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Renal hypoxia is thought to be an important pathophysiological factor in the progression

of chronic kidney disease (CKD) and the associated hypertension. In a previous study

among CKD patients, supplementation with 100% oxygen reduced sympathetic nerve

activity (SNA) and lowered blood pressure (BP). We aimed to assess the underlying

haemodynamic modulation and hypothesized a decreased systemic vascular resistance

(SVR). To that end, 19 CKD patients were studied during 15-min intervals of increasing

partial oxygen pressure (ppO2) from room air (0.21 ATA) to 1.0 ATA and further up to

2.4 ATA, while continuously measuring finger arterial blood pressure (Finapres). Off-line,

we derived indexes of SVR, cardiac output (CO) and baroreflex sensitivity from the

continuous BP recordings (Modelflow). During oxygen supplementation, systolic, and

diastolic BP both increased dose-dependently from 128 ± 24 and 72 ± 19 mmHg

respectively at baseline to 141 ± 23 (p < 0.001) and 80 ± 21 mmHg (p < 0.001) at 1.0

ATA oxygen. Comparing baseline and 1.0 ATA oxygen, SVR increased from 1440 ± 546

to 1745 ± 710 dyn·s/cm5 (p = 0.009), heart rate decreased from 60 ± 8 to 58 ± 6 bpm

(p < 0.001) and CO from 5.0 ± 1.3 to 4.6 ± 1.1 L/min (p = 0.02). Baroreflex sensitivity

remained unchanged (13± 13 to 15± 12ms/mmHg). These blood pressure effects were

absent in a negative control group of eight young healthy subjects. We conclude that

oxygen supplementation in CKD patients causes a non-baroreflex mediated increased

in SVR and blood pressure.

Keywords: chronic kidney disease, hypertension, hyperbaric oxygen supplementation, renal hypoxia, systemic

vascular resistance, cardiac output

INTRODUCTION

Hypertension is a hallmark of chronic kidney disease (CKD). There is substantial evidence that this
can be attributed to increased sympathetic nerve activity (SNA) (Converse et al., 1992; Koomans
et al., 2004; Neumann et al., 2004; Herzog et al., 2008). The mechanisms underlying increased SNA
in CKD are not completely understood. Several studies have reported an attenuation of SNA and

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00186
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00186&domain=pdf&date_stamp=2017-03-30
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:c.t.krediet@amc.uva.nl
https://doi.org/10.3389/fphys.2017.00186
http://journal.frontiersin.org/article/10.3389/fphys.2017.00186/abstract
http://loop.frontiersin.org/people/83950/overview
http://loop.frontiersin.org/people/389831/overview


van der Bel et al. Haemodynamics during Hyperoxia in CKD

blood pressure (BP) following bilateral nephrectomy (Medina
et al., 1972; Getts et al., 2006; Gawish et al., 2010). This has
founded the concept that the trigger of the enhanced central
sympathetic outflow in CKD patients resides in the affected
kidneys themself. Deterioration of renal oxygenation by altered
renal perfusion and increased metabolic demand has been
postulated as a common factor in the progression of CKD
(Eckardt et al., 2005; Evans et al., 2013) and nephrogenic
sympathetic hyperactivity and hypertension (Converse et al.,
1992; Hausberg, 2002; Siddiqi et al., 2009).

In this respect, altered renal chemo-receptor activation in
CKD has been studied by various groups (Hausberg and Grassi,
2007; Hering et al., 2007; Park et al., 2008). Of special interest
is a study by Hering et al. who exposed CKD patients (mean
serum creatinine 5.5 ± 0.3 mg/dL) to 100% oxygen over a
non-rebreathing mask for 15 min. This resulted in a 30%
reduction in SNA accompanied by a lower pulse pressure
(Hering et al., 2007). This response was absent in healthy
controls and non-CKD patient populations (Kones, 2011; Stub
et al., 2015). Therefore, the observed effects on sympathetic
nerve activity and BP were attributed to CKD-specific hypoxia-
mediated renal chemo-reflex deactivation. Additional support
for the existence of a kidney-derived chemo-reflex, were the
observations in non-CKD sympathetically hyperactive patient
groups not showing such a response (Ganz et al., 1972; Thomson
et al., 2002). Thus, the haemodynamic response to oxygen
supplementation appears to be uniquely different in CKD
patients.

