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Singlet oxygen generated in a type II photodynamic action, due to its limited lifetime

(1µs) and reactive distance (<10 nm), could regulate live cell function nanoscopically.

The genetically-encoded protein photosensitizers (engineered fluorescent proteins such

as KillerRed, TagRFP, and flavin-binding proteins such as miniSOG, Pp2FbFPL30M) could

be expressed in a cell type- and/or subcellular organelle-specific manner for targeted

protein photo-oxidative activation/desensitization. The newly emerged active illumination

technique provides an additional level of specificity. Typical examples of photodynamic

activation include permanent activation of G protein-coupled receptor CCK1 and

photodynamic activation of ionic channel TRPA1. Protein photosensitizers have been

used to photodynamically modulate major cellular functions (such as neurotransmitter

release and gene transcription) and animal behavior. Protein photosensitizers are

increasingly used in photon-driven nanomanipulation in cell physiology research.

Keywords: photosensitization, protein photosensitizer, photonanomanipulation, singlet oxygen, calcium

oscillation, pancreatic acinar cells, photopharmacology, ligand-independent

INTRODUCTION

Photodynamic action as a physiological curiosity has a long history, dating back to more than
a century ago (for an early review on this topic, please see Blum, 1932). Investigation of
photodynamic modulation of cellular physiology, however, has been rather limited until the recent
past. A number of technological advances in photodynamic research have been made in the past
few years. The newly renovated photodynamic modulation is now poised to be used on a much
wider scale in physiological research.

A typical photodynamic action involves light, light-absorbing organicmolecule (photosensitizer,
S), and oxygen. Singlet oxygen is generated in a Type II photodynamic action. The photosensitizer
(S) after absorption of a photon (hυ) of appropriate wavelength is excited from ground state (S) to
the singlet excited state (1S). The 1S then undergoes a physical process named intersystem crossing
(isc), to reach the triplet excited state (3S). If the triplet state is sufficiently long-lived, its excitation
energy can be transferred to the ground state molecular oxygen (16−

g ), to generate the delta singlet

oxygen (11g)(
1O2). The singlet oxygen so generated can react with cellular components (A), to

trigger the full-scale cellular photodynamic responses (Cui and Matthews, 1998; Cui et al., 2012;
Dai et al., 2012) (Scheme 1).
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Uncontrolled photodynamic action is detrimental as noted
in porphyria patients (Kaestner et al., 2004; Norman, 2005),
but measured photodynamic action has been utilized for major
clinical advances. Concentrated generation of singlet oxygen
at mega doses is cytocidal in different patterns (Agostinis
et al., 2011; Krammer and Verwanger, 2012; Bacellar et al.,
2015; Abrahamse and Hamblin, 2016). Singlet oxygen could
trigger apoptosis, for example, by oxidizing multiple proteins
(such as Bcl-2, Bcl-XL, BAX, BID) in the apoptosis pathway
(Oleinick and Evans, 1998; Xue et al., 2001; Usuda et al., 2002,
2003; Chiu et al., 2005; Wan et al., 2008; Liu et al., 2011).
Due to such cytocidal effects of singlet oxygen, photodynamic
action has been found to be effective in the clinical treatments
of both cancers and non-malignant lesions (Kennedy et al.,
1990; Bown et al., 2002; Mittra and Singerman, 2002; Brown
et al., 2004; Szeimies et al., 2010; Agostinis et al., 2011; Bown,
2013; Huggett et al., 2014; Craig et al., 2015; Abrahamse
and Hamblin, 2016; Liu et al., 2016; Newman, 2016). On
the other hand, it has been found that controlled doses of
singlet oxygen could modulate cellular signaling in different
cell types such as glandular cells with proven high specificity
(Matthews and Cui, 1989, 1990a,b; al-Laith et al., 1993; Cui
and Kanno, 1997; Cui et al., 1997, 2000, 2003, 2012; Cui and
Matthews, 1998; Hashikura et al., 2001; Cui and Guo, 2002a,b;
An et al., 2003; Wang et al., 2003; Krammer and Verwanger,
2012; Bacellar et al., 2015). One particular noted case is the
photodynamic activation of CCK1 receptors in rat pancreatic
acinar cells.

SINGLET OXYGEN AND ITS PERMANENT
ACTIVATION OF CCK1 RECEPTOR

Singlet oxygen generated in photodynamic action with the
sulphonated aluminumphthalocyanine (SALPC), has been found
to activate rather permanently the CCK1 receptor in rat
pancreatic acinar cells (Cui and Kanno, 1997; An et al., 2003;
Cui et al., 2012), but desensitizes the α1 adrenergic receptor in
rat hepatocytes (Cui et al., 2000) and other G protein-coupled
receptors (GPCR).

CCK-CCK receptors play important roles in both
gastrointestinal (GI) and central nervous system (CNS)
functions (Cawston and Miller, 2010; Yu and Smagghe, 2014),
due to the wide-spread distribution of both CCK1 and CCK2
receptors (Miller and Gao, 2008; Dockray and Burdyga, 2011).
Of the group A GPCR receptors, CCK1 is unique in that it can
be permanently activated by photodynamic oxidation (Cui and
Kanno, 1997; An et al., 2003; Cui et al., 2012). It may be noted
that ligand (agonist CCK)-induced cytosolic calcium oscillations
disappeared immediately after washout of CCK (Figure 1A),
but the photodynamically-induced, ligand-independent calcium
oscillations persisted well after photodynamic action (duration:
1 min) had completed (Figure 1B).

