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Decompression stress can cause endothelial injury, leading to systematic inflammation

and prothrombotic phenomena. Our previous work found that endothelial injury

following decompression correlated positively with bubble formation. This study aimed

to investigate the time course of endothelial injury and the relationship with bubble

amounts. Rats were subjected to a simulated air dive to 7 ATA for 90 min with

rapid decompression. Bubbles were detected ultrasonically at the root of pulmonary

arteries following decompression. Surviving rats were randomly divided into six groups

according to sampling time following decompression (2, 6, 12, 24, 48, and 72 h). Three

parameters, serum levels of malondialdehyde (MDA), endothelin-1 (ET-1), and intercellular

cell adhesionmolecule-1 (ICAM-1) were identified from our previous study andmeasured.

The level of MDA reached a peak level at 12 h post decompression, and then decreased

gradually to control level before 72 h. For both ET-1 and ICAM-1, the greatest expression

appeared at 24 h following surfacing, and the increases lasted for more than 72 h. These

changes correlated positively with bubble counts at most detection time points. This

study reveals the progress of endothelial dysfunction following decompression which

provides guidance for timing the determination at least for the current model. The

results further verify that bubbles are the causative agents of decompression induced

endothelial damage and bubble amounts are an objective and suitable parameter to

predict endothelial dysfunction. Most importantly, levels of endothelial biomarkers post

dive may serve as sensitive parameters for assessing bubble load and decompression

stress.

Keywords: decompression sickness, bubbles, bubble amount, endothelial cells, decompression stress

INTRODUCTION

Inert gas supersaturation results in bubble formation in blood and tissue following rapid
reduction in environmental pressure, causing decompression sickness (DCS) (Vann et al., 2011;
Papadopoulou et al., 2013). Depending on their size, bubbles present in blood can circulate and even
obstruct vessels (Papadopoulou et al., 2014). Residing at the vessel interface, vascular endothelial
cells are vulnerable to intravascular bubbles (Jufri et al., 2015; Givens and Tzima, 2016). Damage
to endothelial cells by decompression stress has been reported in a number of studies followed
by synthesis of cytokines and cell adhesion stimulators, and finally systematic inflammation and
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prothrombotic phenomena(Bigley et al., 2008; Brubakk and
Mollerlokken, 2009; Papadopoulou et al., 2014; Blatteau
et al., 2015). Several drugs were confirmed to be preventive
to DCS partially through their endothelial-protective
properties(Møllerløkken et al., 2006; Ni et al., 2011; Zhang
et al., 2014, 2016a; Blatteau et al., 2015). It is now widely accepted
that endothelial injury plays a significant role in the progress of
DCS (Levett and Millar, 2008; Brubakk and Mollerlokken, 2009;
Klinger et al., 2011; Vann et al., 2011; Thom et al., 2015).

The pathophysiological etiology of endothelial injury
following diving is not fully understood yet. Recently, we found
that endothelial dysfunction correlated positively and linearly
with bubble amounts in a rat DCS model, indicating a close
relationship between bubble formation and endothelial injury
(Zhang et al., 2016b). In the rat DCS model adopted in our
study, bubble counts peaked at around 20∼30 min post-dive
and lasted for <2 h in most cases (Ni et al., 2013; Zhang et al.,
2016b). However, evidence of damage to endothelial cells has
been observed even for several days after decompression (Obad
et al., 2007; Vince et al., 2009; Bilopavlovic et al., 2013), but no
previous data describes the time course of endothelial injury
biomarkers.

The aim of the present study was to investigate the progress of
endothelial dysfunction following a simulated air dive with rapid
decompression in rats, and to study the relationship with bubble
formation, which was thought to be helpful in understanding
diving-related endothelial dysfunction and providing guidance
for timing the determination of endothelial injury.

MATERIALS AND METHODS

Animals
A total of 68 Sprague-Dawley male rats were used for the
experiments. In order to eliminate the influence of age, all rats
used in the experiment were 9–10 weeks old. The protocol was
approved by the Animal Ethics Committee of Second Military
Medical University and all procedures were carried out in
accordance with the relevant guidelines. Rats were housed in a
controlled environment with a 12/12-h light/dark cycle, constant
temperature (23 ± 1◦C) and relative humidity (54 ± 2%) during
all the experiment, lived in pair and moved freely in rodent cages
with food and water available ad libitum.