Ever since, it has been assumed that the underlying
mechanism of the BP effects of oxygen supplementation in
CKD patients is mediated by a decrease in sympathetic
outflow leading to a reduction in systemic vascular resistance
(Thukkani and Bhatt, 2013). However, so far this has never been
substantiated. Therefore, we set out to revisit and further explore
the concept that systemic hyperoxia suppresses vasoconstrictor
activity and BP in CKD patients. Our aim was to elaborate on
the haemodynamic mechanisms underlying the BP changes as
previously reported by others. We hypothesized: (1) that the
previously observed decrease in BP is the effect of a decrease in
(sympathetically mediated) systemic vascular resistance (SVR),
and (2) that this effect is related to the amount of oxygen provided
in a dose-dependent fashion.

MATERIALS AND METHODS

Participants
We studied 19 CKD patients (14 males, 5 females; age 62 ± 10
years, BMI 25.7 ± 3.7 kg/m2, eGFR 23.6 ± 7.2 mL/min/1.73
m2). Of all patients, values of hemoglobin and proteinuria
were available from clinical routine testing within 3 months
before the study. Baseline characteristics, including medication
use and disease background are given in Table 1. To verify
the known hemodynamic effects of hyperoxia and thereby
the accuracy of our methods, we also included a group of
eight young healthy subjects (6 males and 2 females, mean
age 26 ± 3 years, BMI 23.1 ± 2.7 kg/m2). The study was
carried out in accordance with the Declaration of Helsinki

TABLE 1 | Baseline characteristics of the CKD patients.

Patients

Age (years) 62 (10)

Gender (m/f) 14/5

Body weight (kg) 77 (13)

BMI (kg/m2) 25.7 (3.7)

Smoking status Yes/No 4/15

Systolic/diastolic blood

pressure (mmHg)

128 (24)/72 (19)

eGFR (mL/min/1.73 m2) 22.5 (5–40)

Haemoglobin (mmol/L) 7.9 (1.3)*

Proteinuria (g/L) 0.53 (0.03–2.8)

Renal disease Vascular 10

Glomerulonephritis 4

Tubulo-interstitial 1

Polycystic disease 3

Unknown 1

Antihypertensive medication Alpha blockers 4

Beta blockers 10

ACE inhibitors 6

ARBs 8

Calcium antagonists 11

Diuretics 8

Data are presented as absolute number or mean (SD) or with range in case the outcome

measure is skewed. ACE, angiotensin converting enzyme. ARB, Angiotensin II receptor

blocker. *Six patients used erythropoietin-analogs.

of the World Medical Association (2013). The Medical Ethics
Review Committee of the Academic Medical Center (University
of Amsterdam, Amsterdam, The Netherlands) approved the
study protocol. Before inclusion all participants provided written
informed consent.

Normobaric Challenge
After an initial baseline measurement of 15 min room air
(RA), a non-rebreathing mask was positioned over nose and
mouth. Blood pressure measurement (see below) was continued
while room air, partial pressure of oxygen (ppO2) 0.21 ATA,
was provided over the mask at 15 L/min for another 15 min.
Thereafter the ppO2 in the breathing gas was increased to 50%
O2 (ppO2 0.5 ATA) and 100% O2 (ppO2 1.0 ATA) respectively
again for 15 min at each dose (Figure 1). The oxygen dose was
regulated using an air-oxygen blender (Precision Medical Inc.,
Northampton, USA). Patients were blinded to the dosage and
were not aware when the oxygen dose was altered. Measurements
were performed in a quiet room with the temperature controlled
at 22◦C. During all measurements, participants remained quietly
in the supine position. Patients receiving angiotensin-converting-
enzyme (ACE) inhibitors and/or angiotensin II receptor blockers
(ARBs) had postponed the intake of these medications until after
the study visit.

Hyperbaric Challenge
In another session, subjects were exposed to hyperbaric oxygen in
a hyperbaric chamber. Again, during all measurements patients
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FIGURE 1 | Normobaric oxygen supplementation protocol. Room air

(RA) and oxygen at different concentrations (21, 50, or 100%) were provided

for 15 min each. Measurements were performed at atmospheric pressure, i.e.,

1 atmosphere absolute (ATA). At atmospheric pressure a partial oxygen

pressure (ppO2) of 1.0 ATA is reached, when 100% oxygen is provided.

assumed a supine position. Continuous blood pressure was
recorded while breathing room air (RA) at atmospheric pressure
(ppO2 0.21 ATA), under hyperbaric conditions at 2.4 ATA (ppO2

0.5 ATA) and at 2.4 ATA during 100% oxygen supplementation
(ppO2 2.4 ATA, Figure 2).

Continuous Blood Pressure Measurements
and Analysis
During all sessions, continuous blood pressure was measured
using finger arterial photo-plethysmography (PortapresTM,
Finapres Medical Systems, Amsterdam, The Netherlands). The
device has been validated for use in CKD patients (Imholz et al.,
1998). The appropriate size finger cuff was positioned around
the mid-phalanx of the left middle finger for all recordings and
passively positioned at heart level. The system had been adapted
for use under hyperbaric conditions as previously reported in
detail (van der Bel et al., 2016).

