is highly expressed in cNC-derived
mesenchyme at E10.5 in the first pharyngeal arch and regulates
Fgf8 and Dlx2 expression. In the Pax2-Cre; Dicerf /f mouse,
a similarly large increase in apoptosis is present as well as
a lower density of proliferating cells (Barritt et al., 2012). A
Wnt1-Cre; Dgcr8f /f mouse exhibited a phenotype similar to
that of the Dicer deletion and showed lower levels of pERK1/2,
a kinase involved in another cell survival pathway (Chapnik
et al., 2012). This finding is particularly interesting because
of the possible link with the human syndrome caused by a
(heterozygous) microdeletion of chromosome region 22q11.2.
This microdeletion syndrome has a large phenotypic variability
with cleft palate as a common feature. Many genes lie within
the deleted region, of which only Tbx1 has been linked to cleft
palate (Goudy et al., 2010; Funato et al., 2012; Gao et al., 2015).
However, it requires a homozygous deletion of Tbx1 for mice
to develop a cleft palate, suggesting that other genes in the
deleted 22q11.2 region—such as Dgcr8—might also contribute
to the cleft palate observed with the syndrome (Herman et al.,
2012). A link between TBX1 expression and miRNAs within
the PS has already been established (Wang et al., 2013; Gao
et al., 2015). It is also interesting to note that DGCR8 is strongly
expressed in the developing PS of mice but further studies
are needed to elucidate the role in normal palatogenesis and
cleft palate formation (Shiohama et al., 2003). The data thus
indicate that miRNAs are essential to maintain cNC-derived
mesenchyme survival during the initial vertical outgrowth of
the PS.

Conditional deletion of Dicer controlled by Pitx2-Cre and
Shh-Cre—more specific for the oral ectoderm—leads to dental
and palatal defects. By using the promoter of Pitx2, a gene
that is expressed in the oral ectoderm as early as E10.5, for
the conditional deletion of Dicer, a cleft palate with incomplete
penetrance develops, in addition to several dental defects (Cao

et al., 2010). Conditional Dicer deletion using the promoter of
Shh, which is expressed as early as E10.5, leads to similar dental
defects but no perturbed palatogenesis was reported (Oommen
et al., 2012). These data indicate that, although the absence
of miRNAs within the oral ectoderm of the developing palate
can lead to cleft palate, it does not have a 100% penetrant
effect.

miRNA Expression and Function during
Palatogenesis
Expression during Palatogenesis
Using microarray analysis, the expression profile of murine
miRNAs in the developing lip and PS were analyzed from E10
to E14 (Mukhopadhyay et al., 2010; Warner et al., 2014). Most
of the identified miRNAs exhibited a linear expression pattern
over time and, for the PS, could be grouped into 6 specific
patterns. Several miRNAs were expressed differentially in the
PS, medial nasal process and maxillary process. Furthermore,
42 miRNA genes were found to be stably methylated within
the PS (Seelan et al., 2014). These data suggest a specific and
regulated spatiotemporal pattern of miRNAs may be crucial
for palatogenesis. Apart from miR-140, the miR-17-92 cluster,
and miR-200b (see below), most of the miRNAs have an as
yet unknown role in palatogenesis. By focusing on a limited
number of these unknown miRNAs, the authors demonstrated
that many mRNAs important to palatogenesis are experimentally
validated targets and that the miRNAs could be integrated in
gene networks regulating processes such as cell proliferation,
adhesion, apoptosis and EMT. In the developing lip, for instance,
both miR-203 and members of the miR-302/367 cluster target
different isoforms of p63, of which a deletion leads to cleft
lip and palate (Warner et al., 2014). An additional expression
study in mice, using small RNA sequencing, showed similar
differential expression patterns over time (Ding et al., 2016).
However, several additional miRNAs were identified including
miR-23b and miR-133b. Over expression of both these miRNAs
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FIGURE 2 | MiRNA biogenesis. Mature miRNAs are encoded in the genome and form after a series of enzymatic cleavages from two possible precursor molecules;

primary miRNAs (pri-miRNAs) or Mirtrons. Pri-miRNAs, following the canonical pathway, are transcribed as long hairpin RNAs that are recognized by the RNA-binding