Grouping and Treatment
All the 68 rats were subjected to a simulated air dive to induce
decompression stress and bubble formation. Four rats died
shortly after the decompression were excluded from the study
and the remaining 64 surviving rats were randomly divided
into six groups according to sampling time (2, 6, 12, 24, 48,
and 72 h, n = 4 for 2 h and n = 12 for the rest group)
after decompression. The results of 8 rats in a previous study
(Zhang et al., 2016b) were incorporated into the 2 h Group
which received the same treatment. So, the number in each
of the six groups is 12. The normal control results were also
from the previous study, in which, 8 rats were sham exposed
(normobaric air) in the same chamber for the same length
of time. Bubbles flowing through the pulmonary artery were

detected ultrasonically for 2 h after decompression. The rats in
different groups were anesthetized and sacrificed at the respective
time point after decompression for measurement of endothelial
biomarkers.

Simulated Diving
The rats were compressed with air to 7 absolute atmospheres
(ATA) in 5 min andmaintained for 90 min before decompression
in a transparent hyperbaric rodent chamber (Type RDC150-
300-6, SMMU, Shanghai, China) using the same protocol
as in our previous study (Zhang et al., 2016b). The rats
were compressed at an increasing rate from 1 ATA/min
to 1.5 ATA/min to minimize possible middle ear squeeze
in the animals. To avoid carbon dioxide retention, carbon
dioxide absorbent was used and the chamber was continuously
ventilated during the exposure. Decompression was performed
linearly to ambient pressure in 4 min, which has been
proven in our previous study to induce detectable bubbles
in the animals with a very low mortality (Zhang et al.,
2016b).

Bubble Detection and Grading
Immediately after decompression the rats were anesthetized
with 3% pentobarbital sodium (1.5 ml/kg body weight, i.p.)
(Sinopharm Chemical Regent Co., Shanghai, China) and were
lain supine on a thermo-regulating pad (32◦C). The anesthesia
was lasted for 2 h during the whole bubble detection period
and all the rats recovered shortly after the detection except
the rats in 2 h group, which were sampled immediately after
the detection. The fur on the chest was removed and bubble
detection was performed in the cross-section at the root of
the pulmonary artery using an ultrahigh frequency (18MHz)
detector connected to an ultrasonic scanner (Mylab30cv, Esaote,
Italy). The delay between surfacing and ultrasonic detection
of the pulmonary artery was 5 min or less. For every rat
detection was repeated at 5, 10, 20, 30, 45, 60, 90, and 120
min after decompression, each lasting for 60 s (Zhang et al.,
2016b). Bubbles were seen as moving bright spots in ultrasound
images and the amounts were scored according to a grading
system described elsewhere (Eftedal et al., 2007). The total
bubble count for each rat indicates the detected number of
bubbles flowing through pulmonary artery, which was presented
by the area under the curve of bubble grade changes with
time.

Measurement of Endothelial Biomarkers
Rats were anesthetized and blood was drawn from the right
ventricle under anesthesia and transfused into 2-ml Eppendorf
tubes without anticoagulation. Then the samples were placed
in room temperature for 2 h before centrifuging (1,000 ×

g, 20 min at 4◦C). The supernatant was stored at −80◦C
until determination. Serum levels of endothelin-1 (ET-1) and
intercellular cell adhesion molecule-1 (ICAM-1) were assayed
by ELISA (Jiancheng Bioengineering Institute, Nanjing, China)
(Liang et al., 2016; Yu et al., 2017). Levels of malondialdehyde
(MDA) were detected by chemical colorimetry using commercial
assay kits (Beyotime Institute of Biotechnology, Nantong, China)
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FIGURE 1 | Bubble formation following decompression (A) and total

bubble amounts of rats in each group (B). Rats were compressed with air to 7

ATA and maintained for 90 min before linear decompression to atmospheric

pressure in 4 min. After decompression, bubbles were detected and scored at

the 8 time points with 2 h. Error bars are standard error of the mean (SEM). In

(B), total bubble count was calculated as the area under the curve similar to

that shown in (A) for each rat, and no statistical difference was detected

between the groups. n = 72 for Figure (A), n = 12 for each group in (B).