The finger arterial pressure signal was recorded at 100 Hz and
analyzed off-line using the Modelflow algorithm (Beatscope R©

version 1.1a, Finapres Medical Systems, Amsterdam, The
Netherlands). This algorithm provides a validated beat-to-beat
estimate of left ventricular stroke volume (SV), based on a

FIGURE 2 | Hyperbaric oxygen supplementation protocol. Normobaric

and hyperbaric room air (RA) and hyperbaric oxygen (100%) were provided for

15 min each. Measurements were performed at atmospheric pressure (1 ATA)

and under hyperbaric conditions (2.4 ATA). At atmospheric pressure a partial

oxygen pressure (ppO2) of 1.0 ATA was reached, when 100% oxygen was

provided. During hyperbaric oxygen supplementation this further increased

2.4-fold, to 2.4 ATA.

nonlinear 3-element model of the input impedance of the
aorta (Jellema et al., 1999). Mean arterial pressure (MAP)
was the integral over one heart beat and the heart rate
(HR) was the inverse of the pulse interval. Cardiac output
(CO) was SV times HR. SVR was MAP divided by CO, in
dyn·s/cm5. Pulse pressure (PP) was systolic BP (SBP) minus
diastolic BP (DBP). All hemodynamic parameters were derived
from the last minute of the measurements at baseline and at
each oxygen dose. Time domain cross-correlation baroreflex
sensitivity (xBRS) was calculated from the same intervals as the
other parameters, using dedicated software (WinXBRS 2, BMEye,
Amsterdam, The Netherlands; Westerhof et al., 2004). The xBRS
was computed using beat-to-beat SBP and R–R interval, in a
sliding 10 s window. Each instance that a correlation with a
significance level of p ≤ 0.01 was found the xBRS value was
recorded.

Statistical Analysis
Normal distribution of the data was verified using Levine’s test
and data are presented as mean ± standard deviation, unless
otherwise indicated. The within group responses to increasing
ppO2 were assessed using general linear modeling. P < 0.05 were
considered significant.
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RESULTS

Normobaric Oxygen Challenge (CKD
Patients)
SBP and DBP both increased with increasing oxygen
supplementation from 128 ± 24/72 ± 19 at baseline to 141
± 23/80 ± 21 mmHg systolic/diastolic at a ppO2 of 1.0 ATA,
F(3, 18) = 12.6, p <0.001 for SBP and F(3, 18) = 8.8, p <0.001 for
DBP (Figures 3A,B). The pulse pressure increased as well, from
55± 13 to 61± 11 mmHg [F(3, 18) = 5.8, p= 0.002, Figure 3D].
HR [60± 8 bpm at baseline; 58± 6 bpm at 1.0 ATA ppO2, F(3, 18)
= 25.1, p < 0.001] and CO [5.0± 1.3 L/min at baseline; 4.6± 1.1
L/min at 1.0 ATA ppO2, F(3, 18) = 3.6, p= 0.02] decreased during
oxygen supplementation (Figures 3E,G). SVR increased from
1440 ± 546 to 1745 ± 710 dyn·s/cm5, [F(3, 18) = 4.3, p = 0.009,
Figure 3F]. xBRS remained unchanged with 13 ± 13 ms/mmHg
at baseline and 15 ± 12 ms/mmHg at 1.0 ATA ppO2 [F(3, 7) =
0.647; p= 0.59, Figure 3H].