DiGeorge syndrome critical region 8 protein (DGCR8). Many pri-miRNAs are often transcribed simultaneously due to clustering of several miRNA genes (Ambros et al.,

2003). DGCR8 then directs the RNase III endonuclease DROSHA to cleave the base of the hairpin to produce ∼70 nucleotide hairpins known as pre-miRNA. Mirtrons,

following the non-canonical pathway, bypass the microprocessor as they are transcribed as part of the introns of protein coding genes and are as such spliced by the

spliceosome (Berezikov et al., 2007). Splicing also produces ∼70 nucleotide hairpins known as pre-miRNA. The pre-miRNA is transported to the cytoplasm by

exportin 5 where it is cleaved by another RNase III endonuclease known as DICER to ∼20 nucleotide miRNA duplexes with protruding 2 nucleotide 3′ ends. The

resulting mature miRNA is released and a guiding strand is incorporated into the RNA-induced silencing complex (RISC).

in zebrafish leads to broadening and a cleft, respectively, of the
ethmoid plate, a component of the palatal skeleton in zebrafish.

Two avian studies identified several miRNAs in the developing
frontonasal process with similar expression to that in mice
(Darnell et al., 2006; Powder et al., 2012), suggesting an
evolutionary conserved function. This may reflect the similar
molecular mechanisms during early palatogenesis. However, in
birds, the palatal shelves never fuse completely into a secondary
palate and many of the identified miRNAs were avian-specific.
While transcription/signaling pathways are largely conserved
during evolution, miRNAs have been constantly added or lost
and it has been hypothesized that they contribute to the increased
complexity in higher vertrebrates (Heimberg et al., 2008). It is
therefore interesting that avian-specific miRNAs were identified

in the frontonasal process, but it remains to be investigated
whether they have any functional role.

MiR-140 as Regulator of Cranial Neural Crest (cNC)

Migration
During neural tube closure, cNC cells delaminate from the
neural fold and migrate in three streams toward the pharyngeal
arches. Within the first pharyngeal arch the cNC cells fill the
space adjacent to the oral ectoderm and undergo epithelial-
mesenchymal interactions resulting in the vertical growth of
the PS. Proper migration of cNC cells to the first pharyngeal
arch is thus essential for palatogenesis. Studies in zebrafish
have shown that proper miR-140 expression in migrating cNC
cells is needed during palatogenesis. MiR-140 is a highly
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FIGURE 3 | MiRNA involvement in congenital disease. Alterations affecting miRNA activity by changing target recognition or modulating their expression. *Single

nucleotide polymorphisms (SNPs) within miRNAs are likely involved in complex disease (common disease, common variant hypothesis). 1Environmental factors can

directly or indirectly regulate miRNA expression independent of any germline miRNA alteration (Zhao et al., 2008). 2A SNP/mutation within the miRNA seed sequence

can alter both its processing and target recognition, while a change outside the seed sequence only alters miRNA processing (Duan et al., 2007). 3 Large copy number

variants lead to syndromes while subtle ones (those only detectable via molecular methods) are predicted to be involved in complex diseases (Shelling and Ferguson,

2007). 4Germline alterations of regulators belonging to one of the two miRNA biogenesis/ processing pathways (i.e., the pathways involving mature miRNA generation

from pri-miRNAs or Mirtrons, see Figure 2) will only change the expression level of mature miRNAs being generated through this pathway (Finnegan and Pasquinelli,

2013). Epigenetic changes in this context refer to functional changes without a change in the DNA sequence, such as methylation and histone modification.

conserved miRNA that is located in an orthologous intron of
Wwp2, which encodes a ubiquitin ligase that is essential for
palatogenesis (Nakamura et al., 2011). In mice it has been
identified that the transcription of both miR-140 and Wwp2 is
regulated by the SOX9 transcription factor (Nakamura et al.,
2011, 2012). Interestingly, miR-140 also has its own regulatory
element for SOX9, which suggest that its expression could be
regulated independently ofWwp2. MiR-140 is broadly expressed
in migrating cNC cells and gradually becomes restricted to
skeletogenic crest cells, including those of the PS (Eberhart et al.,
2008; Li et al., 2011). Within the PS, expression increases from
E12 to E13 after which it levels off (Mukhopadhyay et al., 2010;
Li et al., 2011).