(Yang et al., 2015). All assays were performed in accordance with
the respective manufacturer’s instructions.

Statistical Analysis
Unless otherwise stated, all data are presented as mean±SD.
Normal distribution was tested using a Kolmogorov-Smirnov
test. One-way ANOVA followed by post hoc Student Newman–
Keuls tests or Dunnett’s tests were used for multiple comparisons
between means. Pearson correlation was used for correlation
analysis between endothelial parameters and bubble counts. The
threshold for significance was accepted at P < 0.05.

RESULTS

Bubble Formation Post Decompression
The simulated air dive induced bubble formation in all rats.
Bubble counts increased gradually following decompression and
reaching a maximum at around 20 min (Figure 1A). Bubbles
disappeared within 2 h in most rats. The total bubble count for
each rat varied widely between the animals at each time point

FIGURE 2 | Time course of decompression induced changes in MDA

(A), ET-1 (B) and ICAM-1 (C). Rats were anesthetized and sampled at 2, 6,

12, 24, 48, and 72 h after decompression from an air dive (7 ATA-90 min) in 4

min. 0 h denotes Normal control group and the broken line indicates the mean

Normal control group value. n = 8 for Normal control group, n = 12 for each

DCS modeling group. **P < 0.01,*P < 0.05 vs. Normal control group.

(Figure 1B). There was no difference in the total bubble score
between groups (P > 0.05).

Time Course of Endothelial Biomarkers
Following Decompression
Levels of MDA, ET-1, and ICAM-1 gradually increased after
decompression and peaked at 12, 24, and 24 h, respectively
(Figure 2). The level of MDA decreased to the Normal control
level before72 h (P= 0.889). Comparedwith normal values, levels
of ET-1 and ICAM-1 were significantly increased over the 72 h
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FIGURE 3 | Correlation between MDA levels and total bubble amounts. MDA was detected at 2 (A1), 6 (A2), 12 (A3), 24 (A4), 48 (A5), and 72 h (A6) after

decompression in 4 min from a simulated air dive (7 ATA-90 min). Total bubble count which indicates the detected number of bubbles flowing through the pulmonary

artery was calculated as the area under the curve shown in Figure 1A. n = 12.

observation period (P < 0.05) with an obvious recovery trend
after 24 h.

Relationship between Endothelial
Biomarkers and Bubble Amount
The increases of MDA and ICAM-1 correlated positively with
bubble counts within 24 h (P < 0.05, Figures 3, 4). For ET-1,
the increase significantly correlated with bubble counts over the
entire observation period (P < 0.05, Figure 5 ).Reference levels
of the biomarkers at each bubble grade are listed in Table 1. The
results in the 2 h time point group include those obtained from
24 rats in the above mentioned study (Zhang et al., 2016b).

DISCUSSION

Vascular endothelial cells are well-described targets for
decompression stress and endothelial injury plays an important
role in the process of DCS (Lambrechts et al., 2013; Mazur
et al., 2014, 2016; Fok et al., 2015; Wang et al., 2015),
though the exact mechanism remains unclear. Whether
bubbles are the cause or not, endothelial dysfunction is
detectable and obvious following most diving exposures
(Madden and Laden, 2009; Chrismas et al., 2010; Klinger
et al., 2011; Papadopoulou et al., 2014). To further study
the time course of endothelial dysfunction will help
better understand the pathophysiology of decompression

Frontiers in Physiology | www.frontiersin.org 4 March 2017 | Volume 8 | Article 181

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Zhang et al. Endothelial Dysfunction, Bubble, and Time

FIGURE 4 | Correlation between ICAM-1 levels and total bubble amounts. ICAM-1 was detected at 2 (A1), 6 (A2), 12 (A3), 24 (A4), 48 (A5), and 72 h (A6)

after decompression in 4 min from a simulated air dive (7 ATA-90min). Total bubble count which indicates the detected number of bubbles flowing through the

pulmonary artery was calculated as the area under the curve shown in Figure 1A. n = 12.

injuries and provide additional evidence in establishing the
etiology.