An early hint for irreversible activation of CCK1 receptor was
noted as early as 1980 by the Jamieson group. A photoaffinity
probe to label the CCK1 receptor, CCK octapeptide (Asp-
Tyr-(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2, CCK-8) analog

2-nitro-5-azidobenzoyl-Gly-Asp-Tyr-(SO3H)-Met-Gly-Trp-Met-
Asp-Phe-NH2 (NAB-Gly-CCK-8), was found to elicit irreversible
secretion after UV irradiation of guinea pig pancreatic acini,
although whether such secretion was mediated by the CCK1
receptor was not at that time verified (Galardy et al., 1980). A
series of works by us have clearly delineated the irreversible
nature of oxidative activation of CCK1 receptor (Matthews and
Cui, 1989, 1990a,b; al-Laith et al., 1993; Cui et al., 1997, 2012;
Cui and Kanno, 1997; An et al., 2003).

Photodynamic action with the photosensitizer sulphonated
aluminum phthalocyanine (SALPC) was initially found to
stimulate amylase secretion and regulate cytosolic signaling
in the freshly isolated rat pancreatic acini (as reviewed
in Cui and Matthews, 1998). In those experiments, the
freshly isolated pancreatic acini were perifused, exposed to
SALPC briefly (10 min), subsequent light illumination (2
min) then triggered persistent calcium oscillations which were
completely blocked by CCK1 antagonist FK480 (10 nM)
(An et al., 2003) (Figure 1C). After the blockade of calcium
oscillations with FK480 (10 nM), the muscarinic agonist
bethanechol (Beth) still triggered robust new calcium oscillations
(An et al., 2003) (Figure 1C). These data indicated that
after photodynamically-triggered calcium oscillations, pancreatic
acinar cells remained perfectly healthy (An et al., 2003; Cui et al.,
2012). Here the photodynamic action was restricted to the plasma
membrane (Cui and Kanno, 1997; An et al., 2003; Cui et al.,
2012).

PROTEIN PHOTOSENSITIZER FOR
NANOSCOPICALLY-CONFINED
PHOTODYNAMIC ACTION

Singlet oxygen in the cellularmilieu has a short lifetime (µs) (Cui
andMatthews, 1998; Bovis et al., 2012; Kim et al., 2014), therefore
has a limited effective diffusion distance of <10 nm (Moan and
Berg, 1991; Cui and Matthews, 1998; Dougherty et al., 1998;
Nowis et al., 2005; Cui et al., 2012). Singlet oxygen generated
in photodynamic action is, therefore, effective only at the site of
generation, or at the site of photosensitizer localization in the cell.

Due to their intrinsic physicochemical properties,
photosensitizers of different chemical classes tend to accumulate
preferentially at specific subcellular sites such as the plasma
membrane, the endoplasmic reticulum (ER), lysosomes,
mitochondria, to modulate cellular activities from their different
subcellular locations after photodynamic action (Theodossiou
et al., 2006; Allison and Sibata, 2010; Agostinis et al., 2011).
Hematoporphyrin derivative (HPD) monomers tend to
accumulate at the mitochondria, and HPD oligomers at the
plasma membrane (Scourides et al., 1987). Mono-aspartyl
chlorin e6 (MACE) after endocytosis localizes to lysosomes
(Berg and Moan, 1997). Phthalocyanines tend to accumulate
at mitochondria (Peng et al., 1991). Benzoporphyrin derivative
(BpD) is localized to the Golgi apparatus (Rosenkranz et al.,
2000). Protoporphyrin IX (PPIX) precursor ALA-synthesized
PPIX distributes to the plasma membrane, lysosomes and
mitochondria (Kennedy et al., 1990).
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FIGURE 1 | SALPC photodynamic action triggers permanent activation of CCK1 receptors and persistent calcium oscillations in rat pancreratic acinar

cells. Fura-2 AM-loaded rat pancreatic acini were perifused, CCK (A), sulphonated aluminium phthalocyanine (SALPC, B,C), CCK1R antagonist FK480 (C),

muscarinic agonist bethanechol (Beth, C), light illumination (λ > 580 nm) (55,000 lux, B; 53,000 lux or 72 mW/cm2, C) were applied, as indicated by the horizontal

bars. Note that CCK-induced calcium oscillations ceased immediately after wash-out of CCK (A), but photodynamically-induced calcium oscillations persisted even

after photodynamic action (B,C). The photodynamically-induced calcium oscillations were completely blocked by the CCK1R antagonist FK480, then stimulation with

bethanechol still induced new regular calcium oscillations (C). Reproduced from Cui and Kanno (1997) and An et al. (2003).

Interestingly, photodynamic action at different cellular sites
triggers cell death by distinct pathways. Photodynamic action at
mitochondria and lysosomes triggers apoptosis; photodynamic
action at the ER elicits autophagy; whereas photodynamic action
at the plasma membrane induces necrosis (Almeida et al.,
2004; Bacellar et al., 2015; Abrahamse and Hamblin, 2016). As

mentioned above, SALPC photodynamic action at the plasma
membrane induced permanent activation of CCK1 receptor (Cui
and Kanno, 1997; An et al., 2003; Cui et al., 2012), photodynamic
action with Victoria Blue VO at mitochondria reduced the
oscillatory frequency of receptor-mediated calcium oscillations
(Cui and Guo, 2002a,b).
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It is recognized that the specific localization of chemical
photosensitizers are only relative, distribution in multiple
subcellular sites are quite common (Kessel, 1997, 2004, 2012;
Kessel et al., 1997; Oleinick and Evans, 1998). The plasma
membrane-localized photosensitizer MCP, for example, is also
found in the ER and lysosomes; photosensitizer SnOPA is present
in the plasma membrane, but also in the ER, lysosomes and
elsewhere (for an in-depth review, see Kessel, 2004).