MiR-140 overexpression in zebrafish results in a cleft between
the lateral elements of the ethmoid plate, a structural analog
of the amniote palate that is found in higher vertebrates, while
underexpression results in an abnormal shape of this plate
(Eberhart et al., 2008; Dougherty et al., 2012). In this respect,
it is interesting to note that miR-140 null mice exhibit shorter
palatal bones but no overt cleft palate (Miyaki et al., 2010),
which mirrors the phenotype seen in zebrafish. The zebrafish
studies have also shown that miR-140 specifically targets pdgfra
translation, which in turn represses Pdgfa-mediated attraction
of both rostrally and caudally migrating anterior cNC cells
to the palatal ectoderm. The precise expression level of miR-
140 is critical as overexpression will decrease Pdgfa-mediated
attraction of both subsets of cNC cells while underexpression

inhibits only the rostrally migrating cNC cells to move past
the optic stalk. It still remains to be determined whether the
same mechanism contributes to the cleft palate in Pdgfra/Pdgfa
null mice and is associated with PDGFRA mutations in humans
(Smith and Tallquist, 2010). As the molecular mechanisms
that guide cNC cell migration and differentiation are highly
conserved in most vertebrates, a similar mechanism is plausible.
However, it is important to remember that miR-140 expression
increases and is maintained in the developing PS up to and
including the fusion of the secondary palate. As zebrafish
do not have a nasopharynx, secondary palate formation does
not occur and, therefore, it is possible that miR-140 plays an
additional role in secondary palate formation among higher
vertebrates.

Recent genetic studies have shown that miR-140 is also
involved in the etiology of cleft palate in humans. First, a
genetic association study showed that a SNP (rs7205289:C>A)
located in the precursor of miR-140 (pre-mir-140) contributes
to non-syndromic cleft palate susceptibility by influencing the
processing of miR-140 (Li et al., 2010). The minor, A allele of
rs7205289, with a higher frequency in patients, was associated
with a decrease ofmiR-140-5p expression and an increase ofmiR-
140-3p expression. In addition, miR-140 was found to be down-
regulated in palatal mesenchymal cells by smoking. Moreover,
an epidemiological analysis revealed that infants with CA/AA
genotypes of rs7205289 that were exposed to maternal passive
smoking during pregnancy had a higher risk of developing cleft
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FIGURE 4 | Homozygous conditional deletion of Dicer in neural crest derived mesenchyme and oral ectoderm. Coronal sections of E18.5 wild-type and

Wnt1-Cre; Dicerf/f (a,b) and E16.5 wild type and Pitx2-Cre; Dicerf/f (c,d). Black arrow: (left) palate. (a,b) Adapted from Nie et al. (2011). (c,d) Adapted from Cao

et al. (2010). pa, palate; tb, tooth bud; Mc, Meckel’s cartilage; To, tongue.

palate (Li et al., 2011). As already mentioned above, PDGFRA
mutations have been identified in patients with non-syndromic
cleft palate. A single base-pair substitution in the 3′UTR of
PDGFRA was identified that is located only 10 base-pairs
away from a predicted binding site for mir-140 (Rattanasopha
et al., 2012). Furthermore, this variant is highly conserved
in primates and functionally relevant. Genetic evidence thus
supports the role of miR-140 dysregulation in the etiology of cleft
palate.