Three decompression rates were adopted in our previous
study to induce varying amounts of bubbles, and also to study
the effects of decompression per se on endothelial cells (Zhang
et al., 2016b). Among the three rates, 4 min decompression
from 60 msw (15 msw/min) to atmospheric pressure yielded
low mortality (5% in the current study), and yet still induced a
wide range of bubble formation. Limited by the blood volume
of rats and micro-sampling analysis techniques, multi-sampling
over the 72 h period could not be achieved in a same animal,
thus involving a greater number of animals and adding variation

between groups. Satisfactorily, the total bubble amounts were
similar between the six groups for the different sampling time-
points during the 72 h period, which meets the basic statistical
criteria for comparing biomarkers between groups.

The three biomarkers of endothelial dysfunction and
decompression stress, MDA, ET-1 and ICAM-1, were selected
from the nine parameters determined in our previous study
(Zhang et al., 2016b); all three biomarkers changed sensitively
and correlated better with bubble amounts at 2 h following rapid
decompression. Among them, ICAM-1 is a sensitive biomarker
with the capacity to reflect endothelial damage directly; ET-1
is a kind of vasoactive substance secreted by endothelial cells
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FIGURE 5 | Correlation between ET-1 levels and total bubble amounts. ET-1 was detected at 2 (A1), 6 (A2), 12 (A3), 24 (A4), 48 (A5), and 72 h (A6) after

decompression in 4min from a simulated dive (7 ATA-90 min). Total bubble count which indicates the detected number of bubbles flowing through the pulmonary

artery was calculated as the area under the curve shown in Figure 1A. n = 12.

which could also reflect endothelial damage; MDA serves as a
sensitive biomarker of oxidative stress which was involved in the
pathogenesis of endothelial injury after decompression (Zhang
et al., 2016b). This was confirmed again in the present study.
Rapid decompression induced significant increases in all these
parameters, indicating obvious endothelial damage. For MDA,
it reached a peak level (3.1 fold of mean normal control group
values) at 12 h post decompression, and decreased gradually
to normal control group levelsbefore72 h. For both ET-1 and
ICAM-1, the greatest expression appeared at 24 h following
surfacing (5.5 and 1.9 times normal control group values,
respectively), and these increases lasted for more than 72 h.
Although the changes after 72 h were not determined, it could

be imagined that levels of ET-1 and ICAM-1 would recover to
normal before 96 h post dive from the trend showed in Figure 2.

The time course provided necessary information for timing
the determination of DCS endothelial injury. From the curves
presented in Figure 2, it can be seen that the duration of half-
elevation levels for MDA, ET-1, and ICAM-1 were around
2–24, 2–60, and 6–40 h, respectively. During these periods,
these biomarkers provide good assessment of bubble loads and
decompression stress. From the results shown in Figures 2–
5, ET-1 had the best capability in reflecting bubble load and
decompression stress.

The increase in all biomarkers correlated well with bubble
counts at most of the detection time points (Figures 3–5),which

Frontiers in Physiology | www.frontiersin.org 6 March 2017 | Volume 8 | Article 181

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Zhang et al. Endothelial Dysfunction, Bubble, and Time

TABLE 1 | The reference levels of endothelial biomarkers at different bubble grades in a rat DCS model.

Bubble grade Serum MDA (µM) (95% CI)

2 h 6h 12h 24h 48h 72h

0 4.37-5.77 4.37-5.77 4.37-5.77 4.37-5.77 4.37-5.77 4.37-5.77

∼1 5.63-7.47 9.21-11.87 12.47-15.33 6.33-10.25 4.73-6.37 3.74-5.81

∼2 8.45-10.27 10.83-15.20 15.08-17.76 5.54-11.99 5.22-8.64 2.44-8.27

∼3 10.60-13.78 // 13.78-23.75 7.65-12.29 / /

∼4 / / // / / 2.73-8.15

∼5 // // // // / //

Serum ET-1 (pg/ml) (95% CI)

0 9.07-12.53 9.07-12.53 9.07-12.53 9.07-12.53 9.07-12.53 9.07-12.53

∼1 13.72-23.01 37.06-45.81 47.00-54.93 47.43-58.72 32.50-39.29 16.57-21.37

∼2 33.51-39.70 41.15-58.05 54.46-62.74 57.30-60.55 35.22-53.33 9.03-25.63

∼3 52.07-61.52 // 34.22-95.89 51.56-77.01 / /

∼4 / / // / / 13.92-34.87

∼5 // // // // / //

Serum ICAM-1 (pg/ml) (95% CI)