Mutated fluorescent proteins or engineered flavin-binding
proteins have significantly enhanced photosensitivity compared
with their parental proteins. Such genetically-encoded protein
photosensitizers can be targeted precisely to subcellular
organelles after tagging with signal sequences or after fusion with
target proteins, resulting in high-precision spatially-controlled
photodynamic action, or targeted protein oxidation. Locally-
expressed protein photosensitizers after absorption of photons at
specified wavelength generate the highly reactive singlet oxygen.
Singlet oxygen as noted above has limited diffusion distance
(<10 nm), therefore modulates target proteins or subcellular
organelles nanoscopically.

Individual Protein Photosensitizers
Protein photosensitizers are either fluorescent protein variants
such as KillerRed, KillerOrange, TagRFP, or flavin-binding
proteins such as miniSOG and variants miniSOGQ102L/V,
and Pp2FbFPL30M. The miniSOGQ102L is also named by
some as singlet oxygen protein photosensitizer (SOPP). The
chromophores (fluorophores) of KillerRed, KillerOrange,
TagRFP are QYG, QWG, MYG, respectively, whereas miniSOG,
miniSOGQ102L/V, Pp2FbFPL30M all share the same chromophore
of FMN (Figure 2).

FIGURE 2 | Three dimensional structures of SuperNova (A),

miniSOGQ102V (B), with their respective chromophores highlighted. (A) The full

amino acid sequence of SuperNova is obtained from PDB database (3WCK).

The three dimensional structure of SuperNova is from PDB in pdb format, input

to VMD graphics. The chromophore of Gln65-Tyr66-Gly67 (Takemoto et al.,

2013) in SuperNova is highlighted in red. (B) The full amino acid sequence of

miniSOGQ102V is from Rodríguez-Pulido et al. (2016). The sequence is put into

the protein structure website Swiss-model, three-dimensional model is then

obtained after a build-model step. The chromophore FMN in miniSOGQ102V is

highlighted in green. Model building similar to Mironova et al. (2013).

KillerRed
The prototypical protein photosensitizer KillerRed is derived
from the jellyfish chromoprotein anm2CP (239 residues, MWt
27 kD) (Bulina et al., 2006a,b; Pletnev et al., 2009), with
point mutations of Thr145Asp, Cys161Gly (Shagin et al., 2004).
KillerRed is composed of 11 anti-parallel β-sheets which form
a barrel structure, with a central chromophore of Q65-Y66-
G67 (see Figure 2) (Roy et al., 2010). An aqueous central
channel/pore exists in the KillerRed structure, which is composed
of the chromophore Q65-Y66-G67 and residues Ile142, Leu143,
Pro144, Ile199, Ile200, Thr201. The excited chromophore can
transfer its excitation energy to ground state molecular oxygen
which has reached the chromophore region by diffusion through
this channel; the generated ROS also exit KillerRed via the
same channel (Carpentier et al., 2009; Pletnev et al., 2009;
Serebrovskaya et al., 2009; Roy et al., 2010). The ROS quantum
yield of KillerRed is more than 1000 times of EGFP (Bulina et al.,
2006a,b; Carpentier et al., 2009; Pletnev et al., 2009). The current
consensus is that KillerRed undergoes a Type I photodynamic
action to generate superoxide anion, although it was previously
thought to generate singlet oxygen by a Type II photodynamic
action (Pletnev et al., 2009; Serebrovskaya et al., 2009; Shu et al.,
2011; Vegh et al., 2011; Kim et al., 2014). A singlet oxygen-
generating capacity cannot be completely ruled out, however
(Roy et al., 2010; Petrova et al., 2016). Since KillerRed tends to
dimerize, a monomeric mutant, Supernova, has been reported
(Figure 2), which has the following 6 mutations compared with
KillerRed: G3V, N145S, L160T, F162T, L172K, M204T (Takemoto
et al., 2013). Supernova is believed to have similar photochemical
properties as the parental KillerRed (Takemoto et al., 2013). The
basic characteristics of KillerRed are listed in Table 1 (Bulina
et al., 2006a,b; Lukyanov et al., 2010). Further mutations (G5C,
Y68W, D119S, N147S, F179L, Y223H, E237Q) of KillerRed result
in a blue-shifted KillerOrange, the photosensitization properties
of KillerOrange remain to be investigated (Pletneva et al., 2015;
Sarkisyan et al., 2015).

KillerRed fused with signal sequences can be targeted to the
mitochondria in 293T cells (Bulina et al., 2006b), HEK293 cells,
in the body wall muscle cells (Shibuya and Tsujimoto, 2012)
and neurons of C. elegans (Williams et al., 2013). KillerRed
can also be targeted to the lysosomes (Serebrovskaya et al.,
2014), Golgi apparatus (Jarvela and Linstedt, 2014), the plasma

TABLE 1 | Basic properties of protein photosensitizers.