Hyperbaric Oxygen Challenge (CKD
Patients)
Due to the results of oxygen supplementation under normobaric
conditions, the hyperbaric experiments were suspended for
ethical reasons after studying four patients (and not carried out
in the control subjects). When changing from a normobaric (1
ATA) to a hyperbaric condition (2.4 ATA, Figure 4), SBP and
DBP where 121 ± 17/70 ± 16 at baseline and 146 ± 18/84 ± 11
mmHg systolic/diastolic at a ppO2 of 2.4 ATA (Figures 4A,B).
Pulse pressure was 51 ± 9 at baseline and 62 ± 13 mmHg at
2.4 ATA ppO2 (Figure 4D). HR was 64 ± 9 bpm at baseline and
60 ± 8 bpm at 2.4 ATA ppO2 and CO was 4.2 ± 1.3 L/min at
baseline and 3.6± 0.4 L/min at 2.4 ATA ppO2 (Figures 4E,G). No
further increase in SVR was observed during hyperbaric oxygen
supplementation (Figure 4F). Changes in SBP did not correlate
with eGFR (R= 0.013).

Control Subjects
During the normobaric oxygen challenge in the control group,
SVR increased significantly from 903 at baseline to 985 dyn·s/cm5

at a ppO2 of 1.0 ATA, F(3, 7) = 11.6; p < 0.001 (Figure 3F).
SBP [F(3, 7) = 2.60; p = 0.08], DBP [F(3, 7) = 1.33; p = 0.29],
MAP [F(3, 7) = 1.28; p = 0.31] and PP [F(3, 7) = 2.07; p =

0.13], did not change (Figures 3A–D), HR [F(3,7) = 13.0; p <

0.001] and CO [F(3, 7) = 6.73; p = 0.002] decreased with oxygen
supplementation (Figures 3E,G). xBRS remained unchanged
[F(3, 7) = 0.884; p= 0.47, Figure 3H].

DISCUSSION

The findings of this study can be summarized as follows:
(1) Oxygen supplementation causes a dose-dependent blood
pressure increase among CKD patients. (2) This blood pressure
increase is caused by an SVR increase. (3) The simultaneous HR
decrease with unchanged baroreflex sensitivity indicates that the
SVR increase is caused by a direct vascular effect of the increased
plasma ppO2 rather than a response of the baroreflex.

Our results seem to contradict previous findings in CKD
patients (Hering et al., 2007). Hering et al. found that in a
similar experiment, exposing CKD patients to 100% oxygen
resulted in a 30% reduction in muscle sympathetic nerve
activity (Hering et al., 2007), whereas we find an increased
systemic vasoconstriction. Upon closer inspection, their SNA
decrease was accompanied by a slight increase in diastolic
blood pressure—similar to what we found—which was not
elaborated upon further. Instead, the analysis focussed on a
decreased pulse pressure. However, this rise in diastolic blood
pressure may be the key to explaining the decreased SNA during
oxygen supplementation in CKD patients. Therefore, we need to
consider the haemodynamic effects of hyperoxia in health with
regard to baroreflex function.

In healthy humans, oxygen supplementation induces
hyperoxic vasoconstriction as observed in our controls
and previously reported data (Waring et al., 2003; Gill
and Bell, 2004). This response is due to (1) the direct
vasoconstrictive effect of plasma pO2 itself and (2) its ability
to simultaneously hinder vasodilatation by reducing nitric
oxide (NO) bioavailability (Waring et al., 2003; Gill and Bell,
2004). In contrast to sympathetically mediated vasoconstriction,
hyperoxic vasoconstriction acts independent of baroreflex
function (Whalen et al., 1965; Villanucci et al., 1990). CKD
patients have an intact arterial baroreflex system (Eckberg
and Sleight, 1992), therefore modulation of the baroreflex
leads to changes in HR and sympathetic activation to occur
simultaneously and in the same direction, i.e., HR increase
and sympathetic vasoconstriction versus HR decrease and
sympathetic decrease (leading to vasodilation). However, in our
experiment vasoconstriction is observed with a simultaneous
decrease in HR during oxygen supplementation. This is
indicative of a deactivating signal by the baroreflex, resulting in a
reduction in HR. Based on the coupling of sympathetic activity
and HR, this explains the decrease in sympathetic activity while
diastolic blood pressure increases due to direct oxygen driven
and non-baroreflex mediated vasoconstriction (Hering et al.,
2007).

To explain the blood pressure increase that we observed
in CKD patients, we consider the ability of hyperoxia to
decrease vasodilatory capacity by reducing NO bioavailability.
Reduced NO bioavailability in CKD patients (similar to diabetic
and hypertension patients; Al-Waili et al., 2006) may impede
the attenuation of the hemodynamic effects of hyperoxic
vasoconstriction (Endemann and Schiffrin, 2004; Martens and
Edwards, 2011). Therefore, our data are most consistent with
inadequate attenuation of hyperoxic vasoconstriction in patients
with CKD-related endothelial dysfunction.