0 46.56-49.55 46.56-49.55 46.56-49.55 46.56-49.55 46.56-49.55 46.56-49.55

∼1 47.46-52.22 57.41-70.26 72.26-83.74 81.94-90.40 47.50-57.49 44.75-52.35

∼2 50.89-57.00 65.48-76.70 79.14-90.98 77.40-103.61 54.25-71.56 34.28-71.65

∼3 59.41-65.23 // 53.86-120.58 87.82-103.59 / /

∼4 / / // / / 41.57-73.61

∼5 // // // // / //

Serum levels of MDA, ET-1 and ICAM-1 were determined in rats at 2, 6, 12, 24, 48, and 72 h after decompression in 4 min from a simulated air dive (7 ATA-90 min). Bubbles were

repeatedly detected within 2 h following decompression, and the mean grade was calculated for the 2 h period. The results of another 16 rats (not the same as those referred in Method

section) from a previous study were included in the 2 h time point group. n = 28 for 2 h and n = 12 for the rest sampling time point groups. n = 8 for normal control group (bubble

grade 0). /: only one value which could not be used to calculate 95% confidence interval (CI); //: no data.

is in accordance with previous studies (Nossum et al., 1999, 2002;
Zhang et al., 2016b). More bubble formation caused more serious
injury to endothelial cells in a dose-response relationship. As
shown in Table 1, from the increased value of the biomarkers,
bubble grades could be estimated. In the present study however,
limited by the number of animals used for each group, the values
at each time point post-dive need further repetition to estimate
confidence intervals. The results from later studies should be
added to this table, and similar works are warranted for big
animal DCS models and eventually, for divers.

One other finding that can be seen in Figures 3–5 is that the
correlations between biomarkers and bubbles for all the three
parameters have a decreasing trend with time even before the
peak responses, showed by the gradual decreasing in correlation
coefficient (r) values. Therefore, earlier determination of the
biomarkers started at 2–6 h post decompression likely offers
better estimation of decompression stress and bubble formation.

Although the decompression induced intravascular bubbles
existed for <2 h, the damage to endothelial cells was on-going
and progressed to peak during 12–24 h after the disappearance of
bubbles. Many chemical drugs, including simvastatin, hydrogen,
and NO donors, have been suggested to have prophylactic
effects against DCS due to their endothelial-protective properties
(Møllerløkken et al., 2006; Ni et al., 2011; Zhang et al., 2014,

2016a; Wang et al., 2015). Based on the current findings, it is
reasonable to hypothesize that endothelial protective agents can
be not only administered prior to a risky dive, but also can be
used as therapeutic approaches in DCS treatment immediately
after dives.

Intravascular bubbles can damage endothelial cells directly
by mechanical contact or indirectly via initiating biochemical
cascades, e.g., coagulation activation, inflammatory responses,
and oxidative stress, or other effects of bubble-endothelial cell
interactions (Nossum et al., 1999, 2002; Suzuki and Eckmann,
2003; Suzuki et al., 2004; Eftedal et al., 2007; Sobolewski
et al., 2012; Papadopoulou et al., 2014; Blatteau et al., 2015;
Wang et al., 2015). Injured endothelial cells may even release
other kinds of substances and initiate further endothelial injury
remotely (Chrismas et al., 2010; Thom et al., 2012). The present
results confirm our previous finding that endothelial dysfunction
correlates well with bubble formation (Zhang et al., 2016b). No
matter whether the injury was directly or indirectly from bubbles,
bubbles are the most likely initial causative agents of endothelial
dysfunction following diving decompression.

In conclusion, the present study highlighted the time course
of endothelial injury together with its relationship with bubble
amounts. These results provide guidance for timing endothelial
dysfunction following diving, at least for the current animal
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model. The results also reconfirm that bubble amounts are
an objective and suitable parameter to predict endothelial
dysfunction; and most importantly, the levels of endothelial
biomarkers post diving might serve as simple yet sensitive
parameters in the assessment of bubble load and decompression
stress. ET-1, MDA, and ICAM-1 were further proven to be
sensitive biomarkers with the capacity to indicate endothelial
dysfunction and decompression stress. Further studies on divers
are needed which may improve the assessment of decompression
stress and explore the etiology, prevention and treatment of
decompression sickness.
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