miR-17-92 Cluster as Regulator of Shelf Outgrowth
Palatal shelf outgrowth is an essential step during palatogenesis
(Figure 1). During this phase, the shelves increase in size
through mesenchymal cell proliferation and the production of
extracellular matrix components such as collagen. The mir-17-
92 cluster, firstly identified as an inducer of tumor formation
through its pro-proliferative effect, has been shown to play a
similar role during palatogenesis in mice (Wang et al., 2013). The
mir-17-92 cluster is located in the third intron of a∼7 kb primary
transcript known asC13orf25 on human chromosome 13q31.3. It
contains 6 miRNAs (miR-17, miR-18a, miR-19a, miR-20a, miR-
19b-1, and miR-92a-1), with highly conserved sequences and
organization. Ancient genetic duplications have given rise to two
miR-17-92 cluster paralogs in mammals: the miR-106b-25 cluster
(located on human chromosome 7) and themiR-106a-363 cluster
(located on the X chromosome). The expression of mir-17-92

and its 2 paralogs follows a similar pattern in mouse embryos
decreasing from E12 to E14 and concentrating in the distal tips
of the PS during palatogenesis (Mukhopadhyay et al., 2010; Li
et al., 2012; Wang et al., 2013). MiR-106b-25 is expressed at a
lower level than miR-17-92.

Homozygous deletion of miR-17-92 in mice leads to perinatal
death due to severe hypoplastic lungs and ventricular septal
defects (Ventura et al., 2008). As demonstrated by Wang et al.,
these embryos also have a smaller body size, microcephaly,
micropthalmia, mandibular hypoplasia, and an incompletely
penetrant cleft palate. This phenotype is similar to that seen
in patients with a specific germline deletion of the miR-17-92
cluster (de Pontual et al., 2011). Whereas deletion of the paralogs
alone induced no gross abnormalities in mice, compound loss
of miR-106b-25 with miR-17-92 leads to a completely penetrant
cleft palate (Wang et al., 2013). In addition, the miR-17-
92 cluster was shown to regulate osteoblast proliferation and
differentiation, with loss of cluster function being associated with
bone deficiencies (Zhou et al., 2014). Although no mention is
made of a submucous cleft palate in the mouse embryos, it is
possible that such a cleft is present, similar to Tbx22 null mice
(Pauws et al., 2009), due to reduced palatal bone formation.
Wang et al. found greatly reduced cell proliferation in the PS
with aberrant expression of T-box transcription factors and FGF
signaling, both targets of this cluster. It was also identified that
the expression of miR-17-92 is regulated through BMP signaling,
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a deficiency of which was shown to cause cleft palate and
other craniofacial anomalies. In addition, the master regulator
of cranial neural crest development AP-2a is involved in the
regulation of miR-17-92 (Wang et al., 2013). Interestingly, miR-
92a also maintains BMP signaling during pharyngeal cartilage
formation (Ning et al., 2013), suggesting a positive feedback
loop between the miR-17-92 cluster and BMP signaling. In
addition, a functional synergy has been identified between the
miR-17-92 cluster and the SHH signaling pathway, which itself
drives palatal shelf outgrowth and functionally interacts with the
BMP signaling pathway (Uziel et al., 2009; Greene and Pisano,
2010).

Most importantly, overexpression of the miR-17-92
cluster within palatal mesenchymal cells results in increased
proliferation by inhibiting the normal TGF-β signaling pathway
(Li et al., 2012). This corroborates the above in vivo studies.
However, collagen synthesis was also decreased in these
cells. In vivo and in vitro studies thus suggest that the miR-
17-92 cluster controls palatogenesis by targeting several
regulators of cell proliferation, analogous to its effect in
cancer development. In addition, this cluster affects collagen
synthesis, which also plays an essential role during palatal shelf
outgrowth.

miR-200b as Regulator of Palatal Fusion
In the last phase of palatogenesis, the epithelium between
the two contacted palatal shelves—the midline epithelial
seam (MES)—needs to be removed to provide mesenchymal
continuity. The disintegration of the MES is likely due to
three mechanisms, namely epithelial-to-mesenchymal transition,
cell death and migration of the MES cells (Bush and
Jiang, 2012). MiR-200b belongs to the miR-200 family and
together with other family members miR-200a and miR-
429, it is clustered in an intergenic region on human
chromosome 1.