Thus, it appears that the hemodynamic response to hyperoxia
is not uniquely affected in CKD patients. Instead, it seems that
hyperoxic vasoconstriction induces an increase in blood pressure,
leading to baroreflex deactivation with a reduction in systemic
sympathetic tone. Our data (and in hindsight those from Hering
et al.) do not support nor exclude the existence of a CKD-kidney
specific hypoxic triggering of (either renal or extra-renal) chemo
receptors. The overwhelming effects of oxygen on systemic
vasoconstriction render the experimental set-up unsuitable to
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FIGURE 3 | Hemodynamic response to normobaric oxygen supplementation, for the patient (solid bars) and the young healthy controls (open bars). All

graphs depict absolute mean ± SD at each condition: room air (RA), 21% oxygen over a non-rebreathing mask (ppO2 0.21 ATA), 50% oxygen (ppO2 0.5 ATA), and

100% oxygen (ppO2 1.0 ATA). Averages over the last minute of each condition for: (A) systolic blood pressure; (B) diastolic blood pressure; (C) mean arterial pressure

(MAP); (D) pulse pressure (PP); (E) heart rate (HR); (F) systemic vascular resistance (SVR); (G) cardiac output (CO); (H) baroreflex sensitivity (xBRS). Designation of

significant responses to oxygen supplementation in patients * and in controls†.
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FIGURE 4 | Hemodynamic response to hyperbaric oxygen supplementation. All graphs depict absolute mean ± SD at each condition: room air (RA),

hyperbaric RA (ppO2 0.5 ATA), and hyperbaric oxygen (ppO2 2.4 ATA). Averages over the last minute of blood pressure registration at each condition of: (A) systolic

blood pressure; (B) diastolic blood pressure; (C) mean arterial pressure (MAP); (D) pulse pressure (PP); (E) heart rate (HR); (F) systemic vascular resistance (SVR); (G)

cardiac output (CO); (H) baroreflex sensitivity (xBRS).
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detect any possible subtle effects of kidney specific oxygenation
on sympathetic outflow.

A possible clinical implication of these results is that oxygen
supplementation might act as a cardiovascular stressor in
CKD patients. Interestingly, this is in line with observations
that oxygen supplementation in selected clinical patients is
associated with worse outcome (Kones, 2011; Stub et al.,
2015). Additionally, our study provides some more explanation
on the lack of efficacy of catheter based renal denervation.
The presumed decrease in SNA and blood pressure by
oxygen supplementation in CKD patients was one of the
founding principles of the pathophysiological rationale for renal
sympathetic denervation (Schlaich et al., 2011; Davis et al., 2013).
Eventually, renal sympathetic denervation showed not to have
any effect on blood pressure, and specifically not in CKD patients
(Bhatt et al., 2014). Our data question part of the founding
rationale for renal sympathetic denervation.

Our study has several methodological limitations that
merit discussion. First, patients continued the use of anti-
hypertensive medication during the study. For ethical reasons
these medications could not be fully withdrawn and was a
compromise between taking out possible interfering factors
versus patient risk. Our considerations were as follows:
because of the specific effects on renal hemodynamics and
oxygenation, ACE inhibitors and ARB’s were stopped, as other
antihypertensive drugs have a less (if any) pronounced effect
on RAAS activity or intrarenal oxygen delivery. However, this
may only have blunted the hemodynamic effects and thereby
would not have affected our eventual conclusions, especially
since patients acted as their own control. The same holds
for the heterogeneous distributed baseline parameters (e.g.,
eGFR, smoking status, hemoglobin level) in our relatively small

patient group. Secondly, we did not assess changes in CO2

partial pressure during oxygen supplementation. However, this
has previously been shown not to be influenced by oxygen
supplementation (Whalen et al., 1965). Also, the group of
young healthy controls was not selected to be age matched,
because it intended to verify the accuracy of our method. Others
have reported upon the effects of hyperoxia in healthy elderly
subjects previously (Whalen et al., 1965; Al-Waili et al., 2006).
Lastly, the observers were not blinded but this was corrected by
standardizing the time frame selection for analysis.

CONCLUSIONS

We have shown that oxygen supplementation in CKD patients
increases blood pressure in a dose dependent fashion. This
response is mediated by an increase in SVR, likely as the result of
hyperoxic vasoconstriction independent of baroreflex function.
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