Photosensitizer No. AA λex (nm) λem (nm) 8
1O2 8fluo

KillerRed 239 585 610 (−) 0.25

KillerOrange 239 512 550 ND 0.42

TagRFP 237 555 584 0.004 0.48

miniSOG 106 448 500 0.03 0.45

Pp2FbFPL30M 148 449 495 0.09 0.25

miniSOGQ102L/V 106 440 487 0.25/0.39 0.43

NO. AA, number of amino acid residues; λex , excitation wavelength; λem, emission

wavelength; Φ1O2, singlet oxygen quantum yield; Φfluo, fluorescence quantum yield; (−),

Only O−.
2 is produced; ND, Not done.
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membrane, mitochondria, or chromosomes (Shirmanova et al.,
2013) in Hela cells. KillerRed has also been targeted to the plasma
membrane in C. elegans neurons (Williams et al., 2013), zebrafish
neurons and cardiomyocytes (Lee et al., 2010; Teh et al., 2010), or
targeted to chromosomes in DU145 cells (Waldeck et al., 2011).
The fusion protein TRF1-KillerRed has been used to target the
telomeres (Sun et al., 2015). KillerRed fusion proteins (laminB1-
KillerRed/histone2A-KillerRed) have been used to determine the
spatial localization of chromosomal genes in the cell nucleus
(Waldeck et al., 2013). The histone fusion protein H2B-KillerRed
can be used to exert photodynamic blockade of cell division
(Serebrovskaya et al., 2011; Shirmanova et al., 2015). Light
irradiation of mitochondria-localized KillerRed (Mito-KillerRed)
has been used to prune neuronal dendritic spines in defined
dendritic regions of cultured neurons via the induction of
caspase-3 activity (Ertuerk et al., 2014). Work done with larval
zebrafish expressing KillerRed in the habenula afferent neurons
from the ventral-lateral forebrain has helped to confirm that the
habenula region is important for avoidance learning and helpless
behavior (Lee et al., 2010).

TagRFP
TagRFP is derived from the Entacmaea quadricolor fluorescent
protein TurboRFP (a random mutant of eqFP578), with
mutations of R162E, Q166D, S180N, F198V, F200Y at the
hydrophilic interface (Merzlyak et al., 2007). TagRFP has a
central chromophore of M63-Y64-G65 (Subach et al., 2010).
Light irradiated-TagRFP generates only 1O2, with a quantum
yield of 0.004, but does not produce superoxide anion (Ragas
et al., 2011). TagRFP has a high fluorescent quantum yield (8fluo

0.48) and is widely used for fluorescent imaging (Merzlyak et al.,
2007; Khrenova et al., 2015;Manoharan et al., 2015) (seeTable 1).
But when using TagRFP as a fluorescent probe for imaging, care
must be taken that no undue photodamage is induced in either
live cells or fixed tissue sections. Light illumination (532 nm,
40 mWatt/cm2) of TagRFP-expressing E. coli has been found to
result in bacterial cell death (Ruiz-González et al., 2012).

miniSOG
The flavin-binding protein miniSOG is derived from the LOV2
domain of A. thaliana phototropin 2 with a Cys426Gly mutation,
with further mutations S24G, I387M, N390S, S394T, F470L
surrounding the chromophore (FMN) binding site (Shu et al.,
2011). The resultant miniSOG is composed of 2 α-helix,
interspersed with 5 β-sheets, with the chromophore FMN located
between the α-helix and β-sheets (Pietra, 2014) (see Figure 2).
Point mutation Cys426Gly facilitates transfer of FMN excitation
energy absorbed from a photon to ground state O2 instead of
to covalent bonding with Cys, significantly enhancing its 1O2

quantum yield (Shu et al., 2011). Initial report with anthracene-
9, 10-dipropionic acid (ADPA) as the 1O2 probe obtained a
quantum yield of 0.476 (Shu et al., 2011). Subsequent work has
found that ADPA is also oxidized by other ROS (Ruiz-González
et al., 2012). Directmeasurement of 1O2 phosphorescence at 1275
nm, and the use of uric acid or PNS as 1O2 probes revealed a
much lower quantum yield of 0.03 (Ruiz-González et al., 2012;
Pimenta et al., 2013). The basic spectroscopic characteristics of

miniSOG are listed in Table 1 (Shu et al., 2011; Ryumina et al.,
2013; Wingen et al., 2014; Westberg et al., 2015).

Photosensitizer miniSOG can be targeted to the plasma
membrane, mitochondria or chromosomes in Hela cells (as
fusion proteins miniSOG-mem, miniSOG-mito, H2B-miniSOG)
(Ryumina et al., 2013). In C. elegans motor neurons, miniSOG-
TOMM-20 is targeted to mitochondrial outer membrane,
whereas miniSOG-COX8a is targeted to mitochondrial matrix
(Qi et al., 2012). miniSOG can be expressed as a fusion protein
with the SDHC subunit (mev-1) of the mitochondrial respiratory
chain complex II (succinate:ubiquinone oxidoreductase), to
photodynamically inactivate with high specificity the respiratory
chain complex II (on mitochondrial inner membrane) in
C. elegans, without any damage toward its immediate neighbors
complex I (NADH:ubiquinone oxidoreductase) or complex IV
(cytochrome C oxidase) (Wojtovich et al., 2016). Photosensitizer
miniSOG has also been fusion-expressed with vesicular SNARE
proteins vesicule-associated membrane protein 2 (VAMP2) or
synaptophysin 1 (SYP1), to target the small synaptic vesicles in
cultured rat hippocampal neurons (Lin et al., 2013) or C. elegans
neurons (Lin et al., 2013). miniSOG could be fusion-expressed
with the synaptic active zone proteinMunc13, to the pre-synaptic
active zone in C. elegans neurons (Zhou et al., 2013).

Pp2FbFPL30M

Pp2FbFPL30M is derived from the LOV domain of the flavin-
binding protein Pp2FbFP from Pseudomonas sputita, with a
further mutation of L30M (Torra et al., 2015). Measurement of
phosphorescence at 1275 nm found that the 1O2 quantum yield
of Pp2FbFPL30M was 0.09 (Torra et al., 2015). The spectroscopic
characteristics of Pp2FbFPL30M) are listed in Table 1 (Ryumina
et al., 2013; Wingen et al., 2014).