MiR-200b is expressed in the epithelium during palatogenesis
in the mouse, including in the midline epithelial seam (MES),
and its expression gradually decreases as fusion proceeds (Shin
et al., 2012a,b). In keeping with this, overexpression of miR-
200b results in a failure of fusion due to persistence of the
MES (Shin et al., 2012a,b). In this respect, miR-200b was shown
to target Smad2, Snail, Zeb1, and Zeb2, all genes encoding
transcription factors that function as mediators of the Tgf-β

signaling pathway. In response to TGF-β, SMAD2/3 is activated,
forms a complex with SMAD4, which then interact with
either ZEB1, ZEB2, or SNAIL to repress epithelial markers,
stimulate mesenchymal markers, and induce migration and
apoptosis. Overexpression ofmiR-200b also leads tomaintenance
of the MES by repressing TGF-β during the final stages of
palatogenesis and hence results in a failure of the PS to
fuse.

Conclusions and Future Perspectives
The processes of palatal shelf growth, elevation and fusion
require precise spatiotemporal gene expression patterns. This
is also reflected by the critical role of transcription factors in
palatogenesis. Advances in genomics have made it clear that
certain non-coding regions of the genome are predominant
gene regulators. MiRNAs are small non-coding RNAs that
function as post-transcriptional repressors. They are essential
for embryonic development, and depletion of miRNAs in the
mesenchyme and oral ectoderm of mouse embryos leads to cleft
palate. With the exponential increase in new miRNAs being
identified, it is likely that many miRNAs will turn out to have
a role during palatogenesis. However, to date, the role of only
a few miRNAs in palatogenesis has been established in mice
(Table 1). In summary, miR-140 regulates themigration of neural
crest cells, miR-200b regulates palatal fusion and the miR-17-
92b cluster regulates palatal shelf growth. Genomic studies of
miRNAs in nsCL/P and nsCPO are only just starting. Two studies
from the same research group analyzed miRNA expression
in plasma of nsCL and nsCL/P patients (Li J. et al., 2016;
Zou et al., 2016). Using a microarray screening method, 305
miRNAs in plasma of nsCL patients and 241 miRNAs in plasma
of nsCL/P patients were found to be differentially expressed
compared with healthy controls. As miRNAs have a tissue-
specific expression and role it is, however, more interesting to
study their expression in the relevant tissues. Another study on
non-syndromic cleft lip/palate identified a SNP in the 3′UTR
of MSX1 that resulted in an altered target recognition by miR-
3649 and a differential expression between cases and controls (Ma
et al., 2014). Similarly, altered miR-496-FGF2, miR-145-FGF5,
and miR-187-FGF9 interactions were associated with clefting in
289 nsCLP and 49 nsCPO patients (Li D. et al., 2016). This
provides further proof that polymorphisms in miRNAs and
their target sites are sources of phenotypic variation. Therefore,

TABLE 1 | miRNAs genes or targeted mRNAs which have been associated or causally linked with cleft palate in humans or mice and cleft ethmoid plate

in zebrafish.

miRNA gene or target mRNA Species Genome variation Molecular effect References

PDGFRa Human Mutation 3′UTR Altered miR-140 binding Rattanasopha et al., 2012

miR-140 Human SNP Altered miRNA-140 processing Li et al., 2010, 2011

Zebrafish Overexpression Altred Pdfra repression Eberhart et al., 2008

MSX1 Human SNP 3’UTR Altered miR-3649 binding Ma et al., 2014

FGF2/5/9 Human SNP3’UTR Altered miR-496/miR-145/miR-187 binding Li D. et al., 2016

miR-17-92 cluster Mouse Homozygous deletion Altered Tbx113, Fgf10, Shox2 & Osr1 repression Wang et al., 2013

miR-200b Mouse Overexpression Altered Smad2, Snail& Zeb112 repression Shin et al., 2012a,b

miR-133b Zebrafish Overexpression Unkown Ding et al., 2016
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future studies on miRNA polymorphisms and cleft palate may
provide a good basis for increasing our knowledge about
the genetic risk variants contributing to non-syndromic cleft
palate.
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