SOPP
miniSOGQ102L is also named SOPP, as mentioned above.
In comparison with the parental miniSOG, in SOPP the
FMN-binding glutamine is mutated to leucine (Q102L). This
mutation reduces the hydrogen bond between Q102 and
FMN, diminishing electron transfer, but enhancing energy
transfer, with the net result of a much enhanced 1O2

quantum yield of 0.25 (Westberg et al., 2015, 2016). Another
mutant, miniSOGQ102V (Figure 2), has an even higher 1O2

quantum yield of 0.39 (Rodríguez-Pulido et al., 2016). When
miniSOGQ102L is expressed at the plasma membrane (by fusion
with a PH domain) in C. elegans epithelial cells or in the
cholinergic neurons, blue light illumination induces worm
paralysis and neuronal injury, at efficiency higher than with
miniSOG as the photosensitizer (Xu and Chisholm, 2016).
The basic properties of miniSOGQ102L are listed in Table 1.
A new version of miniSOG, miniSOG2, involves seven point
mutations: G22S, G40P, Q44R, R57H, L84F, H85R, M89I.
Mutations R57H, Q44R, G40P, L84F directly interacting with
the chromophore FMN are likely responsible for the red-
shifted excitation and emission spectra, together with enhanced
singlet oxygen generation, but the quantum yield remains to be
measured (Makhijani et al., 2017).
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Targeted Subcellular Expression of Protein
Photosensitizers
Subcellular targeting of protein photosensitizers has been done as
mentioned above in different cell types, such as targeted KillerRed
expression in Hela cells (Shirmanova et al., 2013; Jarvela and
Linstedt, 2014; Serebrovskaya et al., 2014), HEK293 cells (Bulina
et al., 2006b), DU145 cells (Waldeck et al., 2011), and miniSOG
expression in Hela cells (Ryumina et al., 2013) or in cultured
hippocampal neurons (Lin et al., 2013).

To target-express a protein photosensitizer, the
photosensitizer gene needs to be fused with a subcellular
localization sequence (SLS), to localize the protein
photosensitizer to the desired subcellular compartments.
KillerRed, for example, could be targeted to the plasma
membrane (Bulina et al., 2006b; Teh et al., 2010) (plasma
membrane LS, PMLS) with the N-terminal (20 residues)
sequence of neuromodulin (Skene and Virág, 1989), or with
the PH Delta1 sequence (Fujii et al., 1999; Bulina et al., 2006b).
KillerRed can be targeted to mitochondria with the double
sequences of MTS1 and MTS2 (Yang and Yang, 2011; Shibuya
and Tsujimoto, 2012). Mitochondrial targeting sequence (MTS)
can be derived from human cytochrome C oxygenase VIII
subunit (Rizzuto et al., 1989, 1995), or from members of the
respiratory chain complexes (Wojtovich et al., 2016). For
lysosomal targeting, the C-terminal cytosolic tail sequence of the
lysosomal-associated membrane protein II (LIMP II) could be
used (Tabuchi et al., 2000). GTPase Rab7A sequence has been
used to target KillerRed to lysosomes (Serebrovskaya et al., 2011;
Ryumina et al., 2016). ER targeting could use the ER localization
sequence (MLLSVPLLLGLLGLAVA) of calreticulin (Fliegel et al.,
1989) and the ER retaining sequence KDEL (Munro and Pelham,
1987). The human β-1,4-galactotransferase N-terminal sequence
can be used to target TagRFP to the Golgi apparatus (Shaner
et al., 2008). Fusion proteins miniSOG-H2B, miniSOG-VAMP2,
SYP1-miniSOG as mentioned above target miniSOG to Hela cell
chromosomes (Ryumina et al., 2013), and to the small synaptic
vesicles, respectively (Lin et al., 2013). KillerRed-TRF1 targets
to the telomeres (Sun et al., 2015). The complete amino acid
sequence of protein photosensitizers are listed in Table 2.

For whole organism studies, it is routine to place the desired
gene under cell type- or tissue-specific promoters. Place the
protein photosensitizer gene or gene construct under a suitable
promoter, the sensitizer could then be expressed in that tissue
(neuron, muscle, for example) only, in model animals C. elegans,
zebrafish or others at the desired subcellular compartments
(Serebrovskaya et al., 2011, 2014; Kobayashi et al., 2013; Williams
et al., 2013). Cell-type specific viral vectors are also useful for
in vivo injections. Engineered Muller cell-specific adenovirus
variant containing the KillerRed gene, ShH10-KillerRed, for
example, has been used to target the mouse retinal Muller cells.
This study has confirmed the essential roles of Muller cells
in visual perception and in normal retinal structure formation
(Byrne et al., 2013). In this regard some technical strategies
for gene delivery (Kaestner et al., 2015a; El-Shamayleh et al.,
2016) and past works on tissue-specific expression of fluorescent
protein sensors may be considered (Akemann et al., 2013;
Kaestner et al., 2015b).

Selective Illumination of Defined Regions
for Localized Photodynamic Action
Other than subcellularlly-defined expression of protein
photosensitizers, photodynamic action could be further spatially-
delimited with ultra-structurally distinct point illumination. The
recently emerged active illumination (AI) technology can be
done at single or dual wavelengths, in multiple cells or cellular
regions, simultaneously with imaging. The illumination light
spot could vary in size, shape, and light intensity, with the spot
size down to the theoretical diffraction limit (0.2 × 0.2µm)
(Shkryl et al., 2012). Active or selective illumination is made
possible due to the invention of digital micromirror arrays,
which can in real-time control the angle of each micromirror in
the array (Shkryl et al., 2012).

Such selective illumination has been used to un-cage calcium
or inositol 1, 4, 5-triphosphate (IP3) at multiple cellular sites
simultaneously (Shkryl et al., 2012). Selective dual-wavelength
illumination (390, 510 nm) could open or close, in tandem,
designer photosensitive potassium channels in neurons (Janovjak
et al., 2010). It has been shown that after selective irradiation
of cultured vascular endothelial cells, localized photodynamic
action readily triggered focused cell death in the irradiated areas
(Feine et al., 2012). In channelrhodopsin 2 (ChR2)-expressing
C. elegans, selective illumination of dendrites of sensory neurons
stimulated cytosolic calcium increase, leading to enhanced worm
activities (Cho and Sternberg, 2014).

HIGHLIGHTED EXAMPLES OF
PHOTODYNAMIC MODULATION OF
CELLULAR PHYSIOLOGY

Photodynamic modulation of cellular functions with protein
photosensitizers is outlined above. Works in the following areas
have emerged which are of particular significance in cellular
physiology.

Modulation of Ionic Channels
The earliest example of photodynamic modulation of native
ionic channels is illustrated by the photodynamic blockade,
with photosensitizers Rose Bengal and Eosin Y, of voltage-gated
sodium channels (Nav) in the squid giant axons. In addition,
photodynamic action also slowed or disrupted Nav inactivation
(Oxford et al., 1977). Photodynamic action with Rose Bengal
has also been found to inhibit other voltage-gated channels as
well (Nav, Kv, Cav) in the isolated frog (Rana pipiens) atrial
cardiomyocyte. After photodynamic action, Nav inactivation was
significantly slowed; Cav inactivation was also inhibited (Tarr and
Valenzeno, 1991). Photodynamic action with Rose Bengal was
found to inhibit Cav, Kv, KCa channels in rat anterior pituitary
cells GH3 (Valenzeno and Tarr, 1997).

Kv channels expressed in cell lines have been found
to be inhibited by photodynamic action with porphyrins
(photosensitizer) conjugated to subtype-specific monoclonal
antibodies. Photodynamic action with anti-Kv4.2 mAb-
porphyrin conjugates was found to facilitate photoablation
of Kv4.2, but not of Kv4.3 or Kv2.1 (Sack et al., 2013).
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TABLE 2 | Amino acid sequence of protein photosensitizers.

KillerRed (Bulina et al., 2006a)

1 MGSEGGPALF QSDMTFKIFI DGEVNGQKFT IVADGSSKFP HGDFNVHAVC ETGKLPMSWK

61 PICHLIQYGE PFFARYPDGI SHFAQECFPE GLSIDRTVRF ENDGTMTSHH TYELDDTCVV

121 SRITVNCDGF QPDGPIMRDQ LVDILPNETH MFPHGPNAVR QLAFIGFTTA DGGLMMGHFD

181 SKMTFNGSRA IEIPGPHFVT IITKQMRDTS DKRDHVCQRE VAYAHSVPRI TSAIGSDED

SuperNova (Takemoto et al., 2013)

1 MGSEVGPALF QSDMTFKIFI DGEVNGQKFT IVADGSSKFP HGDFNVHAVC ETGKLPMSWK

61 PICHLIQYGE PFFARYPDGI SHFAQECFPE GLSIDRTVRF ENDGTMTSHH TYELDDTCVV

121 SRITVNCDGF QPDGPIMRDQ LVDILPSETH MFPHGPNAVR QTATIGFTTA DGGKMMGHFD

181 SKMTFNGSRA IEIPGPHFVT IITKQTRDTS DKRDHVCQRE VAYAHSVPRI TSAIGSDED

KillerOrange (Pletneva et al., 2015)

1 MGSECGPALF QSDMTFKIFI DGEVNGQKFT IVADGSSKFP HGDFNVHAVC ETGKLPMSWK

61 PICHLIQWGE PFFARYPDGI SHFAQECFPE GLSIDRTVRF ENDGTMTSHH TYELSDTCVV

121 SRITVNCDGF QPDGPIMRDQ LVDILPSETH MFPHGPNAVR QLAFIGFTTA DGGLMMGHLD

181 SKMTFNGSRA IEIPGPHFVT IITKQMRDTS DKRDHVCQRE VAHAHSVPRI TSAIGSDQD

TagRFP (Ruiz-González et al., 2012)

1 MVSKGEELIK ENMHMKLYME GTVNNHHFKC TSEGEGKPYE GTQTMRIKVV EGGPLPFAFD

61 ILATSFMYGS RTFINHTQGI PDFFKQSFPE GFTWERVTTY EDGGVLTATQ DTSLQDGCLI

121 YNVKIRGVNF PSNGPVMQKK TLGWEANTEM LYPADGGLEG RSDMALKLVG GGHLICNFKT

181 TYRSKKPAKN LKMPGVYYVD HRLERIKEAD KETYVEQHEV AVARYCDLPS KLGHKLN

miniSOG (Shu et al., 2011)

1 MEKSFVITDP RLPDNPIIFA SDGFLELTEY SREEILGRNG RFLQGPETDQ ATVQKIRDAI

61 RDQREITVQL INYTKSGKKF WNLLHLQPMR DQKGELQYFI GVQLDG

Pp2FbFPL30M (Torra et al., 2015)

1 MINAKLLQLM VEHANDGIVV AEQEGNESIM IYVNPAFERL TGYCADDILY QDARFLCGED

61 HDQDGIAIIR EAIREGRPCC QVLRNYRKDG SLFWNELSIT PVHNEADQLT YYIGIQRDVT

121 AQVFAEERVR ELEAEVAELR RQQGQAKH

SOPP/miniSOGQ102L/V (Westberg et al., 2015; Rodríguez-Pulido et al., 2016)

1 MEKSFVITDP RLPDNPIIFA SDGFLELTEY SREEILGRNG RFLQGPETDQ ATVQKIRDAI

61 RDQREITVQL INYTKSGKKF WNLLHLQPMR DQKGELQYFI GVLLDG

Protein photosensitizers (noted residues are shown in bold type and underlined, for details see text).

Similarly photodynamic action (laser light at 473 nm, 350
mW/cm2) with channel-binding photosensitizer FITC-cAMP
(bound to CNBD in mHCN2) was found to inhibit mouse
potassium channel mHCN2 expressed in Xenopus laevis oocytes.
Photodynamic modulation of mHCN2 in the closed state
decreased subsequently induced Ih current significantly. In
contrast, photodynamic action enhanced the Iinst current and
delayed channel inactivation when photosensitization was
executed in the open channels (Gao et al., 2014). These latter
two photodynamically-induced changes were determined to be
due to oxidation or cross-linking of the His434 residue located at
the cytosolic side of the S6 segment, because H434A mutation
abolished the delay in channel deactivation, and the generation
of Iinst (Gao et al., 2014). Interestingly, when miniSOG was fused
to the C terminal end (C terminal end of CNBD) of mHCN2,
light irradiation was found to exert (on mHCN2) effects similar
to those observed with the chemical photosensitizer FITC-cAMP
(Gao et al., 2014).

In contrast to the inhibitory effect on the voltage-gated
channels Nav and Kv, photo-oxidation has been found to activate
the calcium-permeant sensory channels TRPA1 and TRPV1 (Hill
and Schaefer, 2009; Babes et al., 2016). Photodynamic action with

photosensitizers acridine orange (490 nm), or hypericin (590 nm)
was found to activate TRPA1 expressed in HEK293 cells (Hill
and Schaefer, 2009). Photodynamic action with photosensitizer
protoporphyrin IX was found to drastically activate both TRPA1
and TRPV1. Purified human TRPA1 inserted in artificial lipid
bilayers was found to be activated only after photodynamic
action with protoporphyrin IX and blue light (Babes et al., 2016)
(Figure 3). Similar works involving the protein photosensitizers
both ex vivo and in vivo are eagerly awaited.

Modulation of the Exocytotic SNARE
Complex
The SNARE complex proteins and associated synaptic active
zone proteins are essential for regulated neurotransmitter release.
Protein photosensitizer miniSOG fused with the v-SNARE
proteins VAMP2 or synaptophysin (miniSOG-VAMP2, SYP1-
miniSOG) was expressed in neonatal rat hippocampal slices
or in cultured hippocampal and cortical neurons. Transgenic
C. elegans worms with panneuronal expression of miniSOG-
VAMP2 were also made. The fused miniSOG (miniSOG-
VAMP2, SYP1-miniSOG) was found to localize to the synaptic

Frontiers in Physiology | www.frontiersin.org 7 April 2017 | Volume 8 | Article 191

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Jiang et al. Photodynamic Physiology—Protein Photosensitizers as Nanoscalpels

vesicles, but without any effect on transmitter release or on
animal behavior in the dark. Upon illumination with blue light
(480 nm), neurotransmitter release in cultured neurons or in
hippocampal slices were completely blocked, with the inhibition
lasting for >1 h (Lin et al., 2013). In C. elegans panneuronally
expressing miniSOG-VAMP2, light irradiation similarly led to
marked inhibition of spontaneous neurotransmitter release, with
reduced movement and worm paralysis (Lin et al., 2013). Light
irradiation (480 nm) of C. elegans expressing miniSOG fused
to the pre-synaptic active zone protein Munc13 led to similar
acute inhibition of neurotransmitter release (Zhou et al., 2013)
(Figure 4).

Modulation of Nuclear Events
Another place of interest that has been investigated is the
chromosomal tip, the telomeres. The photosensitizer KillerRed
could be fusion-expressed with the telomere repeat binding
factor 1 (KillerRed-TRF1). The spatially-defined generation of
singlet oxygen after photodynamic action at the telomeres was
found to result in telomere abnormalities (telomere associations,
shortened or complete loss of telomeres), leading to fastened cell
senescence or cell death in cultured cancer cells HeLa, U2OS and
IMR90 (Sun et al., 2015) (Figure 5A). KillerRed fusion expressed
with the chromosomal protein histone H2B (H2B-KR-KR) in
adherent HeLa-Kyoto cells after green light illumination was
found to induce acute wide spread damages to genomic DNA,
leading to non-separation of chromosomes, and to blockade
of cell division and proliferation. H2B-KR-KR target expressed
in specific tissues (under control of tissue-specific promoters)
in Xenopus embryos was found, after green light illumination
(540–580 nm 120 mW/cm2; 525 nm, 45 mW/cm2), to retard
organogenesis. Therefore, H2B-KR-KR photodynamic action
could be used to study cell division, organism development,

FIGURE 3 | Photodynamic activation of TRPA1. Purified human TRPA1

reconstituted into artificial lipid (1,2-diphytanoyl-snglycero-3-phosphocholine:

cholesterol was 9:1) bilayers with both the N- and C-terminals facing the

cytosol were voltage-clamped at + 60 mV. PPIX (1µM) was added to the

cytosolic side, laser light (405 nm) was applied (at 0.45 mW/mm2 ). Single

channel currents were measured using Patch-a-Patch in symmetrical K+

solution (150 mM KCl, 10 mM HEPES) under light illumination alone (Light),

protoporphyrin IX alone (PPIX), or PPIX plus light (Light + PPIX) as indicated.

Scale bars indicate 2 pA current and 1 s. Only simultaneous presence of light

and PPIX (photodynamic action) led to channel opening. From Babes et al.

(2016).

organogenesis or carcinogenesis in a cell-specific manner in vivo
(Serebrovskaya et al., 2011) (Figure 5B). Protein photosensitizers
tandem-KillerRed and miniSOG target-expressed at chromatin
(H2B-tKR or H2B-miniSOG) inHeLa-Kyoto cells after brief light
irradiation (H2B-tandem KillerRed expressing cells with green
light 540–580 nm for 15 min at 200 mW/cm2; H2B-miniSOG
for 5 min with blue light 465–495 nm at 65 mW/cm2) was
able to induce single strand breaks but only miniSOG induced
double strand breaks of the genomic DNA, leading to DNA
damage response and cell senescence (Petrova et al., 2016). Most
interestingly, germline C. elegans expressing Histone-mSOG
after exposure to blue light has been found to produce progenies
with inheritable phenotypes (Noma and Jin, 2015). KillerRed
fusion-expressed either with the peripheral nuclear protein
lamin B1 (KRed-Lamin B1) or with the diffusely distributed
chromosomal protein H2A (H2A-KRed) was used to identify
gene damages after photodynamic action. The extent of photo-
oxidative damage was used to delineate the spatial localization of
the respective genes and the gene-carrying chromosomes in the
nucleus (Waldeck et al., 2013). KillerRed fused to a tet-repressor
(tetR-KR) or a transcription activator (TA-KR) have been used to
target oxidative stress to hetero- or euchromatin respectively in
U2OS cells (Lan et al., 2014).

The above examples showcase targeted
photonanomanipulation in subcellular organelle-based events at
the plasma membrane, synaptic vesicles and at chromosomes.
Numerous other subcellular sites can be similarly modulated
with this light-controlled nanomanipulation technique.

FIGURE 4 | Photodynamic inhibition of neurotransmitter release in

C. elegans with miniSOG-VAMP2 or UNC-13L-miniSOG. The protein

photosensitizer miniSOG was fusion-expressed with the vSNARE vesicular

associated membrane protein 2 (VAMP2) (A) or with the active zone protein

UNC-13-L (Munc 13) (B) in C. elegans neurons under neuron-specific

promoter. The transgenic worms were illuminated with blue light (480 nm, 30

mW/mm2 ), and postsynaptic current was recorded from ventral medial wall

body muscle with whole cell configuration. Note the rapid decrease in

excitatory postsynaptic current upon blue light illumination. Adapted from Lin

et al. (2013) and Zhou et al. (2013).
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FIGURE 5 | Photodynamic transformation of cell fate and zebrafish development with KillerRed fusion-expressed with TRF1 at the telomere

(KR-TRF1) in HeLa cells or with H2B under the promoter pXanf1 in X. laevis. (A) KillerRed (KR) was fusion-expressed with telomere repeat binding factor 1

(TRF1) to Hela cell telomeres (with the non-photosensitizer DsRed used as control), repeated light exposure (1.5 mW/cm2, 10 min in each passage for 30 passages)

induced fastened cell senescence as indicated by enhanced β–galactosidase activity (percentage cells with SA-β-gal staining). The negative control fluorescent protein

DsR showed no such effect. (B) KillerRed was fusion-expressed with core histone H2B under the control of forebrain promoter pXanf1, the transgenic embryos were

illuminated at the early midneurula stages with green LED (525 nm, 45 mW/cm2, 1 h). Such photodynamic treatment severely retarded the development of the

forebrain, sometimes resulted in a completely cyclopic phenotype, similar to phenotypes with suppressed pXanf1 expression (illuminated by green light). The tadpoles

developed from transgenic X. laevis embryos not illuminated showed normal phenotype (non-illuminated control). Scale bars in (B) 100µm. Adapted from Sun et al.

(2015) and Serebrovskaya et al. (2011).

CONCLUSION AND PERSPECTIVES

In conclusion, the emergence of protein photosensitizers with
enhanced singlet oxygen quantum yield has made possible
the fast-track progress in photodynamic nanomanipulation of
cellular physiology, mainly in C. elegans and zebrafish, whole
organism works in mammalian animals remain to be expanded.
The targeted expression after insertion of signaling sequence,
fusion expression of target proteins, or promoter-driven
tissue-specific expression, have made possible highly confined
generation of singlet oxygen, with targeted nanoscopical
protein oxidative activation or inactivation. Of the three major
photopharmacological techniques available today—optogenetics
involving channelrhodopsin and other photosensory domain-
containing proteins spatial configurational-responsive to the
absorption of a photon, photochromic ligands of receptors or
ionic channels involving the photon-driven configurational

changes of small molecule ligands, and photodynamic
modulation involving photosensitizer-generated singlet oxygen,
the protein photosensitizers are unique in that they could be
repetitively irradiated (used) rather like an enzyme molecule to
generate multiple copies of singlet oxygen molecules but not
merely repetitive configuration changes in the light-absorbing
molecules themselves. This makes possible multiple-hit oxidative
activation or desensitization of receptors and channels important
in cellular physiology, with the use of attenuated lasers and LED,
or with cheap halogen cold light sources. In the future, more
extensive works may be done with this photonanomanipulation
technique both in the elucidation of basic cellular functions such
as gene transcription, protein synthesis, transport, degradation,
or in the elucidation of cell-type specific functions in the central
nervous system circuits or in the innervation hubs (ganglia) and
pathways (nerve fiber wirings) of the peripheral nervous system.
Such photonanomanipulations in situ could also be used to study
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the intrinsic long-term repair mechanisms with high spatial and
temporal resolutions